W. Dobelle, M. Mladejovsky, and J. Girvin, Artificial Vision for the Blind: Electrical Stimulation of Visual Cortex Offers Hope for a Functional Prosthesis, Science, vol.183, issue.4123, pp.440-444, 1974.
DOI : 10.1126/science.183.4123.440

G. Brindley and W. Lewin, The sensations produced by electrical stimulation of the visual cortex, The Journal of Physiology, vol.196, issue.2, pp.479-93, 1968.
DOI : 10.1113/jphysiol.1968.sp008519

C. Veraart, C. Raftopoulos, and J. Mortimer, Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode, Brain Research, vol.813, issue.1, pp.181-187, 1998.
DOI : 10.1016/S0006-8993(98)00977-9

URL : https://hal.archives-ouvertes.fr/hal-00331973

E. Zrenner, Fighting Blindness with Microelectronics, Science Translational Medicine, vol.36, issue.6, pp.210-226, 2013.
DOI : 10.1146/annurev-neuro-062012-170304

D. Zhou, J. Dorn, and R. Greenberg, The Argus V R II retinal prosthesis system: an overview, Multimedia and Expo Workshops (ICMEW), 2013 IEEE International Conference, pp.1-6, 2013.
DOI : 10.1109/icmew.2013.6618428

M. Humayun, J. Dorn, and L. Da-cruz, Interim Results from the International Trial of Second Sight's Visual Prosthesis, Ophthalmology, vol.119, issue.4, pp.779-88, 2012.
DOI : 10.1016/j.ophtha.2011.09.028

S. Picaud and J. Sahel, Retinal prostheses: Clinical results and future challenges, Comptes Rendus Biologies, vol.337, issue.3, pp.214-236, 2014.
DOI : 10.1016/j.crvi.2014.01.001

H. Stronks and G. Dagnelie, The functional performance of the Argus II retinal prosthesis, Expert Review of Medical Devices, vol.53, issue.3, pp.23-30, 2014.
DOI : 10.1007/978-0-387-22585-2

G. Dagnelie and H. Stronks, Prosthetic vision, perceptual effects, Encyclopedia of Computational Neuroscience, pp.1-4, 2014.
DOI : 10.1007/978-1-4614-7320-6_657-1

G. Dagnelie, R. Thompson, D. Barnett, and W. Zhang, Simulated prosthetic vision: perceptual and performance measures, Vis Sci Its Appl, pp.43-49, 2001.
DOI : 10.1007/978-1-4614-7320-6_657-1

K. Cha, K. Horch, and R. Normann, Mobility performance with a pixelized vision system, Vision Research, vol.32, issue.7, pp.1367-72, 1992.
DOI : 10.1016/0042-6989(92)90229-C

P. Erez-fornos, A. Sommerhalder, J. Pelizzone, and M. , Reading with a simulated 60-channel implant, Front Neurosci, vol.5, p.8, 2011.

G. Denis, M. , M. Jouffrais, and C. , Simulated prosthetic vision: object recognition and localization approach, Proceedings of the 4th International Conference on Neuroprosthetic Devices, pp.40-41, 2012.

J. Wang, X. Wu, Y. Lu, H. Wu, H. Kan et al., Face recognition in simulated prosthetic vision: face detection-based image processing strategies, Journal of Neural Engineering, vol.11, issue.4, p.11, 2014.
DOI : 10.1088/1741-2560/11/4/046009

N. Barnes, P. Lieby, and H. Dennet, Investigating the role of single-viewpoint depth data in visually-guided mobility, Journal of Vision, vol.11, issue.11, p.926, 2011.
DOI : 10.1167/11.11.926

N. Parikh, L. Itti, M. Humayun, and J. Weiland, Performance of visually guided tasks using simulated prosthetic vision and saliency-based cues, Journal of Neural Engineering, vol.10, issue.2, p.13, 2013.
DOI : 10.1088/1741-2560/10/2/026017

C. Mccarthy, J. Walker, P. Lieby, A. Scott, and N. Barnes, Mobility and low contrast trip hazard avoidance using augmented depth, Journal of Neural Engineering, vol.12, issue.1, p.15, 2014.
DOI : 10.1088/1741-2560/12/1/016003

C. Mccarthy and N. Barnes, Surface extraction from isodisparity contours, Asian Conference on Computer Vision, pp.410-431, 2011.

D. Clark-carter, A. Heyes, and C. Howarth, The efficiency and walking speed of visually impaired people, Ergonomics, vol.9, issue.6, pp.779-89, 1986.
DOI : 10.1080/00140137808931733

G. Dagnelie, P. Keane, V. Narla, L. Yang, J. Weiland et al., Real and virtual mobility performance in simulated prosthetic vision, Journal of Neural Engineering, vol.4, issue.1, pp.92-101, 2007.
DOI : 10.1088/1741-2560/4/1/S11

J. Rheede, C. Kennard, and S. Hicks, Simulating prosthetic vision: Optimizing the information content of a limited visual display, Journal of Vision, vol.10, issue.14, p.32, 2010.
DOI : 10.1167/10.14.32

T. Meilinger, C. Freksa, N. Newcombe, and P. , The Network of Reference Frames Theory: A Synthesis of Graphs and Cognitive Maps, Spatial Cognition VI: Learning, Reasoning, and Talking about Space, pp.344-60, 2008.
DOI : 10.1007/978-3-540-87601-4_25

V. Vergnieux, M. , M. Jouffrais, and C. , Wayfinding with simulated prosthetic vision: performance comparison with regular and structured-enhanced renderings. 36th Annual International Conf, pp.2585-2593, 2014.
DOI : 10.1109/embc.2014.6944151

C. Mccarthy, D. Feng, and N. Barnes, Augmenting intensity to enhance scene structure in prosthetic vision, 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp.1-6, 2013.
DOI : 10.1109/ICMEW.2013.6618430

C. Mccarthy, N. Barnes, and P. Lieby, Ground surface segmentation for navigation with a low resolution visual prosthesis, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.4457-60, 2011.
DOI : 10.1109/IEMBS.2011.6091105

M. Zapf, M. Boon, P. Matteucci, N. Lovell, and G. Suaning, Towards an assistive peripheral visual prosthesis for long-term treatment of retinitis pigmentosa: evaluating mobility performance in immersive simulations, Journal of Neural Engineering, vol.12, issue.3, p.14, 2015.
DOI : 10.1088/1741-2560/12/3/036001

N. Gebhardt, Irrlicht Engine?A Free Open Source 3D Engine, 2010.

S. Hart and L. Staveland, Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research, Adv Psychol, vol.52, pp.139-83, 1988.
DOI : 10.1016/S0166-4115(08)62386-9

K. Barton and C. Ellard, Finding your way: The influence of global spatial intelligibility and field-of-view on a wayfinding task, Journal of Vision, vol.9, issue.8, p.1125, 2009.
DOI : 10.1167/9.8.1125

M. Wolf, Abstraction in the video game, The Video Game Theory Reader, pp.47-66, 2003.

R. Development and C. Team, R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2010.

M. Hollander and D. Wolfe, Nonparametric Statistical Methods, 1999.
DOI : 10.1002/9781119196037

S. Chen, G. Suaning, J. Morley, and N. Lovell, Simulating prosthetic vision: I. Visual models of phosphenes, Vision Research, vol.49, issue.12, pp.1493-506, 2009.
DOI : 10.1016/j.visres.2009.02.003

M. Humayun, J. Weiland, and G. Fujii, Visual perception in a blind subject with a chronic microelectronic retinal prosthesis, Vision Research, vol.43, issue.24, pp.2573-81, 2003.
DOI : 10.1016/S0042-6989(03)00457-7

E. Zrenner, R. Wilke, and T. Zabel, Psychometric analysis of visual sensations mediated by subretinal microelectrode arrays implanted into blind retinitis pigmentosa patients, Invest Ophthalmol Vis Sci, vol.48, p.659, 2007.

R. Wilke, U. Geppmaier, K. Stingle, and E. Zrenner, Fading of perception in retinal implants is a function of time and space between sites of stimulation, Invest Ophthalmol Vis Sci, vol.52, p.458, 2011.

M. Bauda, S. Chambon, M. Spangenberg, and V. Charvillat, Segmentation de scè nes urbaines par combinaison d'information . ORASIS, Journ ee francophones des jeunes chercheurs en vision par ordinateur, p.8

B. Riecke, B. Bodenheimer, T. Mcnamara, B. Williams, P. Peng et al., Do We Need to Walk for Effective Virtual Reality Navigation? Physical Rotations Alone May Suffice, Spatial Cognition VII, pp.234-281, 2010.
DOI : 10.1007/978-3-642-14749-4_21

URL : http://www.sfu.ca/%7Eber1/web/conferencePapers/RieckeEtAl__2010_SpatialCognitionConf__Do_We_Need_to_Walk_for_Effective_Virtual_Reality_Navigation.pdf

J. Gibson, The Ecological Approach to Visual Perception: Classic Edition, 2014.

M. Mac-e, V. Guivarch, G. Denis, and C. Jouffrais, Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization, Artificial Organs, vol.6, issue.60, pp.102-113, 2015.
DOI : 10.1038/nrn1586