D. E. Jaalouk and J. Lammerding, Mechanotransduction gone awry, Nature Reviews Molecular Cell Biology, vol.2, issue.1, pp.63-73, 2009.
DOI : 10.1097/01.LAB.0000073128.16098.31

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668954/pdf

L. Chin, Y. Xia, D. E. Discher, and P. A. Janmey, Mechanotransduction in cancer, Current Opinion in Chemical Engineering, vol.11, pp.77-84, 2016.
DOI : 10.1016/j.coche.2016.01.011

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, Cell Movement Is Guided by the Rigidity of the Substrate, Biophysical Journal, vol.79, issue.1, pp.144-152, 2000.
DOI : 10.1016/S0006-3495(00)76279-5

A. J. Engler, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-89, 2006.
DOI : 10.1016/j.cell.2006.06.044

URL : https://doi.org/10.1016/j.cell.2006.06.044

D. Riveline, Focal Contacts as Mechanosensors, The Journal of Cell Biology, vol.11, issue.6, pp.1175-1186, 2001.
DOI : 10.1083/jcb.141.2.539

URL : http://jcb.rupress.org/content/jcb/153/6/1175.full.pdf

C. Grashoff, Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics, Nature, vol.83, issue.7303, pp.263-269, 2010.
DOI : 10.1038/nature09198

Y. Cui, Cyclic stretching of soft substrates induces spreading and growth, Nature Communications, vol.288, issue.1, p.6333, 2015.
DOI : 10.1126/science.288.5463.113

S. Jungbauer, H. Gao, J. P. Spatz, and R. Kemkemer, Two Characteristic Regimes in Frequency-Dependent Dynamic Reorientation of Fibroblasts on Cyclically Stretched Substrates, Biophysical Journal, vol.95, issue.7, pp.3470-3478, 2008.
DOI : 10.1529/biophysj.107.128611

A. Livne, E. Bouchbinder, and B. Geiger, Cell reorientation under cyclic stretching, Nat. Commun, vol.5, p.3938, 2014.
DOI : 10.1016/j.bpj.2013.11.309

URL : https://doi.org/10.1016/j.bpj.2013.11.309

C. Sears and R. Kaunas, The many ways adherent cells respond to applied stretch, Journal of Biomechanics, vol.49, issue.8, pp.1347-1354, 2016.
DOI : 10.1016/j.jbiomech.2015.10.014

H. L. Sweeney, . Discher, and A. J. Engler, Matrix elasticity directs stem cell lineage specification, Cell, 2006.

D. Kim, P. K. Wong, J. Park, A. Levchenko, and Y. Sun, Microengineered Platforms for Cell Mechanobiology, Annual Review of Biomedical Engineering, vol.11, issue.1, pp.203-233, 2009.
DOI : 10.1146/annurev-bioeng-061008-124915

K. Haase and A. Pelling, Investigating cell mechanics with atomic force microscopy, Journal of The Royal Society Interface, vol.317, issue.5838, p.20140970, 2015.
DOI : 10.1126/science.1139857

URL : http://rsif.royalsocietypublishing.org/content/royinterface/12/104/20140970.full.pdf

N. Wang, J. P. Butler, and D. E. Ingber, Mechanotransduction across the cell surface and through the cytoskeleton, Science, vol.260, issue.5111, pp.1124-1127, 1993.
DOI : 10.1126/science.7684161

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, A New Determination of the Shear Modulus of the Human Erythrocyte Membrane Using Optical Tweezers, Biophysical Journal, vol.76, issue.2, pp.1145-51, 1999.
DOI : 10.1016/S0006-3495(99)77279-6

A. M. Quinlan, L. N. Sierad, A. K. Capulli, L. E. Firstenberg, and L. Kristen, Combining Dynamic Stretch and Tunable Stiffness to Probe Cell Mechanobiology In Vitro, 2011.

R. Krishnan, Reinforcement versus Fluidization in Cytoskeletal Mechanoresponsiveness, PLoS ONE, vol.256, issue.1, p.5486, 2009.
DOI : 10.1371/journal.pone.0005486.s012

URL : https://doi.org/10.1371/journal.pone.0005486

N. J. Sniadecki, Magnetic microposts as an approach to apply forces to living cells, Proc. Natl. Acad. Sci. USA, pp.14553-14561, 2007.
DOI : 10.1063/1.1556204

URL : http://www.pnas.org/content/104/37/14553.full.pdf

J. Digabel, Magnetic micropillars as a tool to govern substrate deformations, Lab on a Chip, vol.104, issue.15, p.2630, 2011.
DOI : 10.1073/pnas.0611613104

URL : https://hal.archives-ouvertes.fr/hal-01378197

K. Nagayama, T. Inoue, Y. Hamada, and T. Matsumoto, A novel patterned magnetic micropillar array substrate for analysis of cellular mechanical responses, Journal of Biomechanics, vol.65, pp.194-202, 2017.
DOI : 10.1016/j.jbiomech.2017.10.017

E. A. Cavalcanti-adam, Cell Spreading and Focal Adhesion Dynamics Are Regulated by Spacing of Integrin Ligands, Biophysical Journal, vol.92, issue.8, pp.2964-74, 2007.
DOI : 10.1529/biophysj.106.089730

M. T. Frey, I. Y. Tsai, T. P. Russell, S. K. Hanks, and Y. Wang, Cellular Responses to Substrate Topography: Role of Myosin II and Focal Adhesion Kinase, Biophysical Journal, vol.90, issue.10, pp.3774-3782, 2006.
DOI : 10.1529/biophysj.105.074526

S. R. Roberts, M. M. Knight, D. Lee, and D. L. Bader, signaling in chondrocytes seeded in agarose constructs, Journal of Applied Physiology, vol.273, issue.4, pp.1385-1391, 2001.
DOI : 10.1038/sj.bjp.0703353

J. D. Szafranski, Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis, Osteoarthritis and Cartilage, vol.12, issue.12, pp.937-946, 2004.
DOI : 10.1016/j.joca.2004.08.004

N. Desprat, W. Supatto, P. Pouille, E. Beaurepaire, and E. Farge, Tissue Deformation Modulates Twist Expression to Determine Anterior Midgut Differentiation in Drosophila Embryos, Developmental Cell, vol.15, issue.3, pp.470-477, 2008.
DOI : 10.1016/j.devcel.2008.07.009

URL : https://hal.archives-ouvertes.fr/hal-00324225

G. Cheng, J. Tse, R. K. Jain, and L. L. Munn, Micro-Environmental Mechanical Stress Controls Tumor Spheroid Size and Morphology by Suppressing Proliferation and Inducing Apoptosis in Cancer Cells, PLoS ONE, vol.321, issue.2, p.4632, 2009.
DOI : 10.1371/journal.pone.0004632.s008

URL : https://doi.org/10.1371/journal.pone.0004632

F. Montel, Stress clamp experiments on multicellular tumor spheroids, Phys. Rev. Lett, vol.107, pp.1-4, 2011.
DOI : 10.1016/j.bpj.2011.11.1208

URL : https://hal.archives-ouvertes.fr/hal-01138973

J. M. Tse, Mechanical compression drives cancer cells toward invasive phenotype, Proceedings of the National Academy of Sciences, vol.20, issue.1, pp.911-916, 2012.
DOI : 10.1039/B613349E

URL : http://www.pnas.org/content/109/3/911.full.pdf

M. Kustov, Magnetic characterization of micropatterned Nd???Fe???B hard magnetic films using scanning Hall probe microscopy, Journal of Applied Physics, vol.20, issue.6, p.63914, 2010.
DOI : 10.1063/1.1703091

URL : https://hal.archives-ouvertes.fr/hal-00544416

N. M. Dempsey, Micro-magnetic imprinting of high field gradient magnetic flux sources, Applied Physics Letters, vol.104, issue.26, p.262401, 2014.
DOI : 10.1021/es402205q

URL : https://hal.archives-ouvertes.fr/hal-01341124

Q. Tseng, A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels, Lab on a Chip, vol.17, issue.13, pp.2231-2240, 2011.
DOI : 10.1364/OE.17.004685

URL : https://hal.archives-ouvertes.fr/hal-00611335

J. Crocker and D. Grier, Methods of Digital Video Microscopy for Colloidal Studies, Journal of Colloid and Interface Science, vol.179, issue.1, pp.298-310, 1996.
DOI : 10.1006/jcis.1996.0217

B. Sabass, M. L. Gardel, C. M. Waterman, and U. S. Schwarz, High Resolution Traction Force Microscopy Based on Experimental and Computational Advances, Biophysical Journal, vol.94, issue.1, pp.207-227, 2008.
DOI : 10.1529/biophysj.107.113670

URL : https://doi.org/10.1529/biophysj.107.113670

H. G. Döbereiner, Lateral Membrane Waves Constitute a Universal Dynamic Pattern of Motile Cells, Physical Review Letters, vol.90, issue.3, pp.10-13, 2006.
DOI : 10.1152/japplphysiol.01181.2004

D. J. Barry, C. H. Durkin, J. V. Abella, and M. Way, Open source software for quantification of cell migration, protrusions, and fluorescence intensities, The Journal of Cell Biology, vol.209, issue.1, pp.163-180, 2015.
DOI : 10.1083/jcb.201501081.dv

A. R. Babu and N. Gundiah, Role of Crosslinking and Entanglements in the Mechanics of Silicone Networks, Experimental Mechanics, vol.12, issue.7, pp.1177-1187, 2014.
DOI : 10.1088/0022-3727/12/9/008

S. V. Plotnikov, B. Sabass, U. S. Schwarz, and C. M. Waterman, High-Resolution Traction Force Microscopy, Methods in cell biology 123, 2014.
DOI : 10.1016/B978-0-12-420138-5.00020-3

URL : http://europepmc.org/articles/pmc4699589?pdf=render

C. N. Holenstein, U. Silvan, and J. G. Snedeker, High-resolution traction force microscopy on small focal adhesions - improved accuracy through optimal marker distribution and optical flow tracking, Scientific Reports, vol.46, p.41633, 2017.
DOI : 10.1016/S0006-3495(02)73909-X

URL : http://www.nature.com/articles/srep41633.pdf

T. Das, T. K. Maiti, and S. Chakraborty, Traction force microscopy on-chip: shear deformation of fibroblast cells, Lab on a Chip, vol.91, issue.8, pp.1308-1326, 2008.
DOI : 10.1113/jphysiol.1992.sp019432

S. J. Han, Y. Oak, A. Groisman, and G. Danuser, Traction microscopy to identify force modulation in subresolution adhesions, Nature Methods, vol.12, issue.7, pp.653-656, 2015.
DOI : 10.1371/journal.pone.0025534

J. P. Butler, I. M. Toli?-nørrelykke, B. Fabry, and J. J. Fredberg, Traction fields, moments, and strain energy that cells exert on their surroundings, American Journal of Physiology-Cell Physiology, vol.4, issue.3, pp.595-605, 2002.
DOI : 10.1152/ajpcell.00269.2001

URL : http://ajpcell.physiology.org/content/ajpcell/282/3/C595.full.pdf

P. Kollmannsberger, C. M. Bidan, J. W. Dunlop, and P. Fratzl, The physics of tissue patterning and extracellular matrix organisation: how cells join forces, Soft Matter, vol.59, issue.20, pp.9549-9560, 2011.
DOI : 10.1016/j.actbio.2006.01.002

N. Q. Balaban, Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates, Nature Cell Biology, vol.111, issue.Suppl., pp.466-472, 2001.
DOI : 10.1091/mbc.11.3.1047

L. Trichet, Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness, Proceedings of the National Academy of Sciences, vol.8, issue.3, pp.6933-6938, 2012.
DOI : 10.1016/j.ccr.2005.08.010

N. Shoham and A. Gefen, The influence of mechanical stretching on mitosis, growth, and adipose conversion in adipocyte cultures, Biomechanics and Modeling in Mechanobiology, vol.295, issue.4, pp.1029-1045, 2012.
DOI : 10.1152/ajpheart.00343.2008

S. Na, Rapid signal transduction in living cells is a unique feature of mechanotransduction, Proc. Natl. Acad. Sci. USA 105, pp.6626-6631, 2008.
DOI : 10.1073/pnas.90.9.3835

N. W. Goehring and S. W. Grill, Cell polarity: mechanochemical patterning, Trends in Cell Biology, vol.23, issue.2, pp.72-80, 2013.
DOI : 10.1016/j.tcb.2012.10.009

F. Khademolhosseini, Magnetically actuated microstructured surfaces can actively modify cell migration behaviour, Biomedical Microdevices, vol.84, issue.3, pp.10544-10560, 2016.
DOI : 10.1007/BF01907974

F. J. Segerer, Versatile method to generate multiple types of micropatterns, Biointerphases, vol.11, issue.1, p.11005, 2016.
DOI : 10.1116/1.4940703