N

N

Malleable User Interface Toolkits for Cross-Surface
Interaction

James R FEagan

» To cite this version:

James R Eagan. Malleable User Interface Toolkits for Cross-Surface Interaction. HCI. Tools: Strategies
and Best Practices for Designing, Evaluating, and Sharing Technical HCI Toolkits workshop at CHI
2017, May 2017, Denver, United States. hal-01693010

HAL Id: hal-01693010
https://hal.science/hal-01693010
Submitted on 25 Jan 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01693010
https://hal.archives-ouvertes.fr

Malleable User Interface Toolkits for Cross-Surface
Interaction

James R. Eagan
LTCI, Telecom ParisTech, Université Paris-Saclay
75013 Paris, France
james.eagan @telecom-paristech.fr

ABSTRACT

Existing user interface toolkits are based on a single user in-
teracting with a single machine with a relatively fixed set of
input devices. Today’s interactive systems, however, can in-
volve multiple users interacting with a heterogeneous set of
input, computational, and output capabilities across a dynamic
set of different devices. The abstractions that help program-
mers create interactive software for one kind of system do not
necessarily scale to these new kinds of environments. New
toolkits designed around these environments, however, need
to be able to bridge existing software and libraries or recreate
them from scratch. In this position paper, we examine these
new constraints and needs. We look at three strategies for
software toolkits that help to bridge existing toolkit models to
these new interaction paradigms.

Author Keywords
user interface toolkits, cross-surface interaction, instrumental
interaction, malleable software

INTRODUCTION

The design of user interface toolkits has changed relatively
little since the first graphical interfaces began to appear: users
interact with interface controls, or widgets, using a pointing
device and a keyboard. While these toolkits have seen minor
improvements over time, such as handling pointing with a
finger or performing gestures, the overall design approach has
changed little.

A programmer creates an interface using a collection of wid-
gets. They typically come from a standard set of pre-defined
widgets, but programmers may propose their own set of supple-
mental widgets. They may modify the behavior of an existing
widget in some small way, such as a custom list view that
might show font names rendered in the relevant font. Or they
may provide wholly new behaviors, such as a double-ended
range slider or an interactive graph view.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page.

Copyrights for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

Presented at the CHI 2017 Workshop on HCI.Tools: Strategies and Best Prac-
tices for Designing, Evaluating, and Sharing Technical HCI Toolkits

Ultimately, the applications programmers create are heavily
influenced by the set of widgets provided by the toolkit. These
widgets, however, were designed around at a time when one
user interacted with one machine, and applications consisted
of a single process running on that machine.

These assumptions start to break down in the context of
multi-surface or cross-device interactions, where a logical
application—from the user’s point of view—might involve
processes running across multiple devices, such as a phone,
tablet, tabletop, wall, or motion tracking system.

Moreover, adapting an existing application’s interaction or
functionality to handle unanticipated usage scenarios may be
cumbersome. A user who wishes to add a new toolbar button
for a frequently-used task, or a teacher who wishes to extend
an email client’s data detectors [5,6] to link course numbers to
an intranet course management website, or a technical writer
who wishes to reference BibTeX citations in email client or
presentation tool would be hard-pressed to do so without mod-
ifying existing applications’ source code.

Currently, developers of systems that permit such kinds of
interaction in new environments or such malleable interfaces
must create explicit support on an ad-hoc basis. We need to
provide programmers the appropriate tools and abstractions on
such concepts that make creating future applications feasible
in the same way the current UI toolkits greatly reduced the
barriers to making graphical user interfaces.

THREE CHALLENGES FOR TOOLKIT RESEARCH

We view three primary challenges for toolkit research in such
future applications: handling the heterogeneity of future ap-
plication contexts with multiple users, multiple machines, and
multiple interaction modalities; making software more mal-
leable to support users’ own particular needs in their own
situated contexts; and bridging between the current state-of-
the-art and future development models.

Multiple users, machines, interaction modalities
Application developers can no longer make the assumption
that there will be one user, interacting with a single machine
using a single mouse and a single keyboard. Applications in
multi-surface environments, for example, may run on one or
multiple machines, and the number of machines present may
evolve during a single interaction session.



n with the BrainWall: multi-

ulti-surface inte
ple users interact with a table, wall-sized display, and physical
interface props.

Figure 1:

Figure 1 shows a real user scenario from our work with Sub-
stance Grise to create the BrainWall application [3]: A neuro-
scientist has the latest 3D brain scans of healthy and unhealthy
brains on her smartphone. She enters the room and places
her phone on an interactive tabletop to bring her data into the
environment. Around the table, she and her colleagues arrange
the brains to better facilitate comparison. To get a better view
of the brains, she and her colleagues move in front of a wall-
sized display that mirrors the display on the table, showing
a high-resolution image of the brain scans. A colleague uses
an instrumented wooden chopstick to point at a related struc-
ture on a plastic model of a brain, causing all of the brains
displayed on the wall and table to re-orient their 3D views to
that part of the brain. Another colleague takes out a tablet and
selects one of the brains on the wall. On his tablet, he begins
annotating the different structures and changing their colors,
using the tablet as a personal workspace before sharing them
with the group.

As this scenario shows, the BrainWall application actually
consists of multiple applications running on multiple devices:
a data provider on the neuroscientist’s phone, an organizer on
the tabletop, a viewer on the wall, a 3D tracker for the physical
brain and pointer, and an annotator on the colleague’s tablet.

Even without each of these individual components, the applica-
tion would continue to function but without that component’s
capabilities. A scientist could continue to sort brains without
the wall, or view the brains without the 3D tracker, etc. These

devices may dynamically come and go, as when the colleague
takes out a tablet to join the environment and annotate brains,
or if the neuroscientist leaves the room to take a phone call.

Moreover, each of these different devices offers a different
computational and interactional profile, with different memory,
storage, processing, communication, input, or output character-
istics. An application developer must manage the complexities
of this heterogeneity and dynamicity manually.

To help with these challenges and to provide developers with
a set of abstractions that simplify data sharing strategies and
different functionalities between devices, discovery, and in-
teraction, we created the Shared Substance prototype [3], de-
scribed below. While this approach reduces the barrier to
creating multi-surface applications, programmers must master
a new “data-oriented programming” model and still must ex-
plicitly manage the specifics of data sharing strategies (such
as via local replication or remote querying). Some of these
details may intrinsically require specific consideration from
the programmer. For the rest, we need to develop a collec-
tion of appropriate abstractions much as undo managers have
freed programmers from needing to explicitly support such
capabilities.

Making software malleable

Current applications are designed for a particular context of
use, with developers making a certain set of assumptions about
how the software will be used. It is not possible, however, for
designers to foresee and anticipate the myriad ways that a user
may make use of the software.

Current software toolkits provide relatively little support for
end-users to extend the capabilities of their software. Some
systems do provide support for users to create macros to au-
tomate certain actions, as in Microsoft’s Office suite or with
AppleScript interfaces, but these are limited to the customiza-
tion hooks that developers explicitly embed in their software
and maintain independently of their exposed functionalities.
As such, developers must work explicitly to support these
features and thus expose a larger surface area for potential
bugs.

Some applications do provide support for plugins, but these
interfaces are up to the individual application developer. Each
application developer must create her own infrastructure for
detecting, loading, unloading, and sandboxing such plugins
on an ad-hoc basis. As a result, each application, if it provides
a plugin interface at all, offers a differing degree of access to
program concepts and objects, and each modification creator
must learn the specific intricacies of that particular program.

What is missing is explicit support in the toolkit to create
generalizable application objects that programmers can re-use.
In the 1980’s and 90’s, it was common for applications to
provide their own “macro” capabilities, where users could
automate their software using macro scripts. Each application
provided its own set of capabilities, using its own specific
macro scripting language. Today, Mac applications built with
the standard Cocoa toolkit are automatically scriptable using
AppleScript and support a standard set of universal objects and



commands common to GUI applications: opening windows,
selecting the frontmost document, clicking buttons, etc.

If application developers explicitly support it, they can add
such higher-level concepts as messages in an email program
or todo items in a task manager. Nonetheless, application
developers must explicitly provide such support, and the user
is limited to the specific hooks provided by the developer.

Supporting such kinds of customization should be an auto-
matic consequence of using standard toolkit elements and
design patterns for interactive software. If a user wishes to,
for example, overlay subtitles downloaded from the internet
on a movie file downloaded from the iTunes store, it should be
feasible for the user to be able to connect a subtitles loader to
the video playback controller, even if the application developer
did not anticipate such a feature.

Recreating the universe

We have created various toolkits that attempt to explore these
concepts [2—4]. One of the challenges in creating new ways
of building interactive software is the bootstrapping problem.
If the toolkit is completely built from scratch, all applications
in the environment need to be created from scratch. This
approach offers great flexibility, but requires significant devel-
opment effort and tends to yield “toy” examples.

The Shared Substance [3] environment is an example of a
toolkit built from scratch. Shared Substance is based on a
data-oriented programming model similar to object-oriented
programming in the sense that data associated with program
concepts can be grouped together into objects and can have
associated methods. In data-oriented programming, however,
these methods are separable from the underlying data into
facets, or collections of methods. Thus, an object running on
a tabletop might offer a different set of functionalities than
an object running on a smartphone, despite using the same
underlying set of data. Data itself are organized into trees,
providing a scene graph that can be shared across the different
devices in a multi-surface environment.

Shared Substance programmers thus choose which subtrees to
make available to other devices. The toolkit provides builtin
discovery capabilities. When data are shared, or new devices
become available, programs can either replicate the data by
maintaining a cloned copy that must be kept in sync with its
source, or they can mount the data, assuring that the original
always maintains an authoritative copy of the data. Adding
new functionality involves associating new Facets, or collec-
tions of methods, that can be attached to different parts of the
data.

While this approach provides a set of transparent abstractions
that frees the programmer from many of the challenges of
multi-surface interactions, it does require programmers to
think about and write software in a different way. We found
that the mental gymnastics of contorting one’s brain into a
new way of thinking hindered the development of software in
this environment and thus required a lengthy transition period
for developers to adapt to this new model. Moreover, any new
capabilities or applications, such as displaying a new kind of
data on the wall, involved writing the code from scratch.

Bridging to legacy software: Scotty

Scotty [2] uses a different philosophy. Its goal is two-fold: to
provide a test-bed for exploring instrumental interaction [1]
and to provide a toolkit for the development of malleable
applications. Rather than create a toolkit from scratch built
around these concepts, we built Scotty as a meta-toolkit that
grafted new capabilities into Cocoa. Thus, existing Cocoa
applications can benefit from Scotty’s new capabilities without
modification of their source code.

Scotty is thus able to give arbitrary Cocoa applications the
ability to load Scotty plugins that can be built using concepts
of instrumental interaction. Scotty instrument plugins draw
upon the Scotty toolkit to provide lenses into the underlying
application’s objects, views, and controllers. As such, creating
the subtitles modification described above is “simply” a matter
of identifying the playback window’s playback controller and
method to extract the current time. Scotty itself provides
tools for helping a plugin developer to inspect and make sense
of a host application’s interface and core program objects.
Adding this new functionality is thus a matter of attaching
a transparent overlay window, loading a Python module that
decodes subtitles, etc. In about 150 lines of Python code, a
programmer can “teach” Quicktime Player to load subtitles
from an external file, overlay them on the screen, and integrate
them to the playback of the movie.

This approach has the advantage of quickly being able to take
advantage of the full ecosystem of existing Mac applications.
In theory, researchers are not bound by what they can develop
from whole cloth. If an existing program offers the core func-
tionality necessary, it should be straightforward to incorporate
it into a research prototype.

The reality, of course, is different: design choices made by
the original developers—and their rationale—are invisible.
Shoe-horning them into a new environment, with different
core assumptions and core values, can involve considerable ef-
fort. In the case of instrumental interaction, for example, Mac
applications just aren’t designed with this style of interaction
in mind. A developer may end up spending as much effort
adapting an existing application to a new interaction paradigm
as she would have implementing a proof of concept. Only in
hindsight can she evaluate whether that effort is worth the ben-
efits of having a real application running in a real environment
versus a functional proof-of-concept research prototype.

Webstrates

In between these two approaches, we built Webstrates as a sort
of putty to build shareable dynamic media on top of existing
web technologies. Developers can take advantage of their
knowledge of HTML, JavaScript, and CSS to build webstrates
in this new environment. The learning curve to be at least
functional in this environment is relatively low. Moreover,
existing web applications and libraries are readily available
so long as they meet or can be made to meet certain core
assumptions of Webstrates (notably that the DOM in a web
browser is no longer ephemeral).

Webstrates combines several appealing properties for the ex-
ploration of new kinds of applications: it is compatible with



a large selection of applications that meet the requirements
above, developers can leverage their existing knowledge and
experience, web environments present a relatively low barrier
to entry, and the webstrate canvas itself is a relatively open
environment in which developers can experiment freely.

In contrast to a strict bridge such as Scotty, where applica-
tion developers must fit within the constraints of the Cocoa
development environment first, and then figure out how to
express their new interactions within its concepts, webstrates
allow developers to focus first on their concepts, and then on
the constraints of the web framework. Both approaches use a
bridging approach to bootstrap the development environment,
but Webstrates finds a more lightweight balance than does
Scotty.

CONCLUSIONS

Modern toolkits need to break the core assumptions implicit
in historical interface toolkits. No longer do we live in a world
of a single user at a single keyboard and mouse, interacting
on his or her own. One or multiple users may interact with
one or multiple devices in dynamic environments with differ-
ent interactive and computational properties. The interactive
metaphors that worked in historic environments do not neces-
sarily hold up in the face of these new additions. We thus need
to build new toolkits to help programmers build interactive
software that can handle these changing constraints.

We have presented a collection of three toolkits that we have
built, deployed, and published. Through this experience, we
have explored different styles of implementing new interaction
models and new ways of modeling interactive software; and
new ways of building off of the existing set of tools that have
been created over the course of the WIMP and early post-
WIMP era.

ACKNOWLEDGEMENTS

This work has been funded in part by Digitéo, the French
National Research Agency (ANR), and the Région Ile-de-
France.

REFERENCES

1. Beaudouin-Lafon, M.: Instrumental interaction: an
interaction model for designing post-wimp user interfaces.
In: CHI *00: Proceedings of the SIGCHI conference on
Human factors in computing systems. pp. 446—453. ACM
(2000)

2. Eagan, J.R., Beaudouin-Lafon, M., Mackay, W.E.:
Cracking the cocoa nut: user interface programming at
runtime. In: UIST ’11: Proceedings of the 24th annual
ACM symposium on User interface software and
technology. pp. 225-234. ACM (2011)

3. Gjerlufsen, T., Klokmose, C.N., Eagan, J., Pillias, C.,
Beaudouin-Lafon, M.: Shared substance: developing
flexible multi-surface applications. In: CHI *11:
Proceedings of the 2011 annual conference on Human
factors in computing systems. pp. 3383-3392. ACM
(2011)

4. Klokmose, C., Eagan, J., Baader, S., Mackay, W.,
Beaudouin-Lafon, M.: Webstrates: Shareable Dynamic
Media. In: UIST *15: ACM Symposium on User Interface
Software and Technology. pp. 280-290. ACM (Nov 2015)

5. Nardi, B.A., Miller, J.R., Wright, D.J.: Collaborative,
programmable intelligent agents. Communications of the
ACM 41(3), 96-104 (1998)

6. Pandit, M.S., Kalbag, S.: The selection recognition agent:
Instant access to relevant information and operations. In:
IUI ’97: Proceedings of the 2nd International Conference
on Intelligent User Interfaces. pp. 47-52. ACM (1997)



	Introduction
	Three challenges for toolkit research
	Multiple users, machines, interaction modalities
	Making software malleable
	Recreating the universe
	Bridging to legacy software: Scotty
	Webstrates


	Conclusions
	Acknowledgements
	REFERENCES 

