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1. Introduction

Structural optimization has become increasingly important as
modern sustainable construction demands engineers to curb
wastage of materials and to use optimal structural member shapes
and topologies, in order to achieve light weight and yet possessing
high strength and meeting serviceability requirements. The opti-
mal design of axially compressed, non-uniform columns plays a
key role for engineering structures, because of the wide applica-
tions of columns and bracing elements in mechanical engineering,
civil and construction industries. Many researchers have studied
the buckling load and the corresponding buckling mode of non-
uniform columns. Among others, Eisenberger [1] presented exact
buckling loads for columns with variable cross section and loaded
by axial forces that vary according to a polynomial law along the
column length. By posing it as an inverse buckling problem,
Elishakoff [2] derived closed form solutions for buckling of simply
supported columns with variable stiffness. Ruocco et al. [3–5] pro-
posed a semi-analytical approach for obtaining a buckling solution
of non-uniform beams.

In general, it is difficult to obtain a closed form solution for the
differential equation governing the buckling behaviour of arbitrar-
ily shaped columns. Consequently, most of the studies proposed a
discretized form of the governing equation so that the unknown
displacement of the column may be confined to seeking a finite
number of parameters describing the deflection. In other words,
the governing differential equation can be transformed into a sys-
tem of algebraic equations with unknown coefficients. For instance,
Li [6] proposed a displacement field as a linear combination of a
Fourier series and an auxiliary polynomial function for solving the
free vibration of beams with any boundary conditions. Recently,
Huang and Luo [7] proposed a simplemethod to determine the crit-
ical load for axially inhomogeneous beams, restrained under sev-
eral typical end supports, by expanding the mode shape as a
power series. Within this thematic ambit, one can include the work
of Hencky [8] in which in 1920, he proposed a discretized form of
the elastica studied by Euler almost two centuries ago by replacing
the continuum beam with a finite number of rigid beam elements
connected together by elastic rotational springs. In this pioneering



Nomenclature

L column length
Fi compressive concentrated axial loads
pðxÞ distributed axial load
qðxÞ beam density
vðxÞ self-weight
v0 value of self-weight at x = 0
�v ¼ vcr

0 L
3=qEI0 non-dimensional critical self-weight

Pj ¼
P j

i¼0Fi þ
R
ai
piðxÞdx equivalent concentrated axial forces

ðKRA;KRB;KLA;KLBÞ stiffness of lateral springs
ðsx; szÞ displacement field
ðu;wÞ generalized displacement
XL linear strain energy

XNL non-linear potential energy
Eðx; y; zÞ Young’s modulus
AðxÞ cross sectional area
ðEAðxÞ; EIðxÞÞ longitudinal and bending beam stiffnesses
n number of rigid segments in Hencky bar-chain model
a ¼ L=n segmental length in Hencky bar-chain model
Cj ¼ EIj=a bending stiffness in Hencky bar-chain model
aj ¼ Pja2=EIj non-dimensional axial load
n ¼ x=L non-dimensional coordinate
ðS;C; FÞ simple Supported, Clamped, Free boundary conditions
k partially constrained beam length
P ¼ Pcr=Phom non-dimensional concentrated critical load
H ¼ qcr=qhom non-dimensional distributed critical load
work, Hencky solved the buckling problem of a beam by consider-
ing 2, 3 and 4 rigid elements, and observing that the discrete model
converges to the Euler continuum solution in the limiting case of
infinite elements. Many researchers showed interest in the numer-
ical and theoretical aspects of Hencky’s work. Silverman [9] pointed
out that the central finite difference beammodel is mathematically
equivalent to the Hencky bar chain model for the buckling problem
if the nodal spacing of the finite difference model takes on the same
length of the rigid beam segments. Later, Leckie and Lindberg [10]
pointed the equivalence of the central finite difference beammodel
and the Hencky bar-chain model for vibration problems. Recently,
Challamel et al. [11] showed that this discrete problem was math-
ematically similar to the vibrations equations of a discrete string,
whose exact solution was first given by Lagrange, whereas Wang
et al. [12] and Duan and Wang [13] revisited the study on both
buckling and vibration problems of Hencky-bar chain for various
boundary conditions with elastic end restraints.

Studies on optimal column design against buckling have a very
long history. Since the pioneering work of Lagrange in 1773 [14]
where he first tried to determine the optimal shape of a thin elastic
clamped column, a noticeable number of papers have been devoted
to the optimization of columns against buckling. Clausen obtained
the first correct results almost a century later [15]. Keller [16] deter-
mined the optimal cross sectional variation of elastic columns of a
given length and volume that maximizes the buckling load. Whilst
Keller treated pinned ended columns, Tadjbakhsh and Keller [17]
obtained solutions for clamped-free and clamped-pinned columns.
Olhoff and Seyranian [18], Seyranian [19] and Olhoff and Ras-
mussen [20] showed that for clamped ended columns, the optimal
shape is associated with a bimodal fundamental bucklingmode and
proposed a mathematical formulation of the optimization problem
able to take into account this bimodal behaviour. Li et al. [21] stud-
ied the optimization problem of a composite column under an end
concentrated load and a distributed axial load, by considering a
bending stiffness that has a polynomial order variation. Maalawi
[22] determined the exact cross-sectional configuration of stepwise
clamped columns for maximum buckling load for any number of
segments. Atanackovic and Simic [23] determined the optimal
shape of a simply supported column loaded by uniformly dis-
tributed load. Novakovic [24] determined the optimal shape of an
elastic beam resting on Winkler foundation.

The objective of the present optimization problem is to maxi-
mize the critical buckling load of a column for a given volume
and length with or without a shape constraint. The discrete nature
of the formulation enables the optimization problem to be reduced
to seeking the optimal values of a finite number of parameters. This
is well suited for an optimization process that is based on genetic
algorithms (GA). Proposed by Holland [25] in the early 1970 s and
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put into practical applications in the late 1980 s, GA are inspired by
biological evolution and they have proven to be robust and power-
ful adaptive search techniques [26]. Unlike previous studies, there
is no need for any a priori law ruling the geometrical variation, and
also analysis can be easily performed on complex geometrical
shapes. GA is widely considered as an effective optimization tool
in term of solution reliability and convergence rate. Recently,
Nguyen et al. [27] proposed a vibration and lateral buckling GA
optimization of thin-walled laminated composite beams with
channel sections, by considering flanges width, web height and
fibre orientation as the design variables. Iuspa and Ruocco [28]
and, more recently, Ehsani and Rezaeepazhand [29] proposed the
stacking sequence optimization of laminated plates for maximum
buckling load using GA.

In this paper, we adopt an enhanced Hencky bar-chain model
(HBM) for buckling optimization of non-uniform columns sub-
jected to both compressive axial concentrated loads and dis-
tributed axial loads that include selfweight. The work extends an
optimization analysis based on discrete parameters recently pub-
lished [30], by considering general geometrical shape, loading
and boundary conditions. In order to assess the accuracy and the
robustness of the Hencky bar chain model – genetic algorithm
technique (HBM-GA) for column optimization against buckling,
comparison studies with available numerical and/or analytical
results are conducted.

2. Hencky bar-chain model

Consider a non-uniform column of length L, subjected to com-
pressive concentrated axial loads Fi applied on Li and a distributed
axial load pðxÞ. The column ends are restrained by rotational and
lateral springs with stiffnesses ðKRA;KRBÞ and ðKLA;KLBÞ, respectively
(see Fig. 1).According to the Euler-Bernoulli columnmodel, the dis-
placement field s ¼ ½sxðx; zÞ szðx; zÞ�T is governed by the generalized
displacement components u ¼ uðxÞ and w ¼ wðxÞ, which are given
by:

sxðx; y; zÞ ¼ u� zw;x

szðx; y; zÞ ¼ w
ð1Þ

where w;x denotes @w=@x.
The equilibrium equation can be obtained by invoking the prin-

ciple of minimum potential energy. The elastic strain energy is
given by:

XL ¼ 1
2

Z
V
eLrLdV ¼ 1

2

Z
V
Eðx; y; zÞðu;x � zw;xxÞ2

¼ 1
2

Z
l
EAu;2x þ EIw;2xxdx ð2Þ



Fig. 1. Non-uniform column subject to distributed and concentrated axial loads.
and the potential energy of the axial stress is given by:

XNL ¼ 1
2

Z
l
rxAw;2xdx ð3Þ

In Eqs. (2) and (3), Eðx; y; zÞ is the Young’s modulus and

ðEAðxÞ; EIðxÞÞ ¼
Z
A
ð1; z2ÞEðx; y; zÞdA ð4Þ

are the longitudinal and bending beam rigidities, respectively.
According to the Hencky bar chain model (HBM), the continu-

ous column is replaced with a discrete model made from n rigid
segments with intermediate elastic rotational springs having stiff-
nesses Cj ¼ EIj=a (Fig. 2). The flexural rigidities EI0 = EI at x = 0,
EIn = EI at x = L and EIj = EI at x = ja for 1 6 j 6 n� 1. The segmental
length, represented in Fig. 3, is denoted by a ¼ L=n.

We represent both the distributed load pðxÞ and concentrated
load forces Fi of the continuous column by the following equivalent
concentrated force Pi:

P0 ¼ F0

P1 ¼ F0 þ F1 þ
R
a1
p1ðxÞdx

..

.

Pj ¼
Xj

i¼0

Fi þ
R
ai
piðxÞdx

ð5Þ

on the discrete model as shown in Fig. 3. The correspondence
between the continuous and the discrete models also requires a
transformation of the lateral springs ðKR;KLÞ, that assume the values
ðCR;CLÞ [31].
Fig. 2. Continuous model and
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Under the Hencky bar-chain assumptions, the principle of min-
imum total potential energy assumes the following discretized
form [32]:

dðXL þXNLÞ
dwi

¼ 0 ) /iwi�2 þ ciwi�1 þ giwi þ jiwiþ1 þwiþ2

¼ 0 ði ¼ 2; :::;n� 2Þ ð6Þ

and the boundary conditions are given by

g0w0 þ j0w1 þw2 ¼ 0
c1w0 þ g1w1 þ j1w2 þw3 ¼ 0

ð7Þ

and

wn�3 þ cn�1wn�2 þ gn�1wn�1 þ jn�1wn ¼ 0
wn�2 þ gnwn�1 þ jnwn ¼ 0

ð8Þ

In Eqs. (6)–(8) the known terms ð/i; ci;ji;giÞ are constant depend-
ing by the applied loads Pj, defined in [31] and reported in Appendix
A for sake of completeness.

Eqs. (6)–(8) may be collected in the following matrix form:

KðPjÞ �w ¼ 0 ð9Þ
For a nontrivial buckling solution, the determinant of the matrix

K must vanish, i.e.

detðKÞ ¼ 0 ð10Þ
One obtains the critical buckling load by solving the character-

istic Eq. (10) for the lowest positive root.
equivalent discrete model.



Fig. 3. Discretized Hencky bar-chain model.
3. Optimization problem

Because of their tailorability, composite materials can be config-
ured to accomplish the highest structural responses with specific
design requirements. Such an optimal configuration can be
obtained through an optimization process, in which we maximize
the critical buckling load of the column for a given structural area
defined as the sum of the discrete areas Ai ði ¼ 0;1; . . . ;nÞ (or the

corresponding total volume V ¼ Pn�1
i¼1 Aiaþ a

2 ðA0 þ AnÞ; by assum-
ing that the column is made of a homogenous material) related
to the HBM model. In such an approach, the discrete cross-
sectional areas Ai have been adopted as design variables, and the
second moment of area Ii is related to the cross-sectional area by:

Ii ¼ cAf
i ð11Þ

with ðc; fÞ constants associated with the cross sectional shape [33].
If unconstrained, the optimization process furnishes the optimal
values Ai while maintaining a constant volume. If there are addi-
tional constraints such as prescribed cross-section k over a portion
of the column, then the cross-sectional areas are characterized by
pre-assigned values that do not change in the optimization process.
Material properties, cross-sectional shape and boundary conditions
are given parameters in the optimisation problem. Since the study
searches for the maximum buckling load of non-uniform column,
the buckling load has been considered as fitness function, and the
Genetic Algorithm was applied to optimize the discrete spring stiff-
ness values of HBM that define the shape of the non-uniform col-
umn. GA is a population-based metaheuristic method based on
the evolutionary ideas of natural selection and genetics. GA has
the advantages of avoiding being trapped in a local optimal solution
4

and being able to handle discrete functions without any derivatives
or auxiliary information.

A parallel calculation allows us to decrease the optimization
time, maintaining at the same time a number of variables sufficient
to represent a large range of configurations [34]. In order to verify
the convergence response of the method, four independent popu-
lations of 200 individuals have been carried out, and the average
distance compared for all the obtained results. The initial popula-
tion is randomly generated in the solution space. Elitist selection,
tournament selection, crossover and mutation are the operators
used to generate the next generations. Elitist generation is a selec-
tion strategy where a limited number of individuals (10% in our
case) with the best fitness values are chosen to pass the next gen-
eration, avoiding the crossover and the mutation operators. For the
tournament selection, applied to the 5% of the population, two
chromosomes in the current population are randomly paired and,
in each couple, the one that possesses the largest fitness function
is copied to the next generation. The two-point crossover method
is employed to interchange and combine the genes between indi-
viduals, whereas the mutation is used for nurture the genetic
diversity. A hundred generations is taken as the stopping criteria.
4. Example problems considered

Numerical analyses were carried out to validate the efficiency
and to show the potential of the present HBM-GA method. The col-
umns are subjected to concentrated axial loads ðF0; F1; . . . FnÞ
applied on each segment of Hencky-bar chain, as well as to dis-
tributed axial load conditions q and self-weight v (Fig. 4).

The analyses were performed for 10, 20, 40 and 60 segments in
HBM. The results show the general form of the optimal column



Fig. 4. Load conditions considered.

Fig. 5. Representation of optimal column shape in no
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shape, even when the number of segments is as low as 20. Clearly,
for more complicated column shapes, 20 segments are not suffi-
cient. However, 40 segments should suffice in furnishing a reason-
ably clear optimal shape for the column.For the sake of simplicity
but without loss of generality, a circular cross-section has been
adopted, and the results have been reported in terms of the non-
dimensional radius r=r0; where r is the radius of the optimal circu-
lar cross-section and r0 the radius corresponding to the uniform
column with same volume and length. The beam distance x is rep-
resented in non-dimensional coordinaten ¼ x=L:The optimal col-
umn design can then be represented by its radial profile as
shown in Fig. 5.

4.1. Example 1. Optimization of columns under concentrated end load

The first example is concerned with the optimization of a non-
uniform column subjected to a concentrated end force F0 (see
Fig. 4). By using the HBM-GA method, the maximum buckling
loads for optimal column shapes with n varying between 10 and
60 and various boundary conditions are presented in Table 1. The
buckling analysis has been performed on a quad-core Intel Core
i7 2.71 GHz processor, using a homemade Matlab code that neces-
sitates about ð4:76;8:54;18:90;34:02Þ seconds for completing the
200 buckling analysis, required for a single generation in the GA
process, with ð10;20;40;60Þ elements. By using the four proces-
sors in parallel, the 100 generations in the optimization analysis
require almost 5 min for optimization process considering 10 ele-
ments and almost 45 min considering 60 elements.

In Table 1, the non-dimensional maximum buckling load
parameter G is the normalized maximum buckling load Pcr by the
buckling load Phom of the corresponding uniform column with
the same volume, length and boundary conditions, i.e.
n-dimensional coordinate n ¼ x=L and radius r/r0.



Table 1
Maximum buckling load parameter G for n-segments HBM with various boundary conditions.

HBM-GA Previous researchers

B.C. n = 10 n = 20 n = 40 n = 60 [16] [17] [21] [18] [20]

SS 1.399 1.349 1.336 1.333 1.334 – – – –
CF 1.412 1.393 1.372 1.345 – 1.333 1.3204 – –
CS 1.435 1.412 1.398 1.376 – 1.351 – 1.34 –
CC 1.398 1.376 1.328 1.322 – – – 1.32 1.3262
P ¼ Pcr

Phom
ð12Þ

Note that Phom ¼ jp2EI=L2 and j = 1, 0.25, 2.046 and 4 for simply
supported ends (SS), clamped-free ends (CF), clamped-simply sup-
ported ends (CS) and clamped-clamped ends, respectively.

For SS columns, a comparison of the maximum buckling loads
with the global optimal buckling load obtained by Keller [16]
shows that n < 40 segments is not sufficient to capture the optimal
column shape that furnishes the maximum possible buckling load
G = 4/3 = 1.3333. One would need at least n = 60 to get the buckling
load to within 1.3% difference from the global maximum buckling
load. In addition, for the proposed HBM-GA procedure, we had to
impose a lower bound Amin ¼ 0:05Ahom to prevent any vanishing
cross sectional area in the internal domain of the columns. By
doing so, the optimal buckling loads are somewhat lower than
the buckling loads corresponding to the ideal cases. In the case of
CF column, n = 40 is adequate to furnish a buckling load that is
close to the global maximum buckling load of P ¼ 1:333 obtained
by Tadjbakhsh and Keller in [17]. The buckling load of CF column
obtained by Li et al. [21] is lower because they considered an area
profile that varies accordingly to the following law:

AðxÞ ¼ ð1þ 2gÞð1� nÞg ð13Þ
where g is optimized. In the case of CS column, the use of n = 40
segments yields a buckling load that is within 0.98% difference from
the global buckling load obtained by Tadjbakhsh and Keller in [17].
Finally, for CC columns, the excellent agreement with the results
obtained by Olhoff and Seyranian [18] and Olhoff and Rasmussen
[20] shows the capacity of the proposed approach to detect the crit-
ical behaviour of bimodal columns.
Fig. 6. Optimal shapes and buckling modes for concentrated end loaded columns
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Fig. 6 shows the optimal shapes and the corresponding buckling
modes of SS, CF, CS and CC columns obtained by taking 40 seg-
ments in the HBM. It is interesting to observe how the optimal col-
umn shape follows the buckling mode shape, where the mass is
increased at large curvatures and decreased at small curvatures.
Concerning the bimodal columns, the optimal shape, as well as
the critical mode, obtained for CC columns are in agreement with
ones reported in [18].

The gain in terms of maximum buckling load for the optimal
non-uniform column over its uniform counterpart is 33% at most.

The CF column has also been studied by Krishna and Ram [30],
by considering a link-spring model and determining the optimal
solution via solving a recursive set of equations. Their method
may be regarded as a semi-analytical method. In their treatment
of the CF case, they have used ðnþ 1Þ links instead of n links and
in so doing, their columns of different number of links do not have
a constant volume since the volumes differ by the additional link
volume. In addition, they incorrectly set the spring stiffness for
the clamped end as infinitely large instead of 2C0 [35]. Note that
the stiffness for the rotational spring at the clamped end of the
Euler-Bernoulli column has to take a value of 2C0 when modelled
by HBM (or link-spring system) as proven in [8] and [31].

4.2. Example 2. Optimization of columns under uniformly distributed
load

The second example is concerned with the optimization of a
non-uniform column subjected to a uniformly distributed load q
along its length (see Fig. 4). By using the HBM-GA method, the
maximum buckling loads for optimal column shapes with n = 20,
40 and various boundary conditions are presented in Table 2. In
with 40 segments for SS (A), CS (B), CF (C) and CC (D) boundary conditions.



Table 2
Maximum buckling load parameter H for columns with
various boundary conditions.

B.C. n = 20 n = 40

SS 1.2243 1.2895
CF 1.2925 1.3336
CS 1.4125 1.5222
the table, the non-dimensional maximum buckling load parameter
H is the normalized maximum buckling load qcr by the buckling
load qhom of the corresponding uniform column with the same vol-
ume, length and boundary conditions, i.e. Table 3

H ¼ qcr

qhom
ð14Þ
Table 3
Critical self-weight w for a column with linearly varying cross-sectional area.

Method N Bound

CF

v = 0 Present 50 8.0728
100 7.9950

Ref. [13] 7.84
Ref. [32] 7.8373

v = 0.2 Present 50 8.2840
100 8.1779

Ref. [38] 8.076

v = 0.4 Present 50 8.5893
100 8.5002

Ref. [38] 8.412

v = 0.8 Present 50 9.9947
100 9.9522

Ref. [38] 9.911

Fig. 7. Optimal shapes and buckling modes for uniformly distributed loaded c
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Note that qhom for columns having simply supported ends (SS),
clamped-free ends (CF), and clamped-simply supported ends (CS)
are given in Ref. [13].

The optimal column shapes are associated with buckling loads
that vary between 1:22qhom and 1:52qhom for different boundary
conditions considered. As the columns subjected to a concentrated
end load, the CS column gives the best performance in the increase
of buckling load. Fig. 7 shows the optimal shapes of such loaded
columns for various boundary conditions and by adopting 40 seg-
ments for HBM.

4.3. Example 3. Optimization of columns under selfweight

As an illustrative example of the potential use of the proposed
methodology, let us consider the optimization of non-uniform col-
ary conditions

SS CS CG

18.891 53.683 75.858
18.732 53.104 75.271
18.38 53.91 78.96
18.569 52.501 74.629

16.442 48.969 67.791
16.342 48.531 67.399
16.237 48.072 66.694

13.834 43.964 59.253
13.781 43.653 59.036
13.726 43.327 58.791

7.5331 31.958 39.055
7.5485 31.874 39.139
7.564 31.784 39.178

olumns with 40 segments for SS (A), CS (B), CF (C) boundary conditions.



Table 4
Optimum design of stepwise CF columns.

Stepwise column N 50 100 [22]

s2 (r1, L1) (1.0776, 0.72) (1.0783, 0.72) (1.08, 0.7245)
(r2, L2) (0.7647, 0.28) (0.7626, 0.28) (0.75, 0.2755)
P 1.2023 1.2053 1.2079

s3 (r1, L1) (1.1032, 0.58) (1.1056, 0.59) (1.111, 0.57)
(r2, L2) (0.9161, 0.26) (0.9079, 0.27) (0.911, 0.29)
(r3, L3) (0.6889, 0.16) (0.6339, 0.14) (0.636, 0.14)
P 1.2321 1.2642 1.2710

s4 (r1, L1) (1.1209, 0.48) (1.1177, 0.52) (1.125, 0.475)
(r2, L2) (0.9961, 0.24) (0.9695, 0.25) (1.000, 0.275)
(r3, L3) (0.8423, 0.16) (0.7880, 0.14) (0.775, 0.175)
(r4, L4) (0.6142, 0.12) (0.5625, 0.09) (0.500, 0.075)
P 1.2819 1.2886 1.2914

Fig. 8. Non-prismatic column under self-weight and corresponding discrete model with concentrated forces.
umns under self-weight v. This problem was addressed by Keller
and Niordson [36] and Cox and McCarthy [37] who maximized
the buckling capacity over a large class of assigned shapes that
allows for the possibility of vanishing cross-sectional areas in the
column domain.As shown in Fig. 4, the effect of self-weight load
can be taken into account by considering a distributed axial load
varying, for any constant densityq; with a law proportional to vol-
ume. The numerical procedure for obtaining the critical load is
straightforward even with the shape changing. It simply requires
the integration of the distributed load over the length ai of the dis-
cretized column and the definition of the equivalent concentrated
forces Pi represented in Eq. (5). However, the discrete nature of the
Hencky bar-chain model dictates the column shape to be defined
at a finite number of cross-section areas. In such a case, it is possi-
ble to calculate the equivalent system of concentrated forcesPi

directly as:
8

Pi ¼ qAiai i ¼ 1 . . .N ð15Þ
The critical buckling load is obtained by increasing any concen-

trated load with a common parameter b until b ¼ bcr :

Table 4 presents the non-dimensional critical buckling loads
defined by

�v ¼ vcr
0 L

3=qEI0 ð16Þ
and by considering HBM with discrete loads at n ¼ 50 and n ¼ 100
locations, and an area varying linearly as follows:

AðxÞ ¼ A0ðð1� tÞ þ tnÞ ð17Þ
The corresponding second moment of area given by

IðxÞ ¼ I0ðð1� tÞ þ tnÞ3 ð18Þ
with w0 = w(x = 0), A0 = A(x = 0), I0 = I(x = 0) and t is a parameter
governing the thickness taper ratio as shown in Fig. 8. It can be seen



Fig. 9. Optimum design of a CC column under its own weight.
that the present results are in excellent agreement with those
reported in the literature for homogeneous [13,32] and inhomoge-
neous [37] columns.

Fig. 9 presents the optimal shape of a clamped ended column
with an initial area A0 ¼ ATOT=N and under its own weight. In such
a case, we obtained a buckling load parameter

�x ¼
R
LxcrR

Lxhom
cr

¼ 1:37 ð19Þ
9

It can be seen that the critical buckling load that is 37% higher
than the value obtained from an equivalent uniform column under
its own weight.
4.4. Example 4. Optimization of stepwise columns under end
concentrated load

The final example is concerned with the optimization of step-
wise columns subjected to a concentrated end force, obtained by
varying the sectional length and area ðLi;AiÞ and keeping constant
the overall length L and area A. Fig. 10 shows the different stepwise
columns considered.

In view of the discrete nature of the proposed method, the con-
tinuous parameter Li has to be substituted by the number of seg-
ments ni (see Fig. 10) characterized by a constant area Ai, so that
the optimization requires the definition of a discrete number of
parameters ni and the continuous one Ai (that is, the radius ri for
circular sections) under the conditions:
P

Li ¼ L ) P
ni ¼ nP

AiLi ¼ V ) P
niAi ¼ V

ð20Þ

where n is the total number of segments considered in the dis-
cretized model (in the examples, we adopted n ¼ 50;100) and V
is the given total volume. We assume a total length L ¼ 1 and a vol-
ume V ¼ p. The optimal buckling loads for the stepwise columns, as
shown in Fig. 10, are presented in Table 4 for CF columns and Table 5
for CC columns, where s2; s3 and s4 represent 2, 3 and 4 stepwise,
respectively. The results have been compared with the analytical
ones obtained by Maalawi [20]. It can be seen that the optimal
shape and critical buckling loads are in close agreement (within a
few percent differences). With regard to the CF column, the optimal
design furnishes gains in the critical buckling load by 20.53% for 2-
stepwise (very close to the 20.79% obtained analytically in [22]),
and by 28.86% for 4-stepwise. Better results may be obtained by
considering larger number n of segments.

Malaawi [22] highlighted that for CC columns (and, in general,
for any stepwise column characterized by symmetrical boundary
conditions), the optimum design requires symmetrical mass and
stiffness distributions about the mid-span. Therefore, it is not pos-
sible to increase the buckling performance of symmetrical s2 col-
umns, for which the best shape coincides with the homogeneous
ones. For such a case, and for both the number of segments consid-
ered, the computer program gave different values of ðL1; L2Þ
lengths, and a radius that was very close to unity, and thus the
results reported in Table 5 are the approximate solutions com-
pared with the analytical ones (r1, L1) = (1 L1), (r2, L2) = (1, 1 � L1)
proposed in the literature. Symmetrical results have been obtained
for both s3 and s4 columns, with a modest gain in the critical buck-
ling load (about 5% for the considered example). The shape is close
to the uniform column.Next, we consider the parameter optimiza-
tion of a stepwise column partially constrained to maintain a con-
stant shape for an assigned segmental length k as shown in Fig. 11.
The column is subjected to an end concentrated load F0: We con-
sider two stepwise columns with shape constraint over the seg-
mental length a (where k ¼ ½L=2; L� or k ¼ ½0; L=2�) and the
boundary conditions are CF and SS. Fig. 12 presents the optimal
buckling loads P and the corresponding optimal column designs.
As expected, there is no difference in the buckling load of the SS
column with respect to the partitioning of segmental length k. Also
the optimal shapes are the same (just that they are inverted with
respect to each other). The gain in the critical buckling load is
about 13% over its equivalent uniform column counterpart. For
the CF column case, two different column designs were obtained
by varying k. When k ¼ ½L=2; L�, that is the column segment to be
optimized is closest to the constraint where the curvature is



Table 5
Optimum design of stepwise CC columns.

Stepwise
column

N 50 100 [22]

s2 (r1, L1) (1.12, L1) (1.12, L1) (1, L1)
(r2, L2) (0.97, 1 � L1) (0.97, 1 � L1) (1, 1 � L1)
P 1.025 1.025 1.0000

s3 (r1, L1) (0.9449, 0.34) (0.95001, 0.35) –
(r2, L2) (1.1079, 0.32) (1.1084, 0.30) –
(r3, L3) (0.9449, 0.34) (0.95001, 0.35) –
P 1.0518 1.0542 –

s4 (r1, L1) (1.1153, 0.15) (1.1168, 0.15) (1.125, 0.1688)
(r2, L2) (0.9463, 0.35) (0.9455, 0.35) (0.9375, 0.3312)
(r3, L3) (0.9463, 0.35) (0.9455, 0.35) (0.9375, 0.3312)
(r4, L4) (1.1153, 0.15) (1.1168, 0.15) (0.9375, 0.3312)
P 1.0578 1.0592 1.05477

Fig. 10. Two, three and four stepwise columns and equivalent discrete columns for optimization.
greater, it is not possible to obtain a gain greater than 1.6% over the
uniform column counterpart. When k ¼ ½0; L=2�, the gain may be
increased to about 6%.

Better results may be achieved by increasing the number of
stepwise segments and reducing the dimension of the constrained
segmental geometry, as shown by the results presented in Fig. 13
where k ¼ ½0; L=3�, k ¼ ½L=3;2L=3� and k ¼ ½2L=3; L�. The improve-
ment in the buckling load varies between 10% and 24%.
Fig. 11. Partially constrained column.
5. Concluding remarks

This paper presents a simple and powerful formulation for the
optimization of columns against buckling by adopting the Hencky
bar chain model (HBM) and the genetic algorithms (GA). The
HBM-GA method was tested on non-uniform columns under both
10



Fig. 12. Optimal profile of two stepwise partially constrained column.

Fig. 13. Optimal shape of three stepwise partially constrained column.
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concentrated and distributed loads, including self-weight. Several
column examples were presented and the optimal solutions were
verified by existing results; thereby confirming the convergence,
accuracy and validity of the HBM-GA method. It is worth noting
that at least 40 segments are needed for the HBMmodel for captur-
ing the non-uniform variation of the cross-sectional area (or sec-
ond moment of area). The numerous optimal column designs
presented herein should provide useful benchmark solutions to
check other new numerical methods for column optimization.
The method is clearly excellent for optimizing the joint stiffnesses
of articulated columns against buckling since the HBM is a natural
model for such articulated columns.
Appendix A

The coefficients ð/i; ci;ji;giÞ represented in Eq. (6) assume the
explicit form:

/i ¼ Ci�1
Ciþ1

; ci ¼ ai�1Ci�1�2ðCi�1þCiÞ
Ciþ1

; ji ¼ aiCi�2ðCiþCiþ1Þ
Ciþ1

;

gi ¼ Ci�1þ4CiþCiþ1�ai�1Ci�1�aiCi
Ciþ1

;
ð21Þ

In terms of the stiffnesses Cj ¼ EIj=a and the applied loads
aj ¼ Pja2=EIj.

The boundary conditions (7) and (8) are defined by the
coefficients:

g0 ¼ C1þCRAþCLAa
2�a0C0

C1
; j0 ¼ a0C0�CRA

C1
�2; j1 ¼ a1C1�2ðC1þC2Þ

C2
;

c1 ¼ a0C0�CRA�2C1
C2

; g1 ¼ 4C1þC2þCRA�a0C0�a1C1
C2

;

cn�1 ¼ an�1 �2�2 Cn�1
Cn�2

; gn�1 ¼ 4 Cn�1
Cn�2

þ1þ CRB
Cn�2

� an�1Cn�2þanCn�1
Cn�2

;

jn�1 ¼ anCn�1�CRB�2Cn�1
Cn�2

; gn ¼ an � CRB
Cn�1

�2; jn ¼ 1þ CRB
Cn�1

þ CLBa2

Cn�1
�an;

ð22Þ
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