Fast Hyperspectral Unmixing in Presence of Nonlinearity or Mismodelling Effects

Abstract : This paper presents two novel hyperspectral mixture models and associated unmixing algorithms. The two models assume a linear mixing model corrupted by an additive term whose expression can be adapted to account for multiple scattering nonlinearities (NL), or mismodeling effects (ME). The NL model generalizes bilinear models by taking into account higher order interaction terms. The ME model accounts for different effects, such as endmember variability or the presence of outliers. The abundance and residual parameters of these models are estimated by considering a convex formulation suitable for fast estimation algorithms. This formulation accounts for constraints, such as the sum-to-one and nonnegativity of the abundances, the nonnegativity of the nonlinearity coefficients, the spectral smoothness of the ME terms and the spatial sparseness of the residuals. The resulting convex problem is solved using the alternating direction method of multipliers whose convergence is ensured theoretically. The proposed mixture models and their unmixing algorithms are validated on both synthetic and real images showing competitive results regarding the quality of the inference and the computational complexity when compared to the state-of-the-art algorithms.
Liste complète des métadonnées

Littérature citée [58 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01692733
Contributeur : Open Archive Toulouse Archive Ouverte (oatao) <>
Soumis le : jeudi 25 janvier 2018 - 13:53:40
Dernière modification le : mercredi 12 septembre 2018 - 17:46:03
Document(s) archivé(s) le : vendredi 25 mai 2018 - 03:42:32

Fichier

halimi_18818.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Abderrahim Halimi, José Bioucas Dias, Nicolas Dobigeon, Gerald S. Buller, Stephen Mc Laughlin. Fast Hyperspectral Unmixing in Presence of Nonlinearity or Mismodelling Effects. IEEE Transactions on Computational Imaging, 2017, vol. 3 (n° 2), pp. 146-159. 〈10.1109/TCI.2016.2631979〉. 〈hal-01692733〉

Partager

Métriques

Consultations de la notice

54

Téléchargements de fichiers

24