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By Marian Wiercigroch1 and Erhan Budak2

1Department of Engineering, King’s College,
University of Aberdeen, Aberdeen AB24 3UE, UK
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The mechanics of chip formation has been revisited in order to understand functional
relationships between the process and the technological parameters. This has led to
the necessity of considering the chip-formation process as highly nonlinear, with com-
plex interrelations between its dynamics and thermodynamics. In this paper a critical
review of the state of the art of modelling and the experimental investigations is out-
lined with a view to how the nonlinear dynamics perception can help to capture the
major phenomena causing instabilities (chatter) in machining operations. The paper
is concluded with a case study, where stability of a milling process is investigated in
detail, using an analytical model which results in an explicit relation for the stability
limit. The model is very practical for the generation of the stability lobe diagrams,
which is time consuming when using numerical methods. The extension of the model
to the stability analysis of variable pitch cutting tools is also given. The application
and verification of the method are demonstrated by several examples.

Keywords: metal cutting; nonlinear dynamics; chatter; chip formation

1. Introduction—why metal cutting?

Machining (in particular, metal cutting) is still the fundamental manufacturing tech-
nique and it is expected to remain so for the next few decades. Moreover, it is pre-
dicted that ultra-precision machining will take an even more significant role among
other manufacturing techniques. According to the International Institution for Pro-
duction Research (CIRP), machining accounts for approximately half of all man-
ufacturing techniques, which is a reflection of the achieved accuracy, productivity,
reliability and energy consumption of this technique. While considering the auto-
mated manufacturing centres, manufacturing flexibility brings an additional impor-
tant advantage.

However, addressing new challenges, such as environmental issues and cost reduc-
tion, while improving quality of final products, drives metal machining research into
two directions, namely ultra-precision metal cutting and high-speed metal cutting.
The former is strictly related to the current advancement in cutting-tool technology,
where, due to the use of diamond tools, their geometries and the material properties,
there has been a significant reduction in tool wear and breakage. This has put ultra-
precision machining in the dominant position in the finishing technologies market. A
similar advantage is offered for high-speed metal cutting, due to low specific cutting
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Figure 1. Physical phenomena in the cutting zone.

energy consumption, resulting in smaller cutting forces at high cutting speeds, where
the machine tools are pushed to operate at very high RPM, often above the spindle
main resonance corresponding to high stability. Since the dynamic stiffness of the
machine tool is being explored in such a way, all process and structural nonlineari-
ties having influence on the dynamic stiffness must be appropriately evaluated and
included.

In the search for a significant improvement in accuracy and productivity of machin-
ing processes, the mechanics of chip formation has been revisited in order to under-
stand functional relationships between the process and the technological parameters.
This has led to the necessity of considering the chip-formation process to be highly
nonlinear with complex interrelations between its dynamics and thermodynamics.
The understanding of these relations will be reflected in the design of new machine
tools, not necessarily heavier and stiffer, accommodating the needs of the current
competition race for more accurate, productive and cheaper technologies. However,
the major requirement is to perform the technological operation under chatter-free
conditions, which can guarantee achieving the required geometry and surface finish
of the machined parts.

In this paper, a detailed account of the state of the art in modelling and experimen-
tal investigations of the cutting-process mechanics and different chatter mechanisms
will be provided. To conclude, a practical case study will be given, where the stability
of a milling process is investigated using an analytical model.

2. Cutting-process mechanics

(a) Physical phenomena in the cutting zone

In general, the cutting process is a result of the dynamic interactions between
the machine tool, the cutting tool and the workpiece. Therefore, its mathematical
description should take into account its kinematics, dynamics, geometry of the chip
formation and workpiece mechanical and thermodynamical properties. Mechanics of
the cutting process and chip formation is recognized even more now than ever before
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Figure 2. Model of orthogonal metal cutting.

as the key issue in the development of machining technologies. The complexity of the
cutting process is due to the interwoven physical phenomena such as elasto-plastic
deformations in the cutting zones, variable friction between the tool and the chip
and the workpiece, heat generation and transfer, adhesion and diffusion, and mate-
rial structural and phase transformations, to name but a few. A simplified schematic
locating all important phenomena in the cutting zone is shown in figure 1. Under-
standing the relationships between these phenomena is the most important issue in
the modelling of the cutting processes. It is worth pointing out here that most of
the phenomena listed are strongly nonlinear and interdependent. For example, the
friction between the chip and the tool and between the tool and the workpiece is a
nonlinear function of the relative velocity. In addition, it generates heat, which, in
turn, alters the shear strength and lubrication conditions.

(b) Piispanen’s and Merchant’s models

Studies on metal-cutting processes were carried out as early as the 1800s. The
first significant research work was published by Taylor (1907), and, in the mid-1940s
and 1950s, two researches (Piispanen 1937, 1948; Merchant 1944, 1945a, b) described
the flow of metal chips. Based on this concept of orthogonal cutting, a continuous
chip is formed by a cutting process, which was understood to be confined to a single
shear plane extending from the cutting edge to the shear plane. These investigations
were restricted to a model of orthogonal or two-dimensional metal cutting, which is
shown in figure 2. Here, the uncut layer (initial depth of cut), h0, of the workpiece
in the form of a continuous chip without a built-up edge is seen to be removed along
the shear plane. Subsequently, the chip of thickness h flows along the face of the
tool, where it encounters friction on the tool–chip interface. The width of the chip
remains unchanged, therefore the stress field can be considered in two dimensions.
The force system shown is required to plastically deform the uncut layer, h0, to the
final thickness t (Eggleston et al . 1959). The cutting force, Fc and the thrust force,
Ft, determine the vector R, which represents the resistance of the material being cut
acting on the cutting tool. In stationary cutting conditions, this force is compensated
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Figure 3. Piispanen’s model of chip formation.
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Figure 4. Merchant’s force diagram.

by the resultant force generated from the shear stress field, and the friction on the
rake surface; the position is determined by the rake angle, α.

The chip-formation mechanism is controlled by instant cutting parameters such as
feed, velocity and depth of cut. Any change in these parameters during cutting instan-
taneously changes the value of the normal force, N , the friction force, F , and the
relative velocity between the chip and the workpiece, vc, thus effecting the dynamics
of the system (Wu & Liu 1985a, b).

The process of shear deformation can be illustrated by the successive displacement
of cards in a stack, as shown in figure 3. Each card is displaced forward by a small
distance with respect to its neighbours as the cutting tool progresses. Establishing
a relationship between the card thickness and the relative displacement between the
neighbouring cards leads to the shearing strain; the so-called natural strain (Mer-
chant 1945a). The product of the natural strain with the mean shear strength of the
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workpiece gives the work done per volume of metal removed. This concept, which
was originally put forward by Piispanen (1937), was later analytically and exper-
imentally investigated by Merchant (1944, 1945a, b). The force diagram developed
by Merchant (1944) has been used extensively. The basic idea behind this elegant
approach is that the force R coming from the workpiece and acting on the chip is
compensated by the force R′ coming from the cutting tool. The force vector R′ is
composed of two components: the cutting force, Fc, and the thrust force, Ft. The
material resistance force also has two components: the shearing force, Fs, and the
friction force, Fτ , as depicted in figure 4.

The key variable in Merchant’s approach (Merchant 1944) is the shear angle, φ.
By knowing this angle and a few constant process parameters, the force R can be
calculated from

R =
Fs

cos(τ − α + φ)
, (2.1)

where Fs = σsAs, As is the cross-section of the shear plane, σs is the shear flow stress,
and α and τ are the rake and friction angles, respectively. The cross-section As can
be also expressed in terms of the shear angle as As = wh/ sinφ, which leads to the
formula

R =
σswh0

cos(τ − α + φ) sinφ
. (2.2)

Having established (2.2), the cutting and thrust forces can be evaluated from the
following equations:

Fc = R cos(τ − α) = σswh0
cos(τ − α)

cos(τ − α + φ) sinφ
, (2.3)

Ft = R sin(τ − α) = σswh0
sin(τ − α)

cos(τ − α + φ) sinφ
. (2.4)

In the Merchant’s approach, it was assumed that the cutting-process mechanics could
be entirely explained by the angle φ. This has led to the determination of the optimum
shear angle, which is based on the minimum-energy principle (Merchant 1945a), as

φ = 1
4π − τ + α. (2.5)

This simple formula allows us to determine the friction angle τ by a direct measure-
ment of the shear angle φ. By substituting the above equation (2.5) in the formulae
for the cutting and the thrust forces, equations (2.3) and (2.4) lead to

Fc = σswh0
cos(τ − α)

sin2 φ
, (2.6)

Ft = σswh0
sin(τ − α)

sin2 φ
. (2.7)

As has been demonstrated, Merchant developed an elegant model based on the shear
angle, and despite of the fact that this approach has not correlated too well with the
experimental results, this research left a significant impact in the field.

5



workpiece

tool

chip

R

R'

SR

lRh0

S
l

h

Figure 5. Schematic for calculation of the shear angle, φ.

(c) Kudinov’s model

The model of dynamic cutting characteristics developed by Kudinov (1955, 1963,
1967) has been widely used in the former Soviet Union and Eastern Europe. It
assumes that chatter and variation of the cutting and thrust forces are due to the
dynamic changes of chip thickness and relative kinematics between the tool and
workpiece. The starting point of his scheme is the cutting force, Fc, which is evalu-
ated for steady-state conditions from the following semi-empirical formula given by
Loladze (1952),

Fc = Ccσwξh0, (2.8)

where Cc and ξ = h/h0 are the material constant and the chip-thickness ratio,
respectively. Assuming an arbitrary depth of cut, h, the above equation takes the
form

Fc = Ccσwh. (2.9)

If the material properties remain unchanged, a dynamic component of the cutting
force can be calculated by differentiating the steady-state force, with h and ξ as
independent variables,

dFc = Ccσw(ξ0 dh + h0 dξ), (2.10)

where h0 and ξ0 are nominal values of the depth of cut and chip-thickness ratio. The
chip-thickness ratio can be calculated from the chip geometry (see figure 5a) as

ξ = cot φ cos α + sinα. (2.11)

To evaluate the shear angle, φ, a formula developed by Zorev (1956) based on the
force equilibrium on the shear plane and rake surface was used,

l =
m

n
[tan τ + tan(φ − α)]h, (2.12)

where m = sR/s, n = lR/l, and the distances l, lR, s and sR are shown in figure 5.
It was experimentally observed (Kudinov 1963, 1967) that the ratio m/n is kept

constant in a wide range of the contact length variation. Also, it was assumed that
tan τ + tan(φ − α) ≈ tanφ, which, in the authors’ view, has neither strong physical
nor mathematical justification. This has led to an approximate relationship between
the shear angle, and the chip thickness and contact length,

cot φ =
m

n

h

l
. (2.13)
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Equations (2.12) and (2.13) have been obtained for a steady-state cutting process.
If the process is unsteady, i.e. the depth of cut and chip contact length vary, the
following formula was proposed by Kudinov (1967),

dl =
m

n
[tan τ + tan(φ − α)] dh, (2.14)

which, in fact, is a total differential of equation (2.12). Assuming, as previously, that
tan τ + tan(φ − α) ≈ tanφ leads to

cot φ =
m

n

dh

dl
. (2.15)

For the general case, the following approximate formula was proposed to describe
the relationship between the shear angle, φ, and two independent variables such as
dh/dl and α:

cot φ ≈ m

n

1
1 + (m/n)(dh/dl)(α − τ)

. (2.16)

Taking a total differential of the above equation and assuming that the chip velocity
is almost constant for small chip-thickness variations, i.e.

dl =
vc

ξ0
dt, (2.17)

leads to a relationship for dξ, which, in turn, is substituted into (2.10). This finally
allows us to obtain the expression for the cutting force, Fc. As the last part of the
original derivation is not rigorous (and even confusing), the authors have taken the
liberty of sketching a simple substitute. Thus one can compute a total differential
of (2.15) as

d cotφ =
m

n
d
(

dh

dl

)
. (2.18)

Assuming a small angle α and calculating a total differential of (2.11) leads to

dξ = d cot φ. (2.19)

This, together with (2.17), is substituted first into (2.18) and then into (2.10) to
obtain the formula for a dynamic change of the cutting force,

dFc = Ccσw

(
ξ0 dh + h0

m

n

ξ0

vc
d2h

)
. (2.20)

Similarly, an expression for a dynamic thrust force can be developed as

dFt = Ctσw

(
ξ0 dh + h0

m

n

ξ0

vc
d2h

)
, (2.21)

where Ct is the thrust force constant.
In the original work by Kudinov (1963), equations (2.20) and (2.21) are trans-

formed to the Laplace space

Fc = KF h
1

1 + Tcp
, (2.22)

Ft = KF h
1

1 + Ttp
, (2.23)

where KF is the cutting coefficient (Kudinov 1955), p is Laplace operator and Tc and
Tt are chip-formation time constants for the cutting and thrust forces, respectively.
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(d) Hastings’ and Oxley’s models

The main deficiency of the models by Merchant and his earlier followers (e.g. Lee
& Shaeffer 1951; Creveling et al . 1957; Eggleston et al . 1959), and by Kudinov (1963)
was a difficulty to verify the theoretical predictions with the experiments. This was
mainly due to the fact that the chip-formation process was represented by a single
velocity discontinuity, as has been rightly pointed out in a paper by Hastings et al .
(1980).

The later work by Thomsen’s group (e.g. Cumming et al . 1965), where a plas-
tic deformation zone and nonlinear models were introduced, tried to resolve this
problem. However, without a proper account for the temperature- and strain-rate-
dependent properties of the workpiece, the explanation of the complicated phenom-
ena is hardly possible. To illustrate the complexity of this problem, a brief description
of the chip-fragmentation hypothesis (Recht 1985) is given below.

For certain temperatures and workpiece materials, mechanical properties are not
capable of sustaining a steady-stress field and chip segmentation, and the resulting
fluctuating stress and temperature fields occur. Referring to figure 6a, as the work-
piece is approached by the tool, it experiences a stress field, which changes with time.
The chip segment enclosed within lines 1, 3, 4 and 5 is being plastically deformed by
the tool, and stress, strain and temperature fields are building up in the workpiece.
As the material begins to shear along line 5, these fields develop conditions leading
to thermoplastic instability, and a very thin shear-localized band absorbs the bulk
of further strain. Then the chip segment moves up the ramp formed by the work-
piece material on the workpiece side of line 5. As the tool moves into the ramp, a
new segment begins to form. Its upper surface, represented by line 5, becomes the
surface through which the tool upsets the material. As upsetting progresses, this
surface becomes that identified by lines 3 and 4, the latter of which is being pressed
against the tool face. Until a new localized shear zone forms due to thermostatic
instability, the increasing portion of line 4 (a hot sheared surface) that lies on the
rake face remains at rest. Shearing between segments along line 3 ceases when the
next localized shear zone forms along line 5, due to the build-up of the stress, strain
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and temperature fields. Once deformation and shearing have ceased, the chip seg-
ments pass up the rake face. Chip-sliding behaviour on the rake face is therefore
characterized by a start–stop motion. Considering the pressures, temperatures and
heat transfer conditions at the cutting-tool–chip interface, sliding resistance would be
expected to be much greater for the segmented chips than for continuous chips. When
frictional forces and speed are sufficient to produce localized melting temperatures
at asperities within the cutting-tool–chip interface, segmented chips produce much
higher friction coefficients, interface temperature and tool wear rates than the con-
tinuous chips do. As described above, segmented chips experience stick–slip motion.
Under very high compression, molten regions in the interface may quench and freeze.
Weld bonds in the interface must be sheared, producing high friction forces. This
was confirmed by using scanning electron microscopy to determine a chip-segment
surface (figure 6b).

An interesting approach explaining the influence of the temperature- and the
strain-rate-dependent properties of the workpiece has been given in the paper by
Hastings et al . (1980), where plane strain and steady-state conditions as in Mer-
chant’s model are considered. For the convenience of further analysis, let us assume
an auxiliary angle, κ = φ + τ − α, which, in fact, is the angle between the shear
force Fs and the resultant force R. By applying the appropriate stress equilibrium
equation along the shear plane, it can be shown that, for 0 < φ � 1

4π, the angle κ is
given by

tanκ = 1 + 2(1
4π − φ) − Cn, (2.24)

in which C is an empirical constant and n is the strain-hardening index calculated
from the empirical strain–stress relation

σs = σ1(θint, γ̇int), εn, (2.25)

where σ and ε are the uniaxial flow stress and strain and σ1 is a constant defining
the stress–strain curve for given values of strain rate, γ̇, and temperature, θ. The
maximum shear strain rate, γ̇s, can be calculated from

γ̇s =
Cvs

h0 sinφ
, (2.26)

where vs is the shear velocity. The temperature on the shear plane can be calculated
by knowing the initial temperature of the workpiece, θw, from the following equation,

θs = θw + η
1 − β(vc)
ρSh0w

Fs cos α

cos(φ − α)
, (2.27)

in which η ∈ (0, 1) is a coefficient accounting for how much of the plastic deformation
has occurred on the shear plane, ρ and S are the density and specific capacity of the
workpiece, respectively, and β(vc) is the empirical non-dimensional function used to
determine a portion of the heat conducted into the workpiece from the shear zone.
In a similar manner, the average temperature at the cutting-tool–chip interface, θint,
is calculated

θint = θw +
1 − β(vc)
ρSh0w

Fs cos α

cos(φ − α)
+ ψθm, (2.28)

where θm is the maximum temperature rise in the chip and ψ ∈ (0, 1) is a constant
allowing θint to have an average value. The average temperature rise in the chip, θc,
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Figure 7. (a) Flow stress versus the chip temperature. (b) Cutting force against
the cutting speed (after Hastings et al . 1980).

and the thickness of the plastic zone, δ, can be calculated from a combination of
numerical and empirical formulae,

θc =
F sin φ

ρShw cos(φ − α)
, (2.29)

log10

(
θm

θc

)
= 0.06 − 0.196δ

(
Rθh

l

)0.5

+ 0.5 log10
Rθh

l
, (2.30)

where δ is the ratio between the thickness of the plastic zone in the chip and the chip
thickness, Rθ is a non-dimensional thermal coefficient and l is the cutting-tool–chip
contact length, which can be calculated from the moment equilibrium on the shear
plane,

l =
h0 sinκ

cos λ sinφ

(
1 +

Cn

3(1 + 0.5π − 2φ − Cn)

)
. (2.31)

To complete this mathematical model, one more equation is required, i.e. a relation
for the maximum shear strain rate at the cutting-tool–chip interface

˙γint =
vc

δh

sinφ

cos(φ − α)
. (2.32)

The above set of analytical and empirical expressions allows calculation of the tem-
perature and the strain rate at the cutting-tool–chip interface and the correspond-
ing shear flow stress for the first time. This is then used to determine the cutting
and thrust forces from (2.3) and (2.4). The only reservation one should have is the
empirical nature of some of the formulae and the fact that the non-monotonic non-
linear relation between the flow stress and the chip temperature (figure 7a) is hardly
reflected in the cutting/thrust force versus cutting speed characteristics (figure 7b).

A similar approach was taken in the paper by Wu (1988), where the mathematical
model was constructed perhaps more rigorously. According to the dislocation theory,
the shear flow stress is influenced by two effects, namely work-softening and work-
hardening (Wright 1982). The work-softening effect is governed by thermal processes
mainly dependent on temperature. In turn, the work-hardening mechanism is a func-
tion of shear flow strain. A general constitutive law for the shear flow stress is given
by the formula

σ = f(θ)γaγ̇b, (2.33)
10



where θ is the temperature, superscripts ‘a’ and ‘b’ denote the hardening and shear
flow rate exponents, respectively, and f(θ) is an Arrhenius-type function.

There is a large body of research following these three distinct directions, where
additional effects, for example, the waviness of the surface and relative vibration
between the tool and the workpiece (e.g. Wu 1986; Lin & Weng 1991), have been
introduced. Also, more complex processes, such as oblique cutting or advanced engi-
neering methods (for instance, a finite-element modelling approach by Komvopoulos
& Erpenbeck (1991)), have been tried to acquire a deeper insight into the mechanics
of the chip formation. It is the authors’ view that, despite the significant progress
made in perceiving the complex mechanism of the chip formation using linear mod-
els, a proper understanding will only be possible when the nonlinear nature of the
chip-formation phenomena is unveiled and appropriately modelled.

3. Chatter mechanisms

From the very beginning, metal cutting has had one troublesome obstacle in increas-
ing productivity and accuracy, namely chatter. In machining, chatter is perceived
as unwanted excessive vibration between the tool and the workpiece, resulting in
a poor surface finish and accelerated tool wear. It also has a deteriorating effect
on the machine tool life, and the reliability and safety of the machining operation.
The first attempts to describe chatter were made by Arnold (1946), Hahn (1953)
and Doi & Kato (1956); however, a comprehensive mathematical model and analy-
sis was given by Tobias & Fishwick (1958). In general, chatter can be classified as
primary and secondary. Another classification distinguishes frictional, regenerative,
mode-coupling and thermo-mechanical chatter.

Chatter is one of the most common limitations for productivity and part quality
in milling operations. Especially for the cases where long slender end mills or highly
flexible thin-wall parts, such as air-frame or turbine engine components, are involved,
chatter is almost unavoidable unless special suppression techniques are used or the
material removal rate is reduced substantially. The importance of modelling and pre-
dicting stability in milling has further increased within the last couple of decades,
due to the advances in high-speed milling technology (Tlusty 1986). At high speeds,
the stabilizing effect of process damping diminishes, making the process more prone
to chatter. On the other hand, high stability limits, usually referred to as stability
lobes, exist at certain high spindle speeds, which can be used to substantially increase
the chatter-free material removal rate, provided that they are predicted accurately
(Smith & Tlusty 1993). As a result, chatter-stability analysis continues to be a major
topic for machining research. The first accurate modelling of self-excited vibrations
in orthogonal cutting was performed by Tlusty & Polacek (1963), Tobias & Fishwick
(1958) and Tobias (1965). They identified the most powerful source of self-excitation
and regeneration, which are associated with the structural dynamics of the machine
tool and the feedback between the subsequent cuts on the same cutting surface. These
and other fundamental studies (Merritt 1965) are applicable to orthogonal cutting,
where the direction of the cutting force, chip thickness and system dynamics do not
change with time. On the other hand, the stability analysis of milling is complicated
due to the rotating tool, multiple cutting teeth, periodical cutting forces and chip
load directions, and multi-degree-of-freedom structural dynamics. According to Cook
(1959), in a typical metal-cutting operation, three processes occur simultaneously:
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shearing; sliding between chip and tool face; and sliding between workpiece and tool
flank. In addition, there is a regeneration effect caused by a variable chip thickness,
and each of these processes can be responsible for chatter generation. As mentioned
earlier, there are also four different mechanisms of machining chatter: variable fric-
tion; regeneration; mode coupling; and thermo-mechanics of chip formation. These
mechanisms are interdependent and can generate different types of chatter simulta-
neously; however, there is not an unified model capable explaining all phenomena
observed in machining practice. Therefore, in this section, all important nonlineari-
ties will be spelled out and a systematic review of the main chatter mechanisms will
be given.

(a) Nonlinearities in metal cutting

As has been indicated in the previous sections, the metal-cutting process involves
a number of strongly nonlinear phenomena, which can be classified into two distinct
dynamical systems, namely mechanics and thermodynamics of chip formation. Func-
tional interrelationships between these two systems are shown in figure 8 in a form
of a closed-loop model. The idea of portraying the dynamic interactions in the metal
cutting as a system of automatic control originated from the work of Merritt (1965),
Kegg (1965) and Kudinov (1967). However, all three have only looked at the mechan-
ical part of the problem, and assumed linear dynamics. Grabec (1988), Lin & Weng
(1991) and Wiercigroch (1994, 1997) considered mechanical models with nonlinear
cutting forces. The model proposed in this paper consists of two inseparable subsys-
tems: mechanical and thermodynamical. The mechanical part is comprised of two
major blocks: the cutting and thrust force generation mechanism (CTFGM) and the
machine-tool structure (MTS). The inputs to the CTFGM are the required geometry,
Gr, and kinematics, Kr, a feedback from the MTS in a form of the dynamical vector
X(t), and a feedback from the thermodynamically equivalent chip volume (TECV)
in the form of the shear flow stress, σs(t), and the friction and shear angles, τ(t)
and φ(t). The outputs from the CTFGM are the cutting and thrust forces, Fc(t) and
Ft(t), which, together with the vector of initial conditions, X0(t), act on the MTS,
producing the dynamic vector of displacements and velocities, X(t). The thermo-
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dynamical part also consists of two blocks: the heat-generation mechanism (HGM);
and, as introduced above, the thermodynamically equivalent chip volume. The HGM
is fed with the initial values of σs(0), τ(0) and φ(0), and a feedback path of current
temperature of the chip, θ(t).

The system depicted in figure 8 can accommodate all sorts of nonlinearities, in
particular, strain hardening and softening (Hastings et al . 1980), thermal softening
(Davies et al . 1997), strain-rate dependence (Oxley 1963), variable friction (Wier-
cigroch 1997), heat generation and conduction, feed drive hysteresis, intermittent
tool engagement (Tlusty & Ismail 1981), structural and contact stiffness in the MTS
(Hanna & Tobias 1969), and time delay (Stépán 1998). As an example, a model
combining the structural nonlinearities and time delay, proposed by Hanna & Tobias
(1974) and thoroughly investigated by Nayfeh et al . (1997), is given below

¨̂x+2ξ ˙̂x+ω0
2(x̂+β1sx̂

2+β2sx̂
3) = −ω0

2[x̂− x̂T +β1p(x̂− x̂T )2+β2p(x̂− x̂T )3], (3.1)

where x̂T = x̂(t − T ). Here, x̂ is the non-dimensionalized relative displacement
between the cutting tool and the workpiece, ξ the viscous damping of the MTS,
ω0 the fundamental natural frequency, β1s and β2s are nonlinear stiffness constants,
β1p and β2p are nonlinear cutting constants, and T is the time delay, which means a
period of one revolution.

(b) Frictional chatter

The effects of the frictional vibration between the tool flank and workpiece has
been studied in detail by Cook (1959, 1966), Kegg (1965) and Bailey (1975), and can
be elegantly summarized, after Cook (1966), as when rubbing on the clearance face
excites vibration in the direction of the cutting force and limits in the thrust force
direction. Marui et al . (1988a–c) compared the size and orientation of the vibratory
locus (trajectory of the cutting edge) for the primary (frictional) and secondary
(regenerative) chatters. The distinction between them can be made easily, as the
regenerative locus is approximately ten times bigger than the frictional locus and also
as their spatial orientations are different. The analytical and experimental studies on
the primary chatter reveal that the excitation energy is generated from the friction
force both between the workpiece and tool flank and between the chip and the
rake surface (e.g. Hamdan & Bayoumi 1989). The friction force on the tool face
is generally considered to be the force required to shear the welds formed between
the sliding surfaces. Knowing that shear stress varies with the temperature and the
shear rate, one can estimate the friction force dependence on the cutting velocity,
vc. By analysing results presented by Cook (1959), it is apparent that the shear flow
stress and the friction force decrease with an increase of chip velocity. Therefore, if
there are relative oscillations between the cutting tool and the chip, there will be a
net energy input to the system, which can sustain the vibration. A straightforward
analysis of a simple one-degree-of-freedom system (Wiercigroch & Krivtsov, this
issue) gives conditions for the self-excited vibration (frictional chatter). The amount
of viscous damping in the system determines the amplitude of the oscillations. A very
strong damping effect can be generated if the vibration velocity exceeds the cutting
speed. This is caused by an intermittent contact between the tool and the workpiece
(see Wiercigroch (1995, 1997) and Wiercigroch & Cheng (1997) as examples), i.e. the
tool is in contact with the chip during a part of the cycle.
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(c) Regenerative chatter

The most common form of self-induced vibration is regenerative chatter. It occurs
so often because the majority of cutting operations involve overlapping cuts and,
although the MTS is stable itself, the amplitude of the forced vibrations resulting
from shaving a wavy surface from the previous cut can be significantly amplified
(Boothroyd 1975). The experimental work by Kaneko et al . (1984) and Marui et
al . (1988a) provides clear evidence of how dominating the regenerative effect can
be when compared with other types of chatter. Kudinov (1955), in his work on
the dynamic characteristics of the cutting process, experimentally observed that the
cutting force is a function of the depth of cut, and the rake, α, and clearance, β,
angles, which can be written as

Fc = Fc(h, α, β). (3.2)

Assuming that this function has a total differential, he proposed a formula for the
dynamic variation of the cutting force in the following form:

dFc =
∂Fc

∂h
dh +

∂Fc

∂α
dα +

∂Fc

∂β
dβ. (3.3)

A similar approach of modelling the dynamic variation of the cutting force was
adopted in the famous paper by Tobias & Fishwick (1958), where the cutting force
in turning was assumed to be a function of the depth of cut, h, the feed rate, r, and
the rotational speed, Ω, representing the cutting speed, vc. The dynamic variation
was given as

dFc =
∂Fc

∂h
dh +

∂Fc

∂r
dr +

∂Fc

∂Ω
dΩ, (3.4)

where the chip-thickness variation was calculated from

dh = x(t) − μx(t − T ). (3.5)

Here, μ is the factor of overlapping between the previous and present cuts, and T is
a period of one revolution. For the first time, the stability of a simple two-degree-of-
freedom system excited by a cutting process was elegantly formulated and rigorously
analysed. The threshold of stability is described by a set of transcendental equations,

1 − ω

ω0

2
+

k1

k

(
1 − μ cos

2πω

Ω

)
= 0, (3.6)

ξ + μ
k1

k

ω0

Ω
sin

2πω

Ω
+

4πk2

k

ω0

Ω
+

2k3

k

ω0

R
= 0, (3.7)

where k1, k2 and k3 are machining conditions (Tobias & Fishwick 1958) and R is
the instantaneous workpiece radius. Equations (3.6) and (3.7) are used to construct
the regenerative stability charts. The nonlinear regenerative-chatter-caused delay has
been most recently discussed by Stépán (1998, this issue) and Kalmar-Nagy et al .
(2001).

(d) Mode coupling

The mode-coupling type of chatter exists if vibration in the thrust force direc-
tion generates vibration in the cutting force direction and vice versa. This results
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Figure 9. Two-degree-of-freedom model of the metal-cutting system.

in simultaneous vibration in the cutting and thrust force directions. Physically, it is
caused by a number of sources, such as friction on the rake and clearance surfaces,
as has been explained by Cook (1959) and mathematically described by Wierci-
groch (1997), chip-thickness variation (Tlusty & Ismail 1981), shear angle oscillations
(Knight 1970; Wu 1986), and regeneration effect (Jemielniak & Widota 1988; Altini-
tas & Budak 1995). The necessary condition is that the cutting and thrust forces
have components (feedback) of other directions. This has been elegantly captured
for a two-degree-of-freedom model by Wu & Liu (1985a) (as shown in figure 9) in
the form of two expressions for the cutting and thrust forces,

mẍ + cxẋ + kxx = 2wσs(x0 − x)[(Ax − Cxv0)

+ 1
2Bx(ẋ − ẋ0) − 1

2Cx(ẏ − ẏ0)] − Kw

vc
ẋ, (3.8)

mÿ + cyẏ + kyy = 2wσs(x0 − x)[(Ay − Cyvc) + 1
2By(ẋ − ẋ0) − 1

2Cy(ẏ − ẏ0)], (3.9)

where m is the equivalent vibrating mass, cx and cy the viscous damping coeffi-
cients, kx and ky the machine structure stiffness constants, vc the cutting speed,
and K is the damping coefficient evaluated from the ploughing force acting on the
tool nose (see, for example, Moriwaki & Narutaki 1969; Kegg 1969). The remaining
constants in (3.8) and (3.9) (Ax, Ay, Bx, By, Cx and Cy) are called the dynamic
force coefficients and are fully described in Wu & Liu (1985a).

(e) Thermomechanical chatter

The first approach to comprehensively describe the thermomechanics was made
by Hastings et al . (1980), where an approximate machining theory was formulated
to account for the effects of temperature and strain-rate in the plastic deformation
zone on the overall mechanics of chip formation. The theory was applied to two plain
carbon steels by using the flow stress data obtained from high-speed cutting (high-
speed compression rates), and a good agreement between theory and experiment
has been shown for predicting the cutting and thrust forces. The approach is based
on the so-called tool-chip plastic zone thickness, predicted from a minimum work
criterion, which is central to explain an experimentally observed decrease in chip
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thickness with an increase in cutting speed. The mathematical model outlined in
the previous section can be used to generate velocity-dependent chatter (see Grabec
1988); however, it fails to explain formation of segmented chips. As mentioned earlier,
Recht (1985) came up with an interesting hypothesis, where all important stages of
the segmented chip formation are explained descriptively. The first real mathematical
justification explaining the mechanism of segmented chips formation was proposed
by Davies et al . (1997), where a simplified one-dimensional thermomechanical model
of a continuous homogeneous material being sheared by a rigid tool was used. In this
model, the following main assumptions have been made.

(i) The workpiece is in a form of a continuous one-dimensional slab with thermal
softening and strain-rate hardening.

(ii) Interactions between the workpiece and the tool obey local elasto-plastic strain–
stress laws.

(iii) Only stresses parallel to the shear plane are considered.

(iv) The momentum of the chip is ignored.

(v) The tool is rigid and non-conductive.

(vi) The specific heat, conductivity and density of the workpiece are constant.

By considering the stress and heat transfer equilibria of a discretized model (Davies
et al . 1997), a mathematical model in the form of a set of three partial differential
equations and one ordinary differential equation has been derived. Numerical sim-
ulations of this model shows that, as cutting speed is increased, a transition from
continuous to shear-localized chip formation takes place, with an initial, somehow
disordered, phase. Increasing cutting speed further, the average spacing between
shear bands becomes more regular, asymptotically approaching a limit value, as was
observed in experimental studies.

4. Case study: chatter elimination in the milling process

(a) Background

In the early milling stability analysis, Koenigsberger & Tlusty (1967) used their
orthogonal cutting model to consider an average direction and average number
of teeth in cut. An improved approximation was performed by Opitz & Bernardi
(1970). Later, however, Tlusty & Ismail (1981) showed that the time-domain sim-
ulations would be required for accurate stability predictions in milling. Sridhar et
al . (1968a, b) performed a comprehensive analysis of milling stability, which involved
numerical evaluation of the dynamic milling system state transition matrix. On a two-
degree-of-freedom cutter model with point contact, Minis et al . (1990) and Minis &
Yanushevsky (1993) used Floquet’s theorem and the Fourier series (Magnus & Win-
kler 1966) for the formulation of the milling stability, and numerically solved it using
the Nyquist criterion. Budak (1994) developed a stability method, which leads to an
analytical determination of stability limits. The method was verified by experimen-
tal and numerical means, and was demonstrated to be effective for the generation of
stability lobe diagrams (Budak & Altintas 1998). This method was also applied to
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the stability of ball-end milling by Altintas et al . (1999b). Another method of chatter
suppression in milling is the application of cutting tools with irregular spacing, or
variable pitch cutters. The basic idea behind these cutters is to eliminate or reduce
regeneration in chip thickness by altering the phase between successive vibration
waves on the cutting surface. Variable pitch cutters are particularly useful in cases
where high-stability lobes cannot be used due to speed limitations for the machine
or work material (Budak & Kops 2000).

The effectiveness of variable pitch cutters in suppressing chatter vibrations in
milling was first demonstrated by Slavicek (1965). He assumed a rectilinear tool
motion for the cutting teeth and applied the orthogonal stability theory to irregular
tooth pitch. By assuming an alternating pitch variation, he obtained a stability-
limit expression as a function of the variation in the pitch. Opitz (1968) considered
milling tool rotation using average directional factors. They also considered alter-
nating pitch with only two different pitch angles. Their experimental results and
predictions showed significant increases in the stability limit using cutters with alter-
nating pitch. Another significant study on these cutters was performed by Vanherck
(1967), who considered different pitch variation patterns in the analysis by assum-
ing rectilinear tool motion. His detailed computer simulations showed the effect of
pitch variation on stability limit. Later, Tlusty et al . (1983) analysed the stability of
milling cutters, with special geometries such as irregular pitch and serrated edges,
using numerical simulations. Their results confirmed the previous observations that,
for a certain pitch variation, high improvements in stability can be achieved only
for limited speed and chatter frequency ranges. Altintas et al . (1999a) adopted the
analytical milling stability model to the case of variable pitch cutters, which can be
used to predict the stability with variable pitch cutters accurately. Recently, Budak
& Kops (2000) developed an analytical method for the optimal design of pitch angles
in order to maximize stability limit. In this section, the analytical chatter-stability
method presented by Budak & Altintas (1998) will be summarized. The original
model considers the dynamic interaction between tool and workpiece, including vari-
ation in dynamics and mode shapes along the axial direction. This introduces a non-
linearity to the system, as the system dynamics, and thus the characteristic equation,
depend on the depth of the cut, which is the sought after solution. The details of
this solution can be found in Budak (1994) and Budak & Altintas (1998) and will
not be considered here. Instead, a case of simple point contact will be analysed.
The extension of the method to variable pitch-cutter stability will also be presented.
Application of the models will be demonstrated through numerical and experimental
examples.

(b) Stability of milling for regular cutters

In this analysis, both milling cutter and workpiece are considered to have two
orthogonal modal directions, as shown in figure 10.

Milling forces excite both cutter and workpiece, causing vibrations, which are
imprinted on the cutting surface. Each vibrating cutting tooth removes the wavy
surface left from the previous tooth, resulting in modulated chip thickness which can
be expressed as follows,

hj(φ) = st sinφj + (v0
jc − v0

jw) − (vjc − vjw), (4.1)
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Figure 10. Dynamic model of milling.

where the feed per tooth, st represents the static part of the chip thickness, and
φj = (j − 1)φp + φ is the angular immersion of tooth j for a cutter with constant
pitch angle φp = 2π/N and N teeth, as shown in figure 10. φ = Ωt is the angular
position of the cutter, measured with respect to the first tooth and corresponding
to the rotational speed Ω (rad s−1). vj and v0

j are the dynamic displacements due
to tool and workpiece vibrations for the current and previous tooth passes, for the
angular position φj , and can be expressed in terms of the fixed coordinate system as

vjp = −xp sin φj − yp cos φj (p = c,w), (4.2)

where ‘w’ and ‘c’ indicate workpiece and cutter, respectively. The static part in (4.1),
st sinφj , is neglected in the stability analysis. It should be noted that even though the
static chip thickness varies in time as the milling cutter rotates, it does not contribute
to regeneration, and thus can be eliminated in chatter-stability analysis. However,
it should also be noted that the static chip thickness is of importance for nonlinear
stability analysis, as it determines when the contact between the cutting tooth and
the material is lost due to vibrations. Since we are interested in determining the
stability limit, where the system is still stable and the contact between the cutter
and the chip is not lost, this nonlinearity will not be considered. If (4.2) is substituted
in (4.1), the following expression is obtained for the dynamic chip thickness in milling,

hj(φ) = [Δx sin φj + Δy cos φj ], (4.3)

where
Δx = (xc − x0

c) − (xw − x0
w),

Δy = (yc − y0
c ) − (yw − y0

w),

}
(4.4)

in which (xc, yc) and (xw, yw) are the dynamic displacements of the cutter and the
workpiece in the x- and y-directions, respectively. The dynamic cutting forces on
tooth j in the tangential and the radial directions can be expressed as follows,

Ftj (φ) = Ktahj(φ), Frj = KrFtj (φ), (4.5)
18



where a is the axial depth of cut and Kt and Kr are the cutting force coefficients
which are experimentally identified (Armarego & Whitfield 1985; Budak et al . 1996).
After substituting hj from (4.1) into (4.5) and summing up the forces on each tooth
(F =

∑
Fj), the dynamic milling forces can be resolved in the x- and y-directions as{

Fx

Fy

}
= 1

2aKt

[
axx axy

ayx ayy

] {
Δx
Δy

}
, (4.6)

where the directional coefficients are given as

axx = −
N∑

j=1

sin 2φj + Kr(1 − cos 2φj),

axy = −
N∑

j=1

(1 + cos 2φj) + Kr sin 2φj ,

ayx = −
N∑

j=1

−(1 − cos 2φj) + Kr sin 2φj ,

ayy = −
N∑

j=1

− sin 2φj + Kr(1 + cos 2φj).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

The directional coefficients depend on the angular position of the cutter, which
makes (4.6) time-varying,

{F (t)} = 1
2aKt[A(t)]{Δ(t)}, (4.8)

in which the matrix [A(t)] is the periodic function at the tooth-passing frequency
ω = NΩ and with corresponding period of T = 2π/ω. In general, the Fourier series
expansion of the periodic term is used for the solution of the periodic systems (Mag-
nus & Winkler 1966). The solution can be obtained numerically by truncating the
resulting infinite determinant. However, in chatter-stability analysis, inclusion of the
higher harmonics in the solution may not be required, as the response at the chatter
limit is usually dominated by a single chatter frequency. Starting from this idea,
Altintas & Budak (1995) have shown that the higher harmonics do not affect the
accuracy of the predictions, and it is sufficient to include only the average term in
the Fourier series expansion of [A(t)],

[A0] =
1
T

∫ T

0
[A(t)] dt. (4.9)

As all the terms in [A(t)] are valid within the cutting zone between start and exit
immersion angles (φst, φex), equation (4.9) reduces to the following form in the angu-
lar domain,

[A0] =
1
φp

∫ φex

φst

[A(φ)] dφ =
N

2π

[
αxx αxy

αyx αyy

]
, (4.10)
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where the integrated, or average, directional coefficients are given as

αxx = 1
2 [cos 2φ − 2Krφ + Kr sin 2φ]φex

φst
,

αxy = 1
2 [− sin 2φ − 2φ + Kr cos 2φ]φex

φst
,

αyx = 1
2 [− sin 2φ + 2φ + Kr cos 2φ]φex

φst
,

αxx = 1
2 [− cos 2φ − 2Krφ − Kr sin 2φ]φex

φst
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.11)

Substituting (4.11), equation (4.8) reduces to the following form:

{F (t)} = 1
2aKt[A0]{Δ(t)}. (4.12)

Chatter-stability limit

The dynamic displacement vector in (4.12) can be described as

{Δ(t)} = ({rc} − {r0
c}) − ({rw} − {r0

w}), (4.13)

where
{rp} = [{xp}{yp}]T (p = c,w). (4.14)

The response of both structures at the chatter frequency can be expressed as follows,

{rp(iωc)} = [Gp(iωc)]{F}e−iωct (p = c,w), (4.15)

where F represents the amplitude of the dynamic milling force F (t), and the transfer
function matrix is given as

[Gp] =
[
Gpxx

Gpxy

Gpyx
Gpyy

]
(p = c,w). (4.16)

The vibrations at the previous tooth period, i.e. at t − T , can be defined as follows:

{r0
p} = [{xp(t − T )}{yp(t − T )}]T ,

{r0
p} = e−iωcT {rp},

(p = c,w).

}
(4.17)

By substituting (4.13)–(4.17) into the dynamic milling force expression given in
(4.12), the following is obtained,

{F}eiωct = 1
2aKt(1 − e−iωcT )[A0][G(iωc)]{F}eiωct, (4.18)

where
[G(iωc)] = [Gc(iωc)] + [Gw(iωc)] (4.19)

has a non-trivial solution only if its determinant is zero,

det[[I] + Λ[G0(iωc)]] = 0, (4.20)

where [I] is the unit matrix and the oriented transfer function matrix is defined as

[G0] = [A0][G], (4.21)

and the eigenvalue Λ in (4.20) is given as

Λ = − N

4π
Kta(1 − e−iωcT ). (4.22)
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If the eigenvalue Λ is known, the stability limit can be determined from (4.22). Λ
can easily be computed numerically from (4.20). However, an analytical solution is
possible if the cross transfer functions, Gxy and Gyx, are neglected in (4.20),

Λ = − 1
2a0

(
a1 ±

√
a2
1 − 4a0

)
, (4.23)

where
a0 = Gxx(iωc)Gyy(iωc)(αxxαyy − αxyαyx),
a1 = αxxGxx(iωc) + αyyGyy(iωc).

}
(4.24)

This is a valid assumption for the majority of the milling systems, i.e. the cross
transfer functions are negligible, such as slender end mills and plate-like workpieces.

Since the transfer functions are complex, Λ will have complex and real parts.
However, the axial depth of cut a is a real number. Therefore, when Λ = ΛR + iΛI
and e−iωcT = cos ωcT − i sinωcT are substituted in (4.22), the complex part of the
equation has to vanish, yielding

κ =
ΛI

ΛR
=

sinωcT

1 − cos ωcT
. (4.25)

The above can be solved to obtain a relation between the chatter frequency and the
spindle speed (Altintas & Budak 1995; Budak & Altintas 1998),

ωcT = ε + 2kπ,

ε = π − 2ψ,

ψ = tan−1 κ,

n = 60/(NT ),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.26)

where ε is the phase difference between the inner and outer modulations, k is an
integer corresponding to the number of vibration waves within a tooth period, and n
is the spindle speed (RPM). After the imaginary part in (4.22) vanishes, the following
is obtained for the stability limit (Altintas & Budak 1995; Budak & Altintas 1998):

alim =
2πΛR

NKt
(1 + κ2). (4.27)

Therefore, for given cutting geometry, cutting-force coefficients, tool and workpiece
transfer functions and chatter frequency ωc, ΛI and ΛR can be determined from
(4.23), and can be used in (4.26) and (4.27) to determine the corresponding spindle
speed and stability limit. When this procedure is repeated for a range of chatter
frequencies and number of vibration waves, k, the stability lobe diagram for a milling
system is obtained.

Example 4.1. Demonstration of the method will be done on a two-degree-of-
freedom end-milling example given in Budak & Altintas (1998). The dynamic prop-
erties of the 3-flute end mill in two orthogonal directions were identified in Weck et
al . (1994), and are given in table 1.

The aluminium workpiece is considered to be rigid compared with the cutter.
The experimental stability limits (Weck et al . 1994) and simulations for a half-
immersion (up-milling) case are shown in figure 11. As can be seen from this figure,
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Figure 11. Analytical and experimental stability diagrams for a two-degree-of-freedom
milling system considered in the example.

Table 1. Dynamics properties of 3-flute end mill

ωc (Hz) k (kH m−1) ζ

X 603 5600 0.039
Y 666 5700 0.035

the stability-limit predictions using zero- or higher-order approximations are very
close. Furthermore, there is a very good agreement between the numerical time-
domain solution and the analytical predictions. It should be noted that the analytical
stability diagram can be generated in a few seconds, whereas time-domain simulations
usually take several hours (up to a full day), depending on the precision required.
In time-domain simulations, dynamic system equations have to be simulated over
several tool rotations using very small time-steps.

(c) Stability of milling for cutters with non-constant pitch

The fundamental difference in the stability analysis of milling cutters with non-
constant pitch angle is that the phase delay between the inner and the outer waves
is different for each tooth and can described as

εj = ωcTj (j = 1, . . . , N), (4.28)

where Tj is the jth tooth period corresponding to the pitch angle φpj . The dynamic
variation of chip thickness and the cutting force relations given for the standard
milling cutters apply to the variable pitch cutters as well. The directional coefficients
given in (4.10) are evaluated at the average pitch angle to simplify the formulation.
Then the characteristic equation given in (4.22) is valid for the variable pitch cutters;
however, the eigenvalue expression will take the following form due to the varying
phase:

Λ =
a

4π
Kt

N∑
j=1

(1 − e−iωcTj ). (4.29)
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The stability limit can be obtained from (4.29) as

avp
lim = − 4π

Kt

Λ

N − C + iS
, (4.30)

where

C =
N∑

j=1

cos ωcTj ,

S =
N∑

j=1

sinωcTj .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.31)

Since the eigenvalue is a complex number, if Λ = ΛR + ΛI is substituted in (4.30),
the following formula is obtained:

avp
lim = − 4π

Kt

[
(N − C)ΛR + SΛI

(N − C)2 + S2 + i
(N − C)ΛI − SΛR

(N − C)2 + S2

]
. (4.32)

As alim is a real number, the imaginary part of (4.32) must vanish, therefore,

N − C = S
ΛR

ΛI
. (4.33)

By substituting the above expression into (4.32), alim simplifies to

avp
lim = − 4π

Kt

ΛI

S
. (4.34)

It is interesting to note that the stability limit obtained for the equal pitch cutters
(equation (4.27)) can be put into a similar form by substituting κ from (4.25),

avp
lim = − 4π

Kt

ΛI

N sin ωcT
. (4.35)

Note that for equal pitch cutters, S =
∑

sin ωcT in (4.34) becomes N sinωcT in
(4.35), as the phase (ωcT ) is the same for all the teeth. The stability limit with
variable pitch cutters can be determined using (4.33) and (4.34). Unlike for the equal-
pitch cutters, in this case, the solution has to be determined numerically, since an
explicit equation for the chatter-frequency–spindle-speed relation cannot be obtained
from (4.33). Also, the cutter pitch angles have to be known in advance. However,
optimization of pitch angles for a given milling system has more practical importance
than the stability analysis of an arbitrary variable pitch cutter. Therefore, the rest of
the analysis focuses on the optimization of the pitch angles to maximize the stability
against chatter.

Equation (4.34) indicates that in order to maximize the stability limit, |S| has to
be minimized. From (4.31), S can be expressed as follows,

S = sin ε1 + sin ε2 + sin ε3 + · · · , (4.36)

where εj = ωcTj . The phase angle, which is different for every tooth due to the
non-constant pitch, can be expressed as follows,

εj = ε1 + Δεj (j = 2, N), (4.37)
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where Δεj is the phase difference between tooth j and tooth 1 corresponding to
the difference in the pitch angles between these teeth. By considering the number of
vibration waves in one cutter revolution, m, we can further develop this relation,

m =
ωc

Ω
, (4.38)

where Ω is the spindle speed (rad s−1). Note that m is the summation of the full
number of waves and the remaining fraction of a wave, and thus it is, in general, a
non-integer number. If θ is defined as the tooth immersion angle corresponding to
one full vibration, it is determined as

θ =
2π

m
=

2πΩ

ωc
. (4.39)

Therefore, the pitch angle variation ΔP corresponding to Δε can be determined from

ΔP =
Δε

2π
θ =

Ω

ωc
Δε. (4.40)

Thus ΔP and Δε are linearly proportional. Using (4.37), equation (4.36) can be
expanded as follows:

S = sin ε1+sin ε1 cos Δε2+sin Δε2 cos ε1+sin ε1 cos Δε3+sin Δε3 cos ε1+· · · . (4.41)

There are many solutions for the minimization of |S|, i.e. S = 0. For example, for an
even number of teeth, S = 0 when Δεj = jπ. This can easily be achieved by using
linear or alternating pitch variation,

linear: P0, P0 + ΔP, P0 + 2ΔP, P0 + 3ΔP,

alternating: P0, P0 + ΔP, P0 + ΔP, . . . .

}
(4.42)

A more general solution can be obtained by substituting a specific pitch variation
pattern into S. For the linear pitch variation, S takes the following form

S = sin ε1(1 + cos Δε + cos 2Δε + · · · ) + cos ε1(sin Δε + sin 2Δε + · · · ). (4.43)

Intuitively, it can be predicted that, in (4.43), S = 0 for the following conditions:

Δε = k
2π

N
(k = 1, 2, . . . , N − 1). (4.44)

The corresponding ΔP can be determined using (4.40). The increase of the stability
with variable pitch cutters over the standard end mills can be determined by consid-
ering the ratio of stability limits. For simplicity, the absolute or critical stability limit
for equal pitch cutters are considered. The absolute stability limit is the minimum
stable depth of cut without the effect of lobing, which can be expressed as follows
(cf. (4.35)):

acr = −4πΛI

NKt
. (4.45)

Then the stability gain can be expressed as

r =
avp
lim

acr
=

N

S
. (4.46)
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Figure 12. The effect of Δε on stability gain for a 4-fluted end mill with linear pitch variation.

r is plotted as a function of Δε in figure 12 for a 4-tooth milling cutter with linear
pitch variation. The phase ε depends on the chatter frequency, spindle speed and
the eigenvalue of the characteristic equation, and therefore the stability analysis
has to be performed for the given conditions. However, this can only be done for a
given cutting tool geometry, i.e. pitch-variation pattern. Therefore, three different
curves corresponding to different ε1 values are shown in figure 12 to demonstrate
the effect of phase variation on r. As expected, ε1 has a strong effect on r and 3

2π
results in the lowest stability gain. Also, as predicted by (4.44), r is maximized for
integer multiples of 2π/N , i.e. for (1

4 , 1
2 , 3

4) × 2π. Δε + k2π (k = 1, 2, 3, . . . ) are also
optimal solutions. However, they result in higher pitch variations, which are not
desired since they increase the variation in the chip load from tooth to tooth. The
optimal pitch variation can be determined if the chatter frequency and the spindle
speed are known before the cutter is designed. This can be done by simple acoustic
measurements using an equal-pitch cutting tool to determine the chatter frequency.
The chatter frequency may vary with the introduction of the variable pitch cutter,
or be due to the changes in the machine condition, part clamping and workpiece
dynamics. Modal analysis of the part–tool–spindle system is usually very useful to
determine the other important modes.

As can also be seen from figure 12, for linear pitch variation, a minimum of r = 4
gain is obtained for a 4-tooth cutter for 0.5π < Δε < 1.5π. Thus the target for
Δπ should be π, which is one of the optimal solutions for the cutters with an even
number of flutes, but it is also in the middle of the high-stability area. Other variation
types were also tried; however, they gave smaller high-stability gain areas than linear
variation. Therefore, the optimal pitch variation can be determined as

ΔP =

⎧⎪⎪⎨
⎪⎪⎩

π
Ω

ωc
for even N,

π
Ω

ωc

(N ± 1)
N

for odd N.

(4.47)

The pitch angles have to satisfy the following relation:

P0 + (P0 + ΔP ) + (P0 + 2ΔP ) + · · · + [P0 + (N − 1)ΔP ] = 2π. (4.48)
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Figure 13. Surface improvement due to variable pitch cutter in example 4.2.

P0 can be determined from (4.48) as follows:

P0 =
2π

N
− 1

2(N − 1)ΔP. (4.49)

Example 4.2. In this example, the milling of an airfoil made out of titanium alloy,
Ti6Al4V, is considered. The stability limit of the process is extremely small due to the
highly flexible workpiece and cutting tool. A 6-fluted carbide taper ball end mill with
length-to-average diameter ratio of over 10 is used on a 5-axis machining centre. For
one of the finishing passes, the axial depth of cut is over 100 mm. This is very much
higher than the stability limit of the process, thus a very low spindle speed is used to
maximize process damping. However, even at 300 RPM, severe chatter vibrations are
experienced with the equal pitch cutter. For the 420 Hz chatter frequency, P = 55, 57,
59, 61, 63, 65 pitch variation is obtained from (4.47) and (4.49) (for 300 RPM). This
cutter suppresses the chatter completely. As a result, the surface finish is significantly
improved, as shown in figure 13.

5. Synopsis

In this paper a critical review of state-of-the-art modelling and experimental inves-
tigations has been presented, with a view to how the nonlinear-dynamics perception
could help to capture the major phenomena causing instabilities in machining oper-
ations.

In general, the cutting process is a result of the dynamic interactions between
the machine tool, the cutting tool and the workpiece. Therefore, its mathemati-
cal description should take into account its kinematics, dynamics, geometry of the
chip formation, and the workpiece’s mechanical and thermodynamical properties.
Mechanics of the cutting process and chip formation are being recognized, more now
than ever before, as the key issue in the development of machining technologies. The
complexity of the cutting process is due to the interwoven physical phenomena such
as elasto-plastic deformations in the cutting zones, variable friction between tool
and chip and workpiece, heat generation and transfer, adhesion and diffusion, and
material structural and phase transformations, to name but a few. An understand-
ing of these relationships is the most important issue in the modelling of the cutting
processes, as the majority of the phenomena listed here are strongly nonlinear and
interdependent.

Studies on metal-cutting processes were carried out as early as the 1800s. However,
only by the mid-1940s and 1950s had two researchers, Piispanen (1937, 1948) and
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Merchant (1944, 1945a, b), described the flow of metal chips. Based on this concept
of orthogonal cutting, the continuous chip is formed by a cutting process, which was
understood to be confined to a single shear plane extending from the cutting edge
to the shear plane. The force diagram developed by Merchant (1944) has been used
extensively up until now.

The model of dynamic cutting characteristics developed by Kudinov (1955, 1963,
1967) has been widely used in the former Soviet Union and Eastern Europe. It
assumes that chatter, variation of the cutting and thrust forces are due to varia-
tions of chip thickness and relative kinematics between the tool and workpiece. The
starting point of his scheme was the cutting force, which was evaluated for steady-
state conditions from a semi-empirical formula (Loladze 1952). Then a functional
relationship describing the cutting force was established, assuming that it is a total
differential. In the original work by Kudinov (1963), the dynamic forces are given in
the Laplace space (see (2.22) and (2.23)). This approach was further developed by
other Russian researchers such as Abakumov et al . (1972) and Zharkov (1985), who
have included regenerative effects in the model.

An interesting approach explaining the influence of the temperature and the strain-
rate-dependent properties of the workpiece has been given in the paper by Hastings
et al . (1980), who assumed plane strain and steady-state conditions as in Merchant’s
model. They proposed a set of analytically empirical equations allowing us, for the
first time, to calculate the temperature and the strain rate at the cutting-tool–chip
interface, in addition to the expressions for the cutting and thrust forces. The only
reservation one should have is the empirical nature of some of the formulae and
the fact that the non-monotonic nonlinear relation between the flow stress and the
chip temperature is hardly reflected in the cutting/thrust force versus cutting-speed
characteristics (see figure 7).

From the very beginning, metal cutting has had one troublesome obstacle in
increasing productivity and accuracy, namely chatter. In machining, chatter is per-
ceived as unwanted excessive vibration between the tool and the workpiece, resulting
in a poor surface finish. It has also a deteriorating effect on the reliability and safety
of this machining operation. The first attempts to describe chatter were made by
Arnold (1946), Hahn (1953) and Doi & Kato (1956); a comprehensive mathemati-
cal model and analysis was given by Tobias & Fishwick (1958). In general, chatter
can be classified as primary and secondary. Another classification distinguishes fric-
tional, regenerative, mode-coupling and thermomechanical chatter. Chatter is one
of the most common limitations for productivity and part quality in milling opera-
tions. Especially for the cases where long slender end mills or highly flexible thin-wall
parts such as air-frame or turbine engine components are involved, chatter is almost
unavoidable unless special suppression techniques are used or the material-removal
rate is substantially reduced.

There are also four different mechanisms of machining chatter: variable friction;
regeneration; mode coupling; and thermomechanics of chip formation. These mecha-
nisms, however, are interdependent and can generate different types of chatter simul-
taneously; however, there is not a unified model capable of explaining all phenomena
observed in machining practice.

Metal-cutting processes involve a number of strongly nonlinear phenomena which
can be classified into two distinct dynamical systems, namely mechanics and thermo-
dynamics of chip formation. Functional interrelationships between these two systems
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are shown in figure 8 in the form of a closed-loop model. The proposed system can
accommodate all sorts of nonlinearities; in particular, strain hardening and softening
(Hastings et al . 1980), thermal softening (Davies et al . 1997), strain-rate dependence
(Oxley 1963; Oxley & Hastings 1976, 1977), variable friction (Wiercigroch 1997),
heat generation and conduction, feed drive hysteresis, intermittent tool engagement
(Tlusty & Ismail 1981), structural and contact stiffness in MTS (Hanna & Tobias
1969), and time delay (Stépán 1998).

To illustrate the problem of chatter in real engineering practice, a case study on
chatter suppression in milling using an analytical model for milling stability has been
presented. The time-varying dynamics of the system is approximated using only the
constant term in the Fourier series expansion of the periodically varying directional
coefficients. The resultant analytical expression is demonstrated to predict the stabil-
ity limit accurately. This is mainly due to the relatively slow growth of regenerative
chatter, which seems to be insensitive to the higher harmonics. Application of the
model to the stability of variable pitch cutters results in an analytical expression
for the optimal pitch angles. The model eliminates the need for time-consuming
numerical simulations in optimizing cutting conditions and tool geometry in order
to maximize the chatter-free material-removal rate.

The authors thank Dr Y. Altintas from British Columbia University for helpful suggestions. The
Russian sources have been consulted with Dr E. E. Pavlovskaia from Aberdeen University.
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