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ABSTRACT

Many-core processors are interesting candidates for the de-
sign of modern avionics computers. Indeed, the computa-
tional power offered by such platforms opens new horizons to
design more demanding systems and to integrate more ap-
plications on a single target. However, they also bring chal-
lenging research topics because of their lack of predictability
and their programming complexity. In this paper, we focus
on the problem of mapping large applications on a com-
plex platform such as the Kalray mppaR©-256 while main-
taining a strong temporal isolation from co-running appli-
cations. We propose a constraint programming formulation
of the mapping problem that enables an efficient paralleliza-
tion and we demonstrate the ability of our approach to deal
with large problems using a real world case study.

1. INTRODUCTION
Many-core processors are a potential technology for aerospace

industry as long as there is a way to certify them according
to aeronautics standards, in particular with:

• DO 178 B/C [25] which imposes that the WCET of
any application can be computed;

• DO 297 [24] which states that mixed-critical applica-
tions can execute on the same resource as long as they
are strongly segregated, in the sense that an applica-
tion cannot interfere with others even in the presence
of failures;

• CAST-32 [5] and FAA white paper [13] which detail
how temporal interferences affect the safety and why
mitigation means against those interferences are manda-
tory, when executing on multi-core COTS processors.

Because of the architecture of many-core chips, computing
WCET requires to be able to bound safely the interference
delays on shared resources [26] meanwhile ensuring segrega-
tion imposes that execution times must not vary whatever
the co-running applications do.

1.1 Temporal isolation-based framework
The overall framework workflow is shown in Figure 1.

When implementing several applications on the same target
(single or multi/many-core chips), two stakeholders inter-
act: on the one hand, the application designers are in charge
of developing their application and on the other hand, the
platform integrator is in charge of integrating the different
applications on the shared platform.

Figure 1: Workflow

In [19], we proposed an approach to implement real-time
safety-critical applications on a many-core target in such a
way that strict temporal guarantees are ensured whatever
the behaviour of other applications sharing the resources is.
The approach is based on a four-rules execution model to be
followed by the developers (application designers and plat-
form integrator) to avoid any unpredictable or non-segregated
behaviours. Some of the rules are enforced by an off-line
mapping and computation, while others are ensured by a
bare-metal hypervisor that we developed. That initial work
concerned mostly the activities of the platform integrator.
More precisely, given an abstract view of applications in the
form of a set of application budgets, the integrator maps off-
line during the Allocate phase the budgets on the target,
while respecting the execution model. The output is both
the computed mapping and the associated code (memory
allocation, boot code of the cores and schedule of budgets).
Given the application internal execution in the budget, the
applications can then run on the target.



1.2 Contribution
In this paper, we focus on the application designers ac-

tivity which is modified due to the use of a many-core plat-
form. The purpose is to help them provide their budget.
More specifically, each application (App) is defined as a set
of multi-periodic communicating tasks and is wrapped in
a single partition. A partition also contains an application
budget (Bud) which is an abstraction of the application that
represents the needs in terms of resources (memory, CPU,
communication and IOs). The budget is the interface format
between the application designer and the platform integra-
tor. Indeed, the latter does not need a complete knowledge
of each application to share the platform.
Before explaining how to obtain a budget, we first recall

the platform model, the execution model and the application
definition in section 2. We then detail some basic formulas
to derive a minimal budget (see section 3). However, it is
up to the application designer to define its budget. Then,
we propose a constraint programming approach to validate
a given budget (see section 4). A budget is considered as
valid when it enables a correct implementation of the appli-
cation for both functional and non-functional requirements.
During the validate phase, we compute a complete sched-
ule of the application in its budget. This schedule can be
distributed over several cores and includes not only the map-
ping of tasks on cores but also the tight management of the
communication over the Network on Chip (NoC). Once a
correct schedule has been found, the user can then decide
to keep it or to optimize it by changing some parameters
(ex: the number of cores, the length of the time-slices, . . . ).
A second output is the internal budget code. In section 5,
we illustrate the applicability and the scalability of the con-
straint programming approach. We then present the related
work and conclude.

2. SYSTEM MODEL

2.1 Hardware platform

2.1.1 Overview

The Kalray mppaR©-256 (Bostan version) integrates 288
cores distributed over 16 Compute Clusters and 4 I/O clus-
ters interconnected by a dual Network on Chip (or NoC ), as
shown in Figure 2. The 16 compute clusters are dedicated
to run user applications while the I/O clusters serve as in-
terfaces with the out-chip components such as the DDR-
SDRAM. All cores are identical 32-bits VLIW processors
integrating complex components such as a private MMU
(Memory Management Unit) enabling both virtual address-
ing and memory protection.

2.1.2 Compute and I/O Clusters

Each compute cluster is composed of 16 cores (named
PEs), 1 specific core used for resource management (RM ),
2MiB of Static Random Access Memory (or SRAM) exclu-
sively accessible by the elements of the cluster and 1 DMA
engine to transfer data between clusters over the NoC. The
local SRAM is organised in 16 memory banks that can be
accessed in parallel without inter-core interferences.
Each I/O cluster integrates 4 RMs, 4 DMAs (capable of

sending data through 4 different NoC access points) and
several additional peripherals such as a DDR-SDRAM con-
troller or an Ethernet controller.
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Figure 2: mppaR©-256 architecture overview

2.1.3 Network on Chip

Two 2-D torus NoCs interconnect the compute and I/O
clusters. The D-NoC can be used for large data transfers
while the C-NoC enables inter-cluster barriers thanks to
short control messages. In both cases, the route of each
packet must be defined explicitly by software.

2.2 Execution model
In [19], we have defined a four-rules execution model in

order to ensure a strict temporal isolation between applica-
tions. The application designers must follow those rules to
avoid any unpredictable or non-segregated behaviours. We
give a brief reminder of the four rules of the execution model:

Rule 1: Spatial partitioning inside compute clusters

Any PE (resp. any local SRAM bank) inside any com-
pute cluster can be reserved by at most 1 partition.
This rule ensures that a partition will never suffer from
local interferences caused by other partitions.

Rule 2: Isolated accesses on the NoC Any communica-
tion on a route on the NoC does not encounter any
conflict. Given two communications, either they take
two non-overlapping routes or they access at different
times their overlapping routes. More precisely, com-
munications are scheduled in a TDM (Time-Division
Multiplexing) manner and strictly periodic slots are
defined off-line for each communication.

Rule 3: Off-line pre-defined static buffers The mem-
ory areas to be sent over the NoC must be defined
off-line. This allows to both reduce the combinatorial
explosion of WCET estimation through static analysis
and ease the measurement-based validations.

Rule 4: Isolated accesses to DDR-SDRAM bank Any
bank of the external DDR-SDRAM memory can be
shared by two or more partitions as long as they never
access it simultaneously. This allows to greatly miti-
gate the inter-partitions interferences at the external
bank level.



Some of the rules are enforced by an off-line mapping and
computation; while others are ensured by a bare-metal hy-
pervisor that we developed. Further low-level details on the
implementation of this hypervisor are provided in [19].

2.3 Application model
An application is a tuple 〈τ, δ〉 where:

1. τ = {τ1, . . . , τn} is a finite set of periodic tasks. A task
τi is defined as τi = 〈Si, Pi, Ti〉:

• Si = {τ1
i , . . . , τ

ni
i } is the set of sub-tasks in τi

with ni the number of sub-tasks composing τi.
All the sub-tasks in Si are assumed to be acti-
vated simultaneously at the activation of τi and
to have the same implicit deadline equal to Ti.
Additionally, the sub-tasks are defined as τ j

i =

〈Cj
i ,M

j
i , I

j
i , O

j
i 〉 with: C

j
i the WCET of the sub-

task; M j
i the memory footprint of the sub-task

(size of code, static and read-only data); Iji and

Oj
i respectively the input and output buffers1 read

and written by τ j
i

• Pi ⊂ Si×Si is the finite set of precedence relations
constraining the sub-tasks of τi. More precisely,
(τx

i , τ
y
i ) ∈ Pi means that τx

i must be completed
before τy

i can start. This kind of precedence rela-
tions are assumed to exist only between sub-jobs
exchanging some data. Moreover, the precedence
constraints imposed by Pi have no cycles and can
be seen as a Directed Acyclic Graph (or DAG).

• Ti the period of the task.

2. δ = {δ1, . . . , δm} the set of data with δk = 〈mk, prod, cons〉
with mk the size of the data; prod : δ 7→ S which pro-
vides the sub-job producing the data (with S =

⋃
i Si);

and cons : δ 7→ Sn which provides the set of sub-tasks
consuming the data.

The model does not allow precedence constraints between
sub-tasks having different parent tasks. However, no such
constraints are imposed for the data exchanges. The only
constraint for data is to be consumed over the freshest-value
semantics in a deterministic manner2.

Example 1. We consider an application composed of 2 tasks
τ1 and τ2 respectively having 4 and 7 sub-tasks. The 11 sub-
tasks exchange 15 data {δa, . . . , δo} and read from 1 input
buffer i1 and write into 1 output buffer o1. Tasks τ1 and
τ2 respectively have periods T1 = 24 and T2 = 48. The
precedence constraints are depicted in Fig. 3a as two DAG
(one for each task) and the production and consumption of
data by tasks and the I/O buffers are depicted in the form of
a multi-digraph in Fig. 3b. The parameters of the sub-tasks
are provided in Table 1 (where ck stands for clock cycle).

1The I/O buffers only represent the interactions with out-
of-chip components such as the reception or emission of Eth-
ernet frames.
2Here deterministic refers to the data production and con-
sumption ordering. We consider that two executions of the
same schedule must always ensure the same order of pro-
duction and consumption of all data.

Sub-task Cj
i (in ck) M j

i (in KiB) Iji Oj
i

τ1
1 500 519 i1 ∅

τ2
1 500 397 ∅ ∅

τ3
1 700 642 ∅ ∅

τ4
1 400 262 ∅ ∅

τ1
2 1,000 287 ∅ ∅

τ2
2 400 799 ∅ ∅

τ3
2 500 542 ∅ ∅

τ4
2 800 764 ∅ ∅

τ5
2 900 490 ∅ ∅

τ6
2 500 399 ∅ o1
τ7
2 600 12 ∅ ∅

Table 1: Example of sub-tasks parameters
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Figure 3: Example of sub-tasks dependencies.

2.4 Definition of application’s budget
In [19], we have defined the notion of application bud-

get, that is the interface between application designers and
the integrator. The application designer must detail to the
integrator the amount of resources needed by its software.
We remind those definitions below for the paper to be self-
contained.

Definition 1. An application budget is defined as a tuple
〈P,B, I, C〉 where

1. P = {PN1, . . . , PNm} is a finite set of PNs. A Par-
tition Node (or PN) is a pair 〈Nc, Nb〉 which repre-
sents the need of processing resource (Nc is a number
of cores) and memory (Nb is a number of local memory
banks) allocated to an application inside one cluster;

2. B represents a number of external DDRx-SDRAM banks;

3. I = {I/ON1, . . . , I/ONj} is a finite set of I/ONs. An
I/O Node (or I/ON) represents an access point to the
external memory. It is materialized as a processor lo-
cated on an I/O cluster.

4. C = {PC1, . . . , PCp} is a finite set of PCs. A Par-
tition Communication (or PC) represents a need of
communication between two PNs located on two differ-
ent clusters (or a PN and an I/ON ) in the form of a
directed strictly periodic NoC access slot. Moreover, a
PC is defined as a tuple 〈src, dst, 〈T,C,O〉〉 where:

• src ∈ P ∪ I (resp. dst ∈ P ∪ I) is the source
(destination) of the communication. We assume
that there exists at most one PC linking src and
dst (no two different ways to communicate).



• 〈T,C,O〉 is the strictly periodic slot with period
T , duration C and offset O.

3. BUDGETING
The budget of an application is a set of PNs storing and

executing all the tasks, a number of DDR banks, a set of
I/ONs, a set of PCs interconnecting the PNs and I/ONs.

3.1 Assumptions

3.1.1 No code fetch

On the Kalray mppaR©-256, the PEs cannot directly ac-
cess the external DDR-SDRAM, they must always use the
DMA engines instead. In particular, the process of loading
code from the external DDR-SDRAM (in case an application
does not fit into the local SRAM) must be achieved explic-
itly by software. However, we will assume in the rest of the
paper that no code fetch from the external DDR-SDRAM
ever occurs. Several works already considered code fetch-
ing such as [3, 12], we prefer to focus on the multi-cluster
parallelization and the efficient use of the NoC instead.

3.1.2 Execution model and hypervisor

One local SRAM bank is reserved by the hypervisor in
each cluster (see [19] for further details). Any of the 15
remaining local memory banks can be used by applications.
A global tick (denoted as the Systick) of period Tsys acti-

vates periodically the hypervisors of all clusters simultane-
ously. Thus, the duration and the period of any PC must
be multiple of the Systick.

3.1.3 Valid budget

A budget is valid if the application can execute safely with
the resources offered by the budget. More precisely,

Definition 2 (Valid budget). For an application A =
〈τ, δ〉, a budget 〈P,B, I, C〉 is valid if there exist:

• a mapping of all sub-tasks τ j
i ∈ S to P. More pre-

cisely, each sub-task is associated to a PN= 〈Nc, Nb〉,
executes on one of the Nc core and its memory foot-
print is stored in the Nb banks;

• a local schedule on each core so that the sub-tasks re-
spect their deadlines and their precedence constraints;

• a mapping of each sub-task’s I/O to the B DDR banks;

• a mapping for each data on a PC from the producer’s
PN to the consumers PNs.

Example 2 (Valid budget and associated schedule).
We consider the task set defined in Example 1. As shown on
Fig. 4, a valid budget for this task set is composed of three
PNs p0, p1 and p2; five PCs c10, c21, c01, c12 and c20 linking
the PNs where cij is the PC going from pi to pj , and one
I/ON accessible from two PCs cio2 and c1io. All PNs have a
similar configuration with Nc = 1 and Nb = 15. All the PCs
linking the PNs also have an identical configuration with the
same duration Lc and the same period Tc. The PCs giving
access to the I/ON have a two time longer period.

3.2 Minimal budget
In our approach, the definition of the application’s budget

is left to the application designer and can be chosen for any
arbitrary reason. To help the user in its budget estimation,
we list below several necessary conditions that any budget
should meet to have a chance of being valid.

3.2.1 Memory limitations

Since we do not accept any code fetching, the application
code and data must be statically allocated in the PNs lo-
cal memory. Thus, we can deduce a lower bound on the
number of PNs (that is |P|) required to completely store an
application. Assuming that the maximum available memory
space in each compute cluster is Ma, the number of PNs is
bounded by:

|P| ≥




∑

∀τ
j
i
∈S

M j
i

Ma




3.2.2 Processing power limitations

An other bound on P can be deduced from the utilization
ratio of the application defined as:

U =
∑

∀τ
j
i
∈S

Cj
i

Ti

Since the number of cores on which the application is sched-
uled must be greater than U , we can deduce:

∑

pn∈P

Nc(pn) ≥ ⌈U⌉

On the Kalray mppaR©-256, 1 ≤ Nc ≤ 16 for all PNs
because there are 16 PEs in each cluster. Thus, the absolute
minimal number of PNs required is ⌈U/16⌉.

Example 3. The memory footprints of the tasks defined in
Example 1 are provided in Table 1. We assume the mem-
ory space reserved for storing the data to be exchanged to
weight Md = 15 KiB. So, the maximum amount of mem-
ory available for storing the tasks in each cluster is Ma =
15 ∗ 128 −Md = 1905KiB (16 banks, 1 reserved for the hy-
pervisor, 128KiB in each bank). So, we can deduce from the
memory limtation that |P| ≥3. The utilization ratio of the
task set of Example 1 is 1.85. From the processing power
limitation we can deduce:

∑

pn∈P

Nc(pn) ≥ 2

.

4. BUDGET VALIDATION
Given a budget, we propose to evaluate its validity by

finding a valid schedule of the considered application in the
budget with a constraint programming-approach. Such a
solution is quite standard to compute off-line mapping and
schedule. It also allows to take into account other con-
straints coming from the specificities of a many-core plat-
form (i.e. the local SRAM limitations or the non-negligible
NoC-related delays) and the limitations imposed by the ex-
ecution model (i.e. only strictly periodic communications
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Figure 4: Schedule of the application given in example 1 on the budget of example 2. The communication slots used: B2
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6
10 = {δj,1}; B

7
12 = {δl,1}.

between clusters). To the best of our knowledge, there is no
scheduling technique able of managing all those constraints
simultaneously in the literature.

4.1 Modelling framework
Many approaches in the literature have been proposed to

map dependent task sets on multi/many-core architectures
using an ILP formulation of the problem [3,11,20]. However,
those approaches often face major scalability issues when
applied to large applications making them unusable in an
industrial context without considering sub-optimal heuris-
tics. In this paper, we use a different modelling framework
that has proven to be practically useful in order to overcome
the same scalability issues that we faced when we devel-
oped the preliminary ILP-based formulation of our indus-
trial case study. In the following sections, we will formu-
late the scheduling problem using the notion of Conditional
Time-Intervals that has been introduced into IBM ILOG
CP Optimizer since version 2.0. In order to ease the read-
ing, we provide a short introduction to some of the concepts
associated with this scheduling framework. Further motiva-
tion behind this approach and the formal semantics of the
operations on Interval variables can be found in [15] and [16].
An interval variable i represents an activity of finite du-

ration l(i) whose start date s(i) must be computed by the
solver. Each interval i is defined in a pre-definite time win-
dow [a(i), e(i)] where a(i) and e(i) respectively are the ac-
tivation and the deadline of i. This means that a correct
schedule must always ensure that s(i) ≥ a(i) and s(i)+l(i) ≤
e(i). i is said to be optional if its presence in the final solu-
tion is not mandatory. Among all the interval-related con-
straints implemented within IBM ILOG CP Optimizer, we
use:

• start constraints: the start date s(i) of the interval i
can be constrained;

• presence constraints: for an optional interval i, p(i) ∈
[0, 1] denotes whether 1) i is present (i.e. p(i) = 1),
in which case i is part of the final solution and all
constraints on it must be met, or 2) absent (i.e. p(i) =
0) meaning that i is ignored and not considered in any
constraint in which it was originally involved;

• precedence constraints: an interval i1 can occur before
a second interval i2:

i1 → i2 ⇔ s(i1) + l(i1) ≤ s(i2)

• alternative constraints: for a set of optional intervals
I = {i1, . . . , in}, it is possible to express that only one
interval is present and all the others are absent:

⊕(I) ⇔
∑

i∈I

p(i) = 1

• cumulative function constraints: A cumulative func-
tion represents the usage of a resource by different ac-
tivities over time as the sum of the individual contri-
bution of these activities. Cumulative functions can
be used to constrain the usage of a resource to fit into
a specific envelope representing the resource capabili-
ties. Especially, the pulse function ⊓(i, h) increments
the usage of resource by h at the beginning of an in-
terval i and decrements it at the end of i if i is present.

Example 4 (Avoid overlapping with cumulative func-
tions). Assuming a set of intervals to be scheduled I =
{i1, . . . , in} that all use a single resource that is accessible by
only one activity at a time, we can enforce a non-overlapping
constraints between these intervals by using cumulative func-
tions with

∑
i∈I

⊓ (i, 1) ≤ 1.

Overall, this formulation with conditional intervals allows
a natural modelling of problems in which the activities to
be scheduled can be processed by different resources. In
such problems, each activity can be associated with several
optional intervals (one for each resource) and constrained so
that only one of the intervals is present for each activity in
the final solution.

4.2 Problem Formulation

4.2.1 Problem inputs

We consider an applicationA = 〈τ, δ〉, a budget 〈P,B, I, C〉
and a specific platform. Since Conditional Time-Intervals
apply on jobs and since tasks can have different periods, we



flatten the tasks as jobs on the hyperperiod and the schedule
will follow a repeating pattern:

TH = lcm
τi∈τ

(Ti)

We define the job τi,k of task τi as the k-th activation of τi
in one hyperperiod and τ j

i,k as the k-th activation of the sub-

task τ j
i . By doing so, we transform the initial multi-periodic

problem into a job scheduling problem. S will represent the
set of sub-jobs.
The precedence constraints are assumed to exist only be-

tween sub-tasks of the same parent task. Therefore, we du-
plicate each constraint on sub-tasks to many constraints on
sub-jobs.
Since each data can have at most one producing sub-task,

it is assumed to be over-written by each sub-job of this sub-
task. When the data must be read by a sub-task allocated to
a different cluster, it is sent from the producing cluster to the
consuming cluster during a communication slice following its
production. The k-th data δx produced by τ j

i,k is denoted
as δx,k.

4.2.2 Decision variables

There are two decision variables:

j: Each sub-job τ j
i,k ∈ S is associated with |P| optional inter-

val variables. ∀pn ∈ P, τ j
i,k ∈ S, j(τ j

i,k, pn) is present

if τ j
i,k is allocated on the PN pn. All the sub-jobs

intervals have a fixed length equal to the WCET of
the sub-job and are defined in a fixed time window
[(k − 1)× Ti; k × Ti].

d: Each data δx,k is associated with |C| optional interval
variables. ∀pc ∈ C, δx,k ∈ δ, d(δx,k, pc) is present if the
data δx,k is sent over the PC pc. The duration of each
data interval is fixed and equal to the duration of its
corresponding PC. The time window in which a data
interval is defined is equal to the one of its producing
sub-job.

Remark 1 (Duration of data intervals). Note that
the duration of data intervals does not represent the actual
time required to send the data over the NoC. The link be-
tween the communication time and the number of data allo-
cated to the same PC is made in section 4.2.7. Note more-
over that during a hyperperiod, there may be several slots for
a specific PC (exactly ⌈TH/T ⌉). Thus the start time of an
interval d indicates in which slot the data is sent.

4.2.3 PN utilization constraints

Each sub-job is executed only once in only one PN.

∀τ j
i,k ∈ S,⊕({j(τ j

i,k, pn) | ∀pn ∈ P}) (1)

If different sub-jobs of the same sub-task could execute
on different clusters, it would imply 1) to duplicate the sub-
task’s code and data on all of these clusters; 2) to enforce
coherency between the static data of all duplicates thanks
to NoC communications. So, in order to reduce the pressure
on the NoC, the local SRAM and for simplicity reasons, we
impose that all sub-jobs of a sub-task execute on the same
PN:

∀τ j
i,k ∈ S, ∀pn ∈ P, p(j(τ j

i,k, pn)) = p(j(τ j
i,k+1, pn)) (2)

The sub-jobs assigned to a common PN may not overlap.
This can be modelled with the utilization using cumulative
functions to be less than the number of core Nc:

∀pn ∈ P,
∑

∀τ
j
i,k

∈S

⊓ (j(τ j
i,k, pn), 1) ≤ Nc(pn) (3)

The constraint 3 is a necessary and sufficient condition for
being able to execute all sub-tasks allocated to a PN non-
preemptively on Nc(pn) cores since the Interval Graph asso-
ciated to each PN is chordal and can thus be colored using
Nc(pn) colors [9].

4.2.4 Local memory constraints

Each sub-task τ j
i has a memory footprint M j

i that repre-

sents the amount of local SRAM used by τ j
i in the cluster to

which it is attached. Then, we ensure that the local memory
available in each PN Ma is sufficient to store the sub-tasks
mapped on this PN:

∀pn ∈ P,
∑

τ
j
i
∈S

p(j(τ j
i,0, pn))×M j

i ≤ Ma (4)

4.2.5 Precedence constraints

The precedence constraints imposed by the application
model can be separated in two categories. A precedence
constraint (τ j

i , τ
l
i ) is said to have:

• forward data ⇔ ∃δx ∈ δ, (τ j
i = prod(δx)) ∧ (τ l

i ∈
cons(δx)),

• backward data ⇔ ∃δx ∈ δ, (τ j
i ∈ cons(δx)) ∧ (τ l

i =
prod(δx)).

With forward data, the freshest value semantics imposes
that τ l

i cannot start before it receives the data produced by
τ j
i . If both sub-tasks are executed on the same cluster, the

data produced by τ j
i will be visible to τ l

i immediately after
its production since the address space is shared. In this case,
the precedence constraint can be met simply by starting τ l

i

after the completion of τ j
i :

∀(τ j
i,k, τ

l
i,k) ∈ Pi,k, ∀pn ∈ P, j(τ j

i,k, pn) → j(τ l
i,k, pn) (5)

However, if the two sub-tasks are not executed on the
same cluster, the data will need to be sent through the NoC
after its production to become visible by τ l

i . Thus, first,
the data must be assigned to a PC slot after the end of the
producing sub-job:

∀pc ∈ C, ∀δx,k ∈ δ, j(prod(δx,k), src(pc)) → d(δx,k, pc) (6)

And then the consumer τ l
i cannot start before the com-

pletion of the communication slot during which the data is
sent:

∀(τ j
i,k, τ

l
i,k) ∈ Pi,k, ∀pc ∈ C, ∀δx,k ∈ δ,

(τ j
i,k = prod(δx,k)) ∧ (τ l

i,k ∈ cons(δx,k))

=⇒ d(δx,k, pc) → j(τ l
i,k, dst(pc))

(7)

With backward data, the precedence constraint imposes
that the data consumed by τ j

i,k is always the one that was

produced by τ l
i,k−1. To enforce the respect of this constraint,

if the two sub-tasks are on the same cluster we reuse the con-
straint 6, otherwise we impose that τ j

i,k completes before the
beginning of the communication slice during which the data



produced by τ l
i,k is sent, so that τ j

i,k could never consume a
too fresh data:

∀(τ j
i,k, τ

l
i,k) ∈ Pi,k, ∀pc ∈ C, ∀δx,k ∈ δ,

(τ j
i,k ∈ cons(δx,k)) ∧ (τ l

i,k = prod(δx,k))

=⇒ j(τ j
i,k, dst(pc)) → d(δx,k, pc)

(8)

4.2.6 Data mapping constraints

Any data produced by a sub-job and consumed by any
other sub-job hosted on a different cluster is sent during a
communication slice after the completion of the producing
sub-job. To do so, we constrain the data produced by the
first sub-job of a sub-task to be present on a PC if at least
one consuming sub-task is present on the destination PN:

∀pc ∈ C, ∀δx ∈ δ,(
p(j(prod(δx,0), src(pc))) ∧

∑

τ
j
i,0

∈cons(δx,0)

p(j(τ j
i,0, dst(pc))) ≥ 1

)
= p(δx,0, pc)

(9)

Additionally, we impose to all sub-data to be placed on
the same PC:

∀pc ∈ C, ∀δx,k ∈ δ, p(d(δx,k, pc)) = p(d(δx,k+1, pc)) (10)

And finally, we enforce all the data sent to be aligned in
time with the activation of their PC assuming that T (pc)
and O(pc) respectively are the period and the offset of the
PC.

∀pc ∈ C, ∀δx,k ∈ δ, s(d(δx,k, pc)) mod T (pc) = O(pc) (11)

4.2.7 PC utilization constraints

The amount of data sent during each communication slice
must be restricted in order to be compatible with the hard-
ware capabilities and to be implementable on the real target.
Since our execution model and hypervisor provide a prop-

erty of interference avoidance on the NoC [19], we can derive
the maximum number of flit that can be sent during one
communication slice simply by assuming that the latency
of a NoC link is ∆L, that the latency of one router is ∆R

and that the maximum number of routers on a NoC route
is nmax

R . Indeed, based on the models we introduced in [18],
we can deduce that the maximum time required for Nflit to
completely cross a NoC route is (nmax

R +1)∆L +nmax
R ∆R +

Nflit. So, we can formulate the maximum number of flits
that can be transferred during one communication slice of
length Lc as:

NLc
flit = Lc − (nmax

R + 1)×∆L − nmax
R ×∆R

Secondly, in order to compute the number of flits required
to send a data δx, we define nδx

bytes and nflit
bytes respectively

as the number of bytes in δx and the number of bytes in one
NoC flit. So, the number of payload flits required to transfer

the data is nδx
flit =

⌈
nδx
bytes/n

flit
bytes

⌉
. Assuming npkt

flit to be

the maximum number of payload flits in one NoC packet,
we can derive the number of packets required to send δx as

nδx
pkt =

⌈
nδx
flit/n

pkt
flit

⌉
. Then, with nhead

flit the number of flits

in one NoC packet header and nbbl
cycles the number of empty

flits lost in the bubble separating two consecutive packets,
we can derive the total number of flits Nδx

flit required to send

δx as:

Nδx
flit = nδx

flit + nδx
pkt × nhead

flit + (nδx
pkt − 1)× nbbl

flit

Finally, in order to simplify the upper-bounding of the
amount of data that can be sent during one communica-
tion slice, we take the conservative assumption that all data
are placed into non-contiguous memory areas. So, assuming
that Ngap

flit is the number of empty flits lost in the gap in-
curred when the DMA jumps to a non contiguous memory
address, we can constrain the amount of data sent into a
single communication slice with constraint 12.

∀pc ∈ C,∑
δx∈δ ⊓(d(δx, pc), N

δx
flit +Ngap

flit) ≤ NLc
flit

(12)

Remark 2 (NoC-aware optimization of the memory
mapping). It would be preferable, in order to achieve the
best performance, to include the positioning of data with
respect to each other into the scheduling problem. Indeed,
an optimized memory mapping could enable to group several
data into bigger memory chunks that could be sent over the
NoC more efficiently. However, such an approach would
greatly increase the complexity of the scheduling problem.
We will investigate the possibilities of optimal, or at least
heuristic, NoC-aware optimization of the memory mapping
in future work.

In order to fulfill implementability constraints, we must
also take into account the fact that our DMA micro-code is
able of autonomously sending only a finite number of non-
contiguous memory areas denoted NDMA

bufs .

∀pc ∈ C,
∑

δx∈δ

⊓(d(δx, pc), 1) ≤ NDMA
bufs (13)

4.2.8 Determinism constraints

Two sub-jobs are allowed to exchange data without being
constrained by a precedence relation. In this case, if a data
is produced or received during the execution of a consuming
sub-job, the order of consumption of this data could be non-
deterministic and even change over time depending on the
real execution times of sub-jobs. In this paper, we consider
this non-determinism in the data production-consumption
ordering as not acceptable since the semantics of such an
execution is not clear and would break the repeatability of
executions (even with the same set of input values) that is
required for test purposes. We avoid this non-determinism
by forbidding the overlapping between the data interval and
its consuming sub-jobs.

∀δx,k ∈ δ,∀τ j
i,l ∈ cons(δx,k), ∀pc ∈ C

(prod(δx,k), τ
j
i,l) /∈ Pk ∧ (τ j

i,l, prod(δx,k)) /∈ Pk

⇒ ⊓(d(δx,k, pc), 1) + ⊓(j(τ j
i,l, dst(pc)), 1) ≤ 1

(14)

Similarly, if the producing and the consuming sub-jobs are
present on the same PN, they must not overlap:

∀δx,k ∈ δ, ∀τ j
i,l ∈ cons(δx,k), ∀pn ∈ P

(prod(δx,k), τ
j
i,l) /∈ Pk ∧ (τ j

i,l, prod(δx,k)) /∈ Pk

⇒ ⊓(j(prod(δx,k), pn), 1) + ⊓(j(τ j
i,l, pn), 1) ≤ 1

(15)

4.2.9 Managing IOs

In our approach, the communication with out-of-chip com-
ponents are handled as read and write requests into the ex-
ternal DDR-SDRAM. Indeed, this can simulate the recep-
tion and emission of AFDX frames for example.



Since, all transactions with the external memory are han-
dled by the compute clusters’ DMAs on theKalray mppaR©-
256, they can be taken into account exactly like the appli-
cation’s data. Thus, we assume all the IO buffers to be
represented as conditional intervals together with the data.
The only difference resides on the PCs on which IO intervals
can be placed which are the PCs linking the PNs and the
I/ONs. By doing so, all the constraints for data intervals on
PCs can be applied directly for managing the IO intervals.
In future work, we will integrate the fine grained modelling
of the DDR access time that we developed in [18] to the
formulation of constraint 12 when applied on PCs targeting
I/ONs.

5. EXPERIMENTAL RESULTS
As a case study, we used a large industrial application

from Airbus. This application has several tasks with har-
monic periods. The total number of sub-jobs and associated
data is close to 100,000 leading to a large optimization prob-
lem with several million decision variables and constraints.

5.1 Implementation choices

5.1.1 One PE per PN

In our experiments, we limited the number of cores in
each PN to 1 for the following reasons: 1) we limit the po-
tential interferences suffered by the computing core to the
local memory accesses generated by the DMA in order to
simplify and improve the computation of tight WCETs of
sub-tasks; 2) we focus on the mostly unexplored 3 problem
of inter-cluster parallelization requiring a tight management
of the NoC to exhibit the application’s speed-up opportuni-
ties through parallelization despite the non-negligible NoC-
related delays.

5.1.2 Prompt and symmetric PCs

In the budgets considered during the experiments, we al-
ways assume symmetric and prompt PCs connecting all the
PNs of the budget. By symmetric, we mean that each PN
has one outgoing PC to send data to any other PN and all
PCs have the same duration Lc and the same period Tc.
By prompt, we mean that the value of Lc typically is in the
order of magnitude of the Systick and that Tc equal to its
minimal value of (n− 1)× Lc with n the number of PNs.

The symmetry between the PCs is chosen to simplify the
expression of the budget and we argue that the promptness
of the PCs is well suited for the targeted case study. Indeed,
our industrial application basically has many data of small
size. By choosing fast PCs we hope to shorten the delays
involved by precedences with forward data. The evaluation
of fundamentally different budgets with asymmetric and/or
slow PCs will be done in future work.

5.2 Goal
Overall, the goal of these experiments is twofold. Firstly,

we aim at finding a valid budget with a minimal footprint
in order to both maximize the space left to other potential
co-running applications and increase the utilization ratio of

3The problem of intra-cluster parallelization has already
been addressed in the literature in [3] and the Capacites
project [2] and will be further explored in the Assume
project [1].

the reserved resources. And secondly, we want to explore the
possibilities of speeding-up the application when parallelized
over several clusters despite the non negligible latencies in-
volved by the NoC.

5.2.1 Narrowing the budget

To minimize the footprint of the budget, we compute a
minimal number of PNs denoted as nmin

pn using the rules of
Section 3.2. Based on this, we define and evaluate 3 poten-
tial configurations with |P| equal to nmin

pn + i for i ∈ [0; 2].
Secondly, we investigate the impact of the NoC config-

uration with 3 PC setups where the length of each PC is
equal to Lmin

c + j × Systick with j ∈ [0; 2] being the PC
configuration number.

5.2.2 Increasing speed-up

To evaluate the speed-up possibilities, we artificially re-
duce the temporal horizon (i.e. the hyperperiod) on which
tasks are scheduled. In this case, the maximum speedup
and minimal makespan is obtained when no valid budget
can be found for any further reduced temporal horizon. We
define a division parameter kdiv to compute schedules with

reduced periods defined as T̃i =
256−kdiv

256
×Ti and we evalu-

ate 256 instances of the application for 0 ≤ kdiv ≤ 255. All
other parameters, including the WCETs of sub-tasks are left
unchanged.

5.3 Results
Figure 5 shows the time (in seconds) required by the solver

to compute a schedule meeting all the constraints as a func-
tion of the kdiv parameter in 9 different budget configura-
tions. We can see in figure 5a that the maximum kdiv (repre-
senting the maximum processing load) is counter-intuitively
achieved with the budget configuration offering the smallest
number of PNs. However, we can also observe on all three
figures that the maximum kdiv are invariably obtained with
the shortest PCs. This seems to demonstrate that the bot-
tlenecking parameter to achieve the best performance with
this case study is the latency of data exchanged through the
NoC and not the processing power. The figure 6 depicts
an example of PC utilization from the experiment with the
maximum kdiv over a complete hyperperiod. The figure 6a
shows the number on non contiguous memory areas that
are sent during each PC activation and the figure 6b shows
the number of flits that are sent in each PC slot. Both fig-
ures are annotated with the maximum values imposed by
the constraints 13 and 12. We observe that the limitation
from constraint 13 (fig. 6a) seems to be a lot more bottle-
necking than the limitation from constraint 12. This means
that the limiting parameter in this case study is not the ac-
tual NoC bandwidth but rather the capabilities of DMAs
to send many small non-contiguous data. As mentioned in
Remark 2, a better optimized memory mapping could prob-
ably help send bigger chunks of data and thus balance the
curves of figure 6 to achieve the best performances.

6. RELATED WORK
In this paper, we presented a mapping procedure enabling

the efficient parallelization of one application into its budget.
However, since our execution model allows the concurrent
execution of several partitions, our mapping technique can
be re-used on several applications needing to be mapped into
their corresponding budgets. To the best of our knowledge,
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no other approaches enabling the execution of multiple par-
allelized applications on the Kalray mppaR©-256 have been
proposed in the literature yet.
Generic DAG scheduling. The theoretical problem of
scheduling real-time DAG parallel tasks has already been ad-
dressed in the literature for both mono-core [6] and more re-
cently multi-core [17,22,23] processors with (G)EDF. How-
ever, the classical DAG model used in these papers does not
include information on the tasks’ communication latencies
or on memory limitations and are thus not directly applica-
ble on the Kalray mppaR©-256.

Similarly, the static scheduling of DAG tasks on multipro-
cessor systems with a makepan-optimization objective has
been widely studied, mostly using heuristics based on list
algorithms [14]. Nevertheless, to the best of our knowledge,
there are no published algorithm able of managing simulta-
neously the precedence constraints together with communi-
cation latencies, memory limitations and other constraints
coming from an execution model.
Mapping on the Kalray MPPA. The problem of map-
ping real-time applications on the Kalray mppaR©-256 has
already been addressed several times in the literature [3, 8,
10, 12]. In [3], the authors propose a framework for map-
ping automotive applications inside a single compute clus-
ter accessing the external DDR-SDRAM but never address
the problem of multi-clustered applications. On the other
hand, the NoC is taken into account in [8] and [10]. How-
ever, in both cases, the guarantees on the NoC are provided
with a competition-aware approach based on Network Cal-
culus. Our approach relies on the competition-free property
of the NoC TDM schedule provided by our execution model.
We argue that such an approach enables shorter guaranteed
NoC latencies that are better suited to benefit from a multi-
cluster parallelization [21].
Mapping on other many-core processors or distributed

systems. Puffitsch et al. [20] proposed an execution model

and a framework to map dependent task sets on several
multi/many-core architectures. However, the message pass-
ing latencies are derived from a measured WCTT which oc-
curs in a situation of maximum contention while our ap-
proach relies on the contention-avoidance property provided
by our execution model. In [4], the authors proposed an effi-
cient heuristic to map Synchronous Dataflow models onto a
time-triggered architecture but the assumptions on the sys-
tem model differ from our approach. Indeed, no support
is offered to either account for multi-rate applications or
handle constraints coming from an execution model. In [7],
Craciunas et al. proposed both a SMT and a MIP formula-
tion of a co-scheduling problem handling simultaneously the
generation of cores and network schedules. Since the authors
assume a TTEthernet network and since other constraints
such as the memory limitations are taken into account, the
goal of the mapping algorithm is very close to ours. The
main differences reside in the system model as they assume
preemptive scheduling at the tt-tasks level while we assume
non preemptive scheduling at the sub-task level. Moreover,
all the tt-tasks are assumed to be pre-assigned to an end-
system while our approach includes the placement of sub-
tasks to cores together with the core and NoC scheduling.

7. CONCLUSION
In this paper, we have proposed an approach enabling

the automatic parallelization of large applications onto the
MPPA architecture. This approach meets the requirements
imposed by the execution model providing the property of
strong temporal isolation between co-running applications
thanks to spatial and temporal partitioning. We provided
a formulation of the mapping problem as a CSP using the
notion of time-intervals and we demonstrated the ability of
the approach to deal with large problems with an indus-
trial case study. Overall, the mapping procedure that we
described in this paper together with the real world imple-



mentation of our execution model that we presented in [19]
form a complete work-flow enabling an end-to-end integra-
tion of real-time applications on the Kalray mppaR©-256.

In the future, we will propose additional guidelines to help
the application designers in the process of defining their bud-
gets and we will investigate the optimization possibilities of
the memory mappings in order to improve the NoC utiliza-
tion and the overall performances.
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