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Abstract—Learning and motion planning are powerful meth-
ods that exhibit complementary strengths. While planning allows
goal-directed actions to be computed when a reliable forward
model is known, learning allows such models to be obtained
autonomously. In this paper we outline how both methods can be
combined using an expressive qualitative knowledge representa-
tion as a link. We argue that the crucial step in this integration
is to employ a representation based on a well-defined semantics
which empowers reasoning to boost performance of learning as
well as of the resulting action plans. We present an architecture
for learning based robotics that exploits qualitative reasoning.
Expected beneficiaries of this approach are discussed, some of
which are already demonstrated in proof-of-concept experiments.

Keywords—qualitative spatial and temporal reasoning, task
representation, learning, AI robotics

I. INTRODUCTION

Robotic applications have evolved considerably, yet they still
lack the efficiency, flexibility and adaptability that is needed to
improve our everyday life as versatile service robots. Planning
and learning are the two major paradigms employed to make a
robot act intelligently. Planning, a form of symbolic reasoning
that is now applied on various levels of abstraction of state
spaces, is successful whenever reliable forward models of
the robot and its environment are available. Learning allows
such models to be obtained. It requires carefully handcrafted
state spaces to yield convergence in a reasonable amount of
iterations. Neither planning nor learning on their own suffice
to realize versatile service robots, but both paradigms need to
be integrated, benefiting from their respective strengths.

Performing such integration also needs to pay attention to
the fact that service robots are not purely autonomous robots,
but they need to interact with humans – within a human society
as studied in the field of social robotics, and individually with
the humans they provide service for as studied in the area
of human-robot interaction. Therefore, a solid approach to
integrating planning and learning should not be a mere glue
layer between two distinct paradigms, but rather it needs to act
as a central hub that mediates between learning, planning, and
interaction.

Among the various aspects of knowledge and skills a robot
requires to master its applications, we are particularly interested
in spatial and temporal aspects since these are elementary for
any manipulation task, for example, housekeeping, serving
drinks, playing board games etc. In combination with further
physical knowledge, possession of spatio-temporal knowledge

enables a robot to solve everyday manipulation tasks using
learning and planning. In this paper we are concerned with
the question of how the desired hub can be realized with
respect to aspects of spatio-temporal knowledge. As a simple
running example for this paper we choose throwing objects,
e.g., into a dustbin (see Fig. 3 for a household scenario in a
robot simulator) or learning to perform a trick shot (e.g., the
ball has to bounce at least three times before hopping into the
goal from behind). Like with most manipulation tasks, coarse
background knowledge is available to the robot designer (naive
physics, for example) that, in combination with learning and
action planning, provides information to master a task.

Our work is motivated by the hypothesis that qualitative
spatial representation and reasoning techniques offer the means
to realize the desired integration and enable us to boost learning-
based robotic architectures. These provide grounding of spatial
concepts and provide fundamental reasoning techniques, for
example to infer new knowledge. This allows further symbolic
reasoning techniques to be applied, for example planning.
Technically speaking, we propose to use qualitative spatio-
temporal representations to link the level of observation and
control with an abstract state representation. Sinc concepts
in qualitative spatial representations can reflect the cognitive
level of human spatial understanding, we also obtain a basis
for capturing natural language semantics for verbalization and
natural language understanding [1]. In other words, qualitative
representations are a promising candidate to fulfill the role
of the envisaged hub. Our research aims to evaluate the
potential contribution of qualitative representation and reasoning
techniques. In the following we will focus on the integration
of learning and planning.

The aim of this position paper is to discuss a general
approach of how qualitative reasoning methods can be applied
within a learning-based robot architecture to integrate learning
and motion planning. One central aim of this paper is to
provide the basis for discussing a research agenda to gain
an in-depth understanding of the contribution of qualitative
approaches. To support our point we present first results from
an empirical evaluation on applying qualitative reasoning for
improving performance in learning-based robotics to undermine
our claims. The empirical findings presented in this paper have
been previously published and discussed in detail in [2].

The remainder of this paper is structured as follows. First,
Section II provides an introduction to qualitative representations
in general and our spatial logic QSL for task specification
in particular. Section III then discusses an architecture that
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makes use of the qualitative representation to link learning with
motion planning and exploits reasoning to boost performance
of. Section IV summarizes first results. Finally, we sum up and
conclude.

II. WHAT IS QUALITATIVE SPATIAL AND TEMPORAL
REASONING?

Qualitative representations employ symbols to represent
semantically meaningful concepts of an underlying domain,
they abstract from quantitative details irrelevant for a task
at hand. This creates a task specificity leading to a high
variety of qualitative representations developed so far (for
an overview, see, e.g., [3]). Moreover, spatial and temporal
domains are typically continuous and exhibit complex structures
that can be exploited in several ways. Algorithmically speaking,
reasoning tasks can benefit from specifics of a qualitative
representation. Among the individual aims motivating research
in qualitative representation, the overall goal of developing
efficient and effective reasoning algorithms that enable the
design of intelligent systems stands out. Designing a qualitative
representation starts with two design decisions:

1) to identify a finite set of concepts
2) to fix a knowledge representation (language) to com-

pose statements

Spatial and temporal concepts meaningful for a class of tasks
are typically relative since there are no universally ‘important’
values. Concepts are thus mostly relations which are also
called qualitative relations. Among these, binary relations have
received most attention. The most prominent representatives in
the collections of qualitative relations are, on the temporal side,
Allen’s Interval Algebra (IA) [4] which identifies 13 interval
relationships (see Fig. 1(a)) and, on the spatial side, the Region
Connection Calculi (RCC) which identifies topological relations
between regions (see Fig. 1(b)). As a minimal qualitative
representation, the set of ordering relations {<,=, >} has been
considered and, in combination with some symbolic reasoning
techniques, it is referred to as the point calculus [5].

The most simple qualitative knowledge representation con-
sidered is the conjunctive composition of relational statements
like {IN(can,dustbin), ON(dustbin, ground), . . .}, also called
constraints – constraint-based reasoning is hence an elementary
form of qualitative reasoning that has been intensively studied.
Due to the complex interdependencies occurring in qualitative

spatial relations, defining relations and how they can be
composed to form statements is only the first step in designing
a qualitative representation. The difficult step is then to identify
reasoning algorithms that can process these relations, most
importantly to identify relations only given implicitly and to
recognize potential conflicts [6].

A. Spatial logics

Manipulation tasks are inherently dynamic and thus a
spatial representation suitable for task specification needs to
be augmented to capture change over time. For example, we
dare to represent a learning task declaratively by saying that a
start configuration (e.g., ON(can,desk)) should be changed to
obtain some desired end configuration (e.g., IN(can,dustbin).
Sequences of such statements are also called snapshot-based
spatio-temporal models [7]. For representation of manipulation
action, sequences of spatial relations have been considered
(see [8]), but these are not suited to represent and reason
about task specifications since they prescribe action sequences.
By contrast, in a task specification we wish to say that a start
configuration shall be transformed to eventually obtain a desired
goal configuration and it is up to learning and motion planning
to figure out how this can be accomplished. In its generality,
the question of combining a qualitative spatial representation
with a temporal representation is tackled in the contemporary
field of spatial logics [7].

B. Specifying manipulation tasks with QSL

We propose to approach representing the development of
qualitative spatial knowledge over time using linear temporal
logic (LTL) [9]. LTL extends propositional logic by interpreting
propositional with respect to an infinite linear sequence of
assignments, called worlds. A statement may hold in one world,
and it may be false in another. The logic can easily be adapted
to accommodate qualitative constraints. LTL has previously
been applied in robotics for various tasks, including motion
planning [10], [11].

In short, we use plain LTL but replace all propositional
symbols with qualitative constraints. As a result we obtain a
temporal logic whose primitives are qualitative spatial relations,
we thus have termed the logic qualitative spatial logic (QSL)
[2]. QSL is similar to LTL in many regards (a comprehensive
introduction to LTL may be found in [12]). A well-formed
formula φ in QSL is defined by the following grammar rule:

φ := C | ¬φ | φ1 ∧ φ2 | ◦ φ | φ1Uφ2 (1)

Here, C denotes a qualitative constraint in the form r(X,Y )
where r is a qualitative relation and X,Y are variables that
range over the spatial domain. For brevity, we only define
a minimal set of operations here. Other Boolean operations
can easily be expressed by term rewriting, e.g., φ ∨ ψ :⇔
¬(¬φ∧¬ψ). Semantics of LTL can be defined using a Kripke
structure 〈N, I〉: The interpretation function I assigns truth
values to the constraints independently for all time points t ∈ N.
Technically, I : C → 2N maps a constraint to the set of time
points at which it is satisfied.

As an example, consider the two snapshots: at time t = 0,
the constraint TOUCHES(b, g) is not satisfied, at time t = 1 it
is. A Kripke model representing this development of the world



would interpret TOUCHES(b, g) to be false at time t = 0, so
we have 0 6∈ I(TOUCHES(b, g)), but 1 ∈ I(TOUCHES(b, g)).
If we imagine the ball to be bouncing off three times, we
would have I(TOUCHES(b, g)) = {1, 4, 6, 8, 9, 10, . . .}. While
the propositional conjuncts relate statements within one world
(i.e., one snapshot in time), the operators ◦ (next) and U
(until) relate statements across worlds. They allow us to state
that, for example, in the text point in time TOUCHES(b, g)
will hold by writing ◦TOUCHES(b, g) or that a ball will
always be above ground before it touches ground by writing
ABOVE(b, g) U TOUCHES(b, g).

Given an interpretation I(Ck) of all spatial constraints Ck

for all worlds, the task of deciding whether a sub-sequence
of the world is a satisfying assignment of a given formula is
called model checking. We apply model checking for instance
to identify whether an observed process suits a declarative
description of the task to be performed. The interpretation of the
constraints is thus determined by the observation. A constraint
is r(X,Y ) is said to be true, if the relation r between the
objects referred to by variables X and Y is observed.

Beyond knowing that a sequence of observations constitutes
a model for a formula, we are also interested in identifying
when the formula gets true. For example, by model checking the
formula ABOVE(ball, ground) ∧ ◦ON(ball, ground) we wish
to identify the first time point at which ball and ground get into
contact. To this end, we adapt the notion of model checking to
be task of computing the first time point a formula gets true,
returning ∞ if a sequence of observations provides no model.
Based on this understanding of model checking QSL also
provides the basis for a language to represent useful background
knowledge, for example to say that if the first contact with
ground is BEHIND a goal that shall be hit with the ball, then
one has thrown too far.

III. QUALITATIVE SPATIAL AND TEMPORAL REASONING
FOR LEARNING-BASED ROBOT ARCHITECTURES

In the following we first describe how we approach
learning and planning in manipulation task based on qualitative
representation and reasoning. From this discussion we derive
claims of how qualitative reasoning improves performance by
better linking learning and planning.

To achieve the goal of a manipulation task, a robot
has to determine a sequence of actuator control commands.
Learning such a sequence directly would require a temporal
component, which would result in a huge state space that
no learning algorithm to date can handle, not to mention the
enormous amount of data that would be required. We propose
a different approach of learning independent forward models:
how a motor command affects the robot state, whether a joint
configuration would cause a collision, and whether a joint
configuration securely grasps a desired target object. These
forward models are then used with planning to determine the
desired action sequence by alternately creating an abstract
plan (i.e., a model of the spatio-temporal logic formula that
describes the manipulation task) and verifying its feasibility
by the motion planner to connect the consecutive qualitative
configurations. The execution of the final action sequence
is continually monitored for collisions and the achievement
of the manipulation goal. Figure 1 illustrates our overall

approach, highlighting the components based on qualitative
representations and four ways of how qualitative reasoning
can serve to improve learning-based robotics. Let us explain
the architecture at whole by describing how a learning task is
mastered.

1) Integrating learning and programming: The entry point is
a declarative task specification that is part of the robot control
program that shall automatically be turned into appropriate
robot control commands by means of learning and planning.
This integration has for example been pursued by Thrun [13]
who proposed the language CES offering the possibility to leave
“gaps” in the code that can be closed by learned functions. CES
requires the programmer to provide suitable training examples
as experience acquisition is not supported on the language level
[14]. There exist approaches similar to CES, each focus on
different aspects of how learning can be applied to automatically
complete a robot control program. We propose to employ
the Robot Learning Language (RoLL) [15] since it already
offers language constructs to specify learning problems and
experiences in a declarative way, easing the integration with
QSL. RoLL is available as an open-source ROS package1.

2) State representation for robot learning and problem
decomposition: Machine learning crucially depends on an
adequate state space representation. Different approaches are
pursued to find a suitable abstraction that yields the desired
representation. Some branches of machine learning, such as
Deep Learning [16] try to integrate the state abstraction into
the fully automated learning process, relieving the programmer
from explicitly specifying an abstract state space. However,
the automatically generated state spaces are black boxes and
it is unclear how we can reason about a state space if its
semantics are unknown. We use qualitative spatial and temporal
representations to represent the state space in a compact way,
deriving the state space representation from the qualitative
concepts employed in the task specification. Several methods
have been proposed to automatically detect explicit abstract state
descriptions from a vector of observation variables. For example,
Stulp et al. [17] search for abstract features by applying
several combination methods on the observation variables.
Following these ideas it would be possible to adapt a state
space representation by rewriting of the concepts employed
in the task specification. This is possible due to the known
semantics of the respective qualitative representations.

3) Action planning and failure analysis: Today’s hybrid
planning systems already integrate AI planning with robot mo-
tion planning to master challenging motion planning problems
[18, e.g.,]. We propose to adapt existing methods to generate
qualitative plans from qualitative spatial logic formulas that
specify action goals. The utility of qualitative plans to provide
intermediate goals for an action planner have already been
demonstrated [19]. At this point, we require the availability of
some (initial) forward models. These can be learnt from some
random arm movements like a kind of motor babbling. For
more complex learning tasks such as learning a physical model
for the manipulated objects, generating informative training
data requires sampling within a highly constrained space.
Given a declarative task specification, the problem generator
can automatically compute such relevant start positions by

1http://wiki.ros.org/roll
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computing models for the start configurations specified using
qualitative reasoning techniques.

On an adequate level of qualitative abstraction motion plan-
ning can then be performed in a step-wise fashion connecting
one intermediate goal to the next by sampling-based methods
using the learned forward models (see [20]). Sampling-based
approaches to planning are attractive since they can easily be
combined with qualitative reasoning to perform failure analysis
in context of background knowledge. For example, some laws
of naive physics can be modeled in QSL and model checked
against sampled plans that fail to reach the desired goal. If
a law matches the sampled plans it provides an explanation
why the plan failed and hence how it can be improved, i.e.,
where in the state space a solution is more likely to be found.
For example, consider the ball throwing task shown in Fig. 2
in which a ball is to be thrown to land in a goal area. Here,
the robot can infer that it is pointless throwing the ball to the
left since it cannot bounce off any obstacle, changing direction
towards the goal. Moreover, if the robot tries to hit the goal
using some value ϕ as launch angle and some arm speed v
it can observe the trajectory and reason about failures. From
Fig. 2 trajectory 2, for example, the robot can infer that using
a flatter angle with less force will not work out either; after
just 2 trials the configuration space necessary to explore can
be pruned significantly as marked red in Fig. 2 left.

4) Pruning and partitioning the state space: The qualitative
concepts used in a task specification allow the state space
to be partitioned into qualitatively distinct sub-problems. For
example, in context of the ball throwing a task specified using
concepts like left/right and above/below the partitioning shown
in Fig. 2 leads to several distinct sub-problems, depending on
where the robot is positioned with respect to obstacles and goal.
Learning a forward function specifically for a sub-problem can
ease learning of complex functions, in particular if forward
functions are complex. By model checking a concrete instance
of the task at hand, the robot can automatically decide which
of the sub-problem it is facing and hence choose the right
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Fig. 2. Top: Illustration of qualitative reasoning for state space pruning
and problem generation in the domain of throwing a ball. Bottom: example
qualitative partitioning with selected labels.

forward model for planning. The approach to failure analysis
can also be applied to prune the state space used in the learning
component. Once a part of the search space is known to not
be relevant for solving a learning task, these parts of the state
space representations can be pruned off.

5) Problem generator and decisive learning problems:
Efficiency of learning is crucial for acceptability of service
robots. Robots requiring several hundred attempts to learn new
tasks are not acceptable, let alone the side effects of how task
execution could go wrong. The reason for the large number
of training data required is that large and heterogeneous state
spaces need to be covered. The qualitative partitioning allows
training experiences to be evenly distributed with respect to
the qualitatively different configurations. This yields a task-
sensitive problem generation and thus requires fewer instances
to be generated than by uninformed sampling. For example,
it is less useful to generate many training instances for the
aforementioned ball throwing task with start and goal located
in direct line of sight (convex enclosure of start and goal not
overlapping with obstacles), but few instances only for the



Fig. 3. Result from a data gathering run, showing highlighted landing positions
on the floor behind the robot, on the robot, and the desired samples on the
floor in front of the robot.

different combinations of how obstacles can obstruct a direct
line of flight.

To sum up, we see several potential benefits of linking
learning and planning by means of a qualitative representation
that also supports reasoning:

• Claim 1: better learning performance through problem
decomposition

• Claim 2: better planning performance through failure
analysis

• Claim 3: improved learning speed through state space
pruning

• Claim 4: improved learning performance through
adaptive learning data generation

IV. EXPERIMENTS

We are currently involved with investigating to which extent
our claims are satisfied. For some of the claims, we can already
give first results that demonstrate the utility of the reasoning-
based architecture we propose. For an in-depth description of
the experiments summarized in the following, please consult
[2]. In our experiments we simulate a Willow Garage PR2 robot
using the simulator MORSE2 [21]. Since neither the robot nor
the middleware ROS have been designed for throwing objects,
implementing the ball throwing scenario already turns out to
be a challenging learning task. See Fig. 3 for a screen shot
of the simulation after the robot has thrown several objects.
To make the robot throw an object (in our case an empty jar),
we first move the elbow and wrist joints of the right arm to
a low position. Then the robot moves the two joints to a new
position, with a specified time to perform the movement. After
half the time that the movement should last, the robot lets
go of the object. Although the arm movement was controlled
such that the objects should have flown to the front of the
robot, several objects bounced off the robot (e.g., if there was
a double contact when releasing the object), resulting in the
wide range of landing positions shown in Fig. 3.

Claim 1: better learning performance through problem decom-
position

We collected 158 training instances by commanding the
robot to throw an object to the front. These include runs, where
the object landed behind or on top of the robot. By measuring
the distance and angle with respect to the robot’s front achieved

2https://www.openrobots.org

TABLE I. LEARNING PERFORMANCE FOR FORWARD MODELS. MAE:
MEAN ABSOLUTE ERROR, RMSE: ROOT MEAN SQUARED ERROR

number of learning errors direction learning errors distance
filter training instances MAE RMSE MAE RMSE

no 158 0.8058 1.431 0.2092 0.2565
yes 80 0.0103 0.0178 0.0939 0.136

we train two forward models using M5’ algorithm from the
WEKA toolbox [22] based on the parameters of the throwing
action (in our case five variables: elbow joint at start/end
configuration, wrist joint at start/end configuration, and time in
which the action is to be performed). We compared the results
of the learning element applied to the whole set of training
instances with results after applying problem decomposition. To
this end, we specify a throw to the front using QSL saying that
the first contact to ground needs to be in front of the robot. By
model checking the training instances against the specification
we can filter out those that do not represent a throw to the
front. The results in terms of mean absolute error and root mean
squared error as determined by WEKA are shown in Table I.
Despite reduced training instances the learning performance is
significantly improved. The mean absolute learning error for the
distance model by −55.1% (−47.0% for the root mean squared
error) and for the direction model by −98.7% (−98.8% for the
root mean squared error). These results suggest that problem
decomposition can offer very effective means for improving
learning performance.

Claim 2: better planning performance through failure analysis

In context of the ball throwing task, coarse background
knowledge for failure analysis is provided by naive physics
which can easily be provided by the programmer. We inves-
tigated how sampling-based planning can be improved by
reasoning about samples not leading to the goal state. For
this experiment, we isolated the physical simulation underlying
MORSE which is based on the Bullet library3. As parameter for
throwing we consider horizontal and vertical velocities (vh and
vv , respectively) and we perform simulation with added noise.
Let d stand for the distance achieved for a specific choice of
vh, vv and let g be the desired target distance. Rules to identify
a choice of parameters that is more likely to achieve the desired
distance can be written down as follows in the form premises
 conclusion:

d > g  v+h < vh ∧ v+v < vv (2)
d < g  v+h > vh ∧ v+v > vv (3)

Note that the left and right hand side of  are expressible
with QSL using the point calculus to relate the variables.
Variables vh+ and v+v stand for suitable values of future action
parameters that should be considered in sampling. Note further
that the rules oversimplify as they demand to change both
parameters at the same time although alerting either one affects
the distance achieved. We apply these rules by updating a
probability distribution of the parameter space of vh, vv which
is used for sampling. Figure 4 illustrates this effect for the
task constrained to vh = vv which leads to a one-dimensional
distribution better suited for visualization: after few samples, the
distribution concentrates around the desired action parameter.

3bulletphysics.org
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TABLE II. PLANNING QUALITY MEASURED IN DEVIATION FROM GOAL

failure analysis avg. deviation from goal [m] std. mean error
no 0.028 0.083
yes 0.011 0.040

To reveal the effect in practice, we ran 100 trials to make
the robot throw a ball a randomly selected goal distance. During
planning, 50 samples are drawn (which proved to be sufficient
in this simple task). The results shown in Tab. II indicate that the
QSL-based method exploiting qualitative reasoning for failure
analysis lowers the error on average, but also reduces the spread
of the results. The difference is statistically significant (p =
0.0001). Due to using a qualitative representation with clear
semantics, applying qualitative reasoning is straightforward and
helps to improve quality of action plans generated. Still, in all
cases, the computed actions are predicted to be very close to
the true distance.

V. SUMMARY AND CONCLUSION

In this paper we propose a reasoning-based architecture
to combine learning and planning using a qualitative spatial
representation as hub. As scenario we consider service robots
that need to accomplish manipulation tasks that require a careful
consideration of (initially unknown) physical parameters such as
friction, mass, etc. In the area of qualitative spatial and temporal
reasoning, several representations have been developed wich
can be applied in context of robot manipulation tasks to specify
tasks and to capture laws of naive physics. Qualitative spatial
representations offer a well-defined semantics that, unlike
arbitrary symbols obtained by learning, enable application of
symbolic reasoning. We argue that the ability to reason is
crucial to boost the performance of learning and planning and
derive four claims of how reasoning allows performance of
a robotic system to be improved. We give first results that
indicate the utility of the overall approach. Implementing the
proposed architecture within the robot learning language RoLL
and investigating all claims in detail is subject to future work.

Moreover, in a fully automated integration of learning and
planning into a robot control language, the language needs to
provide a runtime system capable of understanding reasons of
failure in order to provide a cure. This is possibly the most
challenging endeavor in the envisaged integration of learning
and planning and we are interested to investigate whether
reasoning can contribute to these challenges too.
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