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Abstract

We investigate the asymptotic behavior of the (relative) extrapolation error associated with

some estimators of extreme quantiles based on extreme-value theory. It is shown that the

extrapolation error can be interpreted as the remainder of a first order Taylor expansion.

Conditions are then provided such that this error tends to zero as the sample size increases.

Interestingly, in case of the so-called Exponential Tail estimator, these conditions lead to a

subdivision of Gumbel maximum domain of attraction into three subsets. In contrast, the

extrapolation error associated with Weissman estimator has a common behavior over the

whole Fréchet maximum domain of attraction. First order equivalents of the extrapolation

error are then derived showing that Weissman estimator may lead to smaller extrapolation

errors than the Exponential Tail estimator on some subsets of Gumbel maximum domain of

attraction. The accuracy of the equivalents is illustrated numerically and an application on

real data is also provided.

Keywords: Extrapolation error, Extreme quantiles, Extreme-value theory.

AMS 2000 subject classification: 62G32, 62G20.

1 Introduction

The starting point of this work is the study of the asymptotic behavior of the Exponential Tail

(ET) estimator, a nonparametric estimator of the extreme quantiles from an unknown distri-

bution. Theoretical developments can be found in [6] while numerical aspects are investigated

in [12]. Given a n-sample X1, . . . , Xn from a cumulative distribution function F with associ-

ated survival distribution function F̄ , an extreme quantile is a (1 − pn)th quantile q(pn) of F

essentially larger than the maximal observation, i.e. such that F̄ (q(pn)) = pn with npn → 0 as

n→∞. The estimation of extreme quantiles requires specific methods. Among them, the Peaks

Over Threshold (POT) method relies on an approximation of the distribution of excesses over a

given threshold [25]. More precisely, let un be a deterministic threshold such that F̄ (un) = αn
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or equivalently un = q(αn) with αn → 0 and nαn → ∞ as n → ∞. The excesses above un

are defined as Yi = Xi − un for all Xi > un. The survival distribution function of an excess is

given by F̄un(x) = F̄ (un + x)/F̄ (un). Pickands theorem [24] states that, under mild conditions,

F̄un can be approximated by a Generalized Pareto Distribution (GPD). As a consequence, the

extreme quantile q(pn) can be in turn approximated by the deterministic term

q̃GPD(pn;αn) = q(αn) +
σn
γn

[(
αn
pn

)γn
− 1

]
, (1)

where σn and γn are respectively the scale and shape parameters of the GPD distribution.

Then, the POT method consists in estimating these two unknown parameters. The ET method

corresponds to the important particular case where F belongs to Gumbel Maximum Domain of

Attraction, MDA(Gumbel). In such a situation, γn = 0 and the GPD distribution reduces to an

Exponential distribution with scale parameter σn. Thus, approximation (1) can be rewritten as

q̃ET(pn;αn) = q(αn) + σn log(αn/pn) (2)

and the associated estimator [6] is

q̂ET(pn;αn) = q̂(αn) + σ̂n log(αn/pn)

where q̂(αn) = Xn−kn+1,n with kn = bnαnc and

σ̂n =
1

kn

kn∑
i=1

Xn−i+1,n −Xn−kn+1,n.

Let us recall that X1,n ≤ . . . ≤ Xn,n denote the order statistics associated with X1, . . . , Xn. The

error (q(pn)− q̂ET(pn;αn)) can be expanded as a sum of two terms:

q(pn)− q̂ET(pn;αn) = (q̃ET(pn;αn)− q̂ET(pn;αn)) + (q(pn)− q̃ET(pn;αn)),

the first one being a random estimation error

q̃ET(pn;αn)− q̂ET(pn;αn) = q(αn)− q̂(αn) + (σn − σ̂n) log(αn/pn) (3)

and the second one being a deterministic extrapolation error

q(pn)− q̃ET(pn;αn) = q(pn)− q(αn)− σn log(αn/pn). (4)

The asymptotic behavior of the estimation error (3) is driven by the asymptotic distributions of

q̂(αn) and σ̂n established for instance in [13] or [8, Theorem 2.4.1 and Theorem 3.4.2].

In this paper, we focus on the asymptotic behavior of the extrapolation error (4). Indeed, in

view of (2), the ET method extrapolates in the distribution tail from q(αn) to q(pn) thanks to an

additive correction proportional to log(αn/pn). Our goal is thus to quantify to what extent this

extrapolation can be performed in a consistent way. More specifically, we provide conditions on

the pair (pn, αn) such that the relative extrapolation error

εET(pn;αn) := (q(pn)− q̃ET(pn;αn))/q(pn) (5)
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tends to zero as n → ∞. These conditions depend on the underlying distribution function

F and they lead to a subdivision of MDA(Gumbel) into three sub-domains depending on the

restrictions they impose on the extrapolation range. Related works include [7, 20] who ex-

hibited penultimate approximations for Fn together with convergence rates for distributions in

MDA(Gumbel). These results were extended to other maximum domains of attraction in [21, 22]

while penultimate approximations were established for the distribution of the excesses [27]. The

relative extrapolation error induced by the approximation of F̄un by the survival distribution

function of a GPD is studied in [4].

Here, similarly to [4], we focus on the approximation of quantiles rather than approximations

of distribution functions. Let us also highlight that these investigations are not limited to

the ET method. To illustrate this, let us introduce x(n) = log(1/αn), y(n) = log(1/pn) and

ϕ(·) = (F̄ )−1(1/ exp(·)). The extrapolation error (4) can thus be interpreted as the remainder

of a first order Taylor expansion:

q(pn)− q̃ET(pn;αn) = ϕ(y(n))− ϕ(x(n))− σn(y(n)− x(n)) where σn = ϕ′(x(n)). (6)

We shall show that Weissman estimator [26] dedicated to MDA(Fréchet) can also enter this

framework thanks to adapted definitions of functions x, y and ϕ. In this case, the necessary and

sufficient conditions on the extrapolation range are automatically fulfilled for most distributions

in MDA(Fréchet) which is a very different situation from MDA(Gumbel). It is also shown that,

in some sub-domains of MDA(Gumbel), Weissman approximation is better than (or equivalent

to) the ET one even though Weissman estimator was not initially designed for this framework.

The paper is organized as follows: The asymptotic behavior of the remainder associated with

the first order Taylor expansion (6) is investigated in Section 2. The applications to ET and

Weissman approximations are detailed in Section 3 and Section 4 respectively. Some numerical

illustrations are presented in Section 5 and an application to real data is proposed in Section 6.

Proofs are postponed to Section 7 and auxiliary results can be found in the Appendix.

2 Theoretical framework

The following functions are introduced.

(A1) x and y are two functions R+ → R+ such that 0 < x(t) ≤ y(t) for t large enough,

x(t)→∞ as t→∞ and 0 < lim inft→∞ x(t)/y(t) ≤ lim supt→∞ x(t)/y(t) ≤ 1.

(A2) ϕ is a twice differentiable, increasing function.

Motivated by (5) and (6), we introduce

∆(t) =
ϕ(y(t))− ϕ(x(t))− (y(t)− x(t))ϕ′(x(t))

ϕ(y(t))
, (7)

for all t > 0. The goal of this section is to establish necessary and sufficient conditions on δ(t) :=

(y(t)− x(t))/y(t) so that ∆(t)→ 0 as t→∞ in the setting 0 ≤ lim inf δ(t) ≤ lim sup δ(t) < 1 of
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assumption (A1). The following two functions are of the utmost importance in this study:

K1(s) =
sϕ′(s)

ϕ(s)
, K2(s) =

s2ϕ′′(s)

ϕ(s)
, s ≥ 0.

The study of ∆ relies on the assumption that K1 is regularly-varying at infinity with index

θ1 ≤ 1. This property is denoted for short by

(A3) K1 ∈ RVθ1 , θ1 ≤ 1

and means that K1 is ultimately positive such that K1(ts)/K1(s)→ tθ1 as s→∞ for all t > 0.

We refer to [5] for a general account on regular variation theory. This assumption is discussed

in Section 3 and Section 4 while applying this general framework to the particular cases of ET

and Weissman estimators. Finally, a monotonicity assumption is also considered:

(A4) K ′1 is ultimately monotone.

Under (A4), K1 is also ultimately monotone and therefore the limits of K1(s) and K2(s) when

s→∞ exist in R̄. The following notations are thus introduced:

lim
s→∞

K1(s) = `1 ∈ R̄+ and lim
s→∞

K2(s) = `2 ∈ R̄.

We are now in position to state our first main result:

Proposition 1 (Role of `1 for ∆→ 0) Suppose (A1)–(A4) hold.

(i) If `1 ∈ {0, 1} then `2 = 0 and ∆(t)→ 0 as t→∞.

(ii) If `1 ∈ (0,∞) \ {1} then `2 ∈ (0,∞) and ∆(t)→ 0 if and only if δ(t)→ 0 as t→∞.

(iii) If `1 =∞ then |`2| =∞ and ∆(t)→ 0 if and only if δ2(t)K2(y(t))→ 0 as t→∞.

Three cases appear. If `1 ∈ {0, 1} then ∆(t)→ 0 as t→∞ as soon as (A1) holds. If 0 < `1 <∞
and `1 6= 1 then a necessary and sufficient condition for ∆(t) → 0 is δ(t) → 0 as t → ∞. If

`1 =∞ then the necessary and sufficient condition for ∆(t)→ 0 is δ2(t)K2(y(t))→ 0 as t→∞.

Clearly, this condition implies δ(t)→ 0 since, in this situation, |`2| =∞.

Finally, letting c(a, b) =
∫ 1
0 (1−au)b−2udu, a ≥ 0, b ≥ 0, first order approximations of ∆ can

be provided in each situation.

Proposition 2 (First order approximations of ∆) Suppose (A1)–(A4) hold.

(i) Assume `1 ∈ {0, 1} (and thus `2 = 0). If `1 = 1, let us suppose that there exists θ2 ≤ 0

such that |K2| ∈ RVθ2.

(a) If δ(t)→ 0 as t→∞, then

∆(t) ∼ 1

2
δ2(t)K2(x(t)) as t→∞.
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(b) If δ(t)→ δ∞ ∈ (0, 1) as t→∞, then

∆(t) ∼ δ2∞(1− δ∞)−θ2c(δ∞, `1 + θ2)K2(x(t)) as t→∞.

(ii) Assume 0 < `1 <∞ and `1 6= 1.

(a) If δ(t)→ 0 as t→∞, then

∆(t) ∼ `1(`1 − 1)

2
δ2(t) as t→∞.

(b) If δ(t)→ δ∞ ∈ (0, 1) as t→∞, then

∆(t)→ δ2∞c(δ∞, `1)`1(`1 − 1) as t→∞.

(iii) Assume `1 =∞.

(a) If δ(t)K1(y(t))→ 0 as t→∞, then

∆(t) =
1

2
δ2(t)K2

1 (x(t)) ∼ 1

2
δ2(t)K2(x(t)) as t→∞.

(b) If δ(t)K1(y(t))→ a ∈ (0,∞] as t→∞, then

∆(t)→
∫ a

0
u exp(−u)du as t→∞.

In situation (i) where `1 ∈ {0, 1}, ∆ → 0 in both cases δ → 0 and δ → δ∞ 6= 0, and the

convergence is the fastest in the case δ → 0. In situation (ii) where 0 < `1 <∞ and `1 6= 1, ∆ is

asymptotically proportional to δ2. In situation (iii) where `1 =∞, ∆→ 0 is the only case where

δK1(y)→ 0 and ∆ is asymptotically proportional to (δK1(x))2 or equivalently to δ2K2(x).

Remark 1 When δ → 0, the first order approximations provided in (i), (ii) and (iii) can be

rewritten in an unified way as

∆(t) ∼ 1

2
δ2(t)K2(x(t)).

This opens the door to the estimation of ∆(t) via the estimation of K2(x(t)), see also (8) in the

ET framework and Section 6.

3 Application to the ET approximation

Recall that y(n) = log(1/pn), x(n) = log(1/αn) with 0 < pn ≤ αn < 1. Introduce

τn =
log(1/pn)

log(n)
and τ ′n =

log(1/αn)

log(n)

so that pn = n−τn , αn = n−τ
′
n , τ ′n ≤ τn and δ(n) = (y(n)−x(n))/y(n) = 1−τ ′n/τn. In the sequel,

F is assumed to be increasing and twice differentiable and the cumulative hazard rate function is

denoted by H(·) = − log F̄ (·). Following the ideas of Section 1, we let ϕ(·) = (F̄ )−1(1/ exp(·)) =
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H−1(·) so that εET(pn;αn) = ∆(n). In this context, the assumption K1 ∈ RVθ1 , θ1 ∈ R is a

sufficient condition for logH−1 is extended regularly varying, see [8, Section B.2] for details on

extended regular variation. This assumption has been introduced and discussed in [9, 10, 11].

The next result describes the tail behavior of F according to the sign of θ1. We refer to [10,

Theorem 1] for a characterization under the weaker assumption of extended regular variation.

Proposition 3 (Characterizations, ET framework) Suppose F is increasing, twice differ-

entiable and K ′1 is ultimately monotone. Let x∗ := sup{x : F (x) < 1} be the endpoint of F .

(i) If H ∈ RVβ, β > 0, then K1 ∈ RV0 and `1 = 1/β.

(ii) K1 ∈ RVθ1, θ1 > 0 (and thus `1 =∞) if and only if x∗ =∞ and H(exp ·) ∈ RV1/θ1 .

(iii) K1 ∈ RVθ1, θ1 < 0 (and thus `1 = 0) if and only if x∗ <∞ and H(x∗(1− 1/·)) ∈ RV−1/θ1.

In the case (i) where H is regularly varying with index β > 0, necessarily θ1 = 0 and F is referred

to as a Weibull tail-distribution, see for instance [3, 16, 19]. Such distributions encompass

Gaussian, Gamma, Exponential and strict Weibull distributions. In the case (ii) where H(exp ·)
is regularly varying, F is called a log-Weibull tail-distribution, see [2, 14, 18], the most popular

example being the lognormal distribution. The case (iii) corresponds to distributions with a

Weibull tail behavior in the neighborhood of a finite endpoint.

Besides, let us highlight that the domain of attraction associated with F depends on the

position of θ1 with respect to 1. Note that [10, Proposition 1] provides a similar classification

under the weaker assumption of extended regular variation.

Proposition 4 (Domains of attraction, ET framework) Suppose F is increasing, twice

differentiable and K ′1 is ultimately monotone.

(i) If K1 ∈ RVθ1, θ1 < 1, then F ∈MDA(Gumbel).

(ii) If F ∈ MDA(Fréchet) then K1 ∈ RV1.

(iii) If K1 ∈ RVθ1, θ1 > 1, then F does not belong to any domain of attraction.

These results justify the assumption θ1 ≤ 1 introduced in (A3): MDA(Gumbel) is associated

with θ1 < 1 while MDA(Fréchet) is associated with θ1 = 1. However, there is no perfect

one-to-one correspondence as illustrated by the following two examples:

• Consider the distribution defined by H−1a (x) = exp
∫ x
1 exp(− log(t)a)dt, x ≥ 1, a > 1.

From [8, Corollary 1.1.10], this distribution belongs to MDA(Gumbel) while K1(x) =

x exp(−(log x)a) is not regularly varying.

• Consider the distribution defined by H−1(x) = exp(x log x), x ≥ 1. From [8, Corol-

lary 1.2.10], this distribution does not belong to MDA(Fréchet) while K1(x) ∼ x log x is

regularly varying with index θ1 = 1.
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The situation θ1 > 1 which does not correspond to any domain of attraction is sometimes

referred to as super-heavy tails, see [2] or [5, Section 8.8] for further developments on this topic.

Applying Proposition 1 to the ET framework yields:

Theorem 1 (Necessary and sufficient conditions on (αn, pn) for εET(pn;αn)→ 0)

Suppose F is increasing, twice differentiable and (A3), (A4) hold. Let 0 < pn ≤ αn < 1 such

that lim sup δ(n) < 1 or equivalently lim sup log(1/pn)/ log(1/αn) <∞.

(i) If `1 ∈ {0, 1} then εET(pn;αn)→ 0 as n→∞.

(ii) If `1 ∈ (0,∞) \ {1} then εET(pn;αn)→ 0 if and only if δ(n)→ 0 as n→∞.

(iii) If `1 =∞ then εET(pn;αn)→ 0 if and only if δ2(n)K2(τn log n)→ 0 as n→∞.

If, moreover, nαn →∞ then δ(n)→ 0 implies lim sup τn ≤ 1 i.e. lim sup log(1/pn)/ log(n) ≤ 1.

First, if F ∈MDA(Fréchet) then θ1 = 1 in view of Proposition 4(ii) and thus `1 = ∞. From

Theorem 1(iii), it is possible to extrapolate even though the ET method has not be designed for

this situation: εET(pn;αn)→ 0 under the restriction on (αn, pn) that δ2(n)K2(τn log n)→ 0 as

n→∞. Second, it appears that, from the extrapolation error point of view, three sub-domains

of MDA(Gumbel) can be exhibited:

• MDA1(Gumbel) defined by `1 ∈ {0, 1} and where the relative extrapolation error tends

to zero as soon as lim sup log(1/pn)/ log(1/αn) < ∞. As illustrated by Proposition 3(iii),

the case `1 = 0 includes distributions with a finite endpoint. The case `1 = 1 encompasses

Weibull tail-distributions with shape parameter β = 1 (Proposition 3(i)), i.e close to the

Exponential distribution (e.g. the Gamma distribution) as well as the class E, see [7].

• MDA2(Gumbel) defined by `1 ∈ (0,∞) \ {1} and where the relative extrapolation error

tends to zero for extreme quantiles close to the maximal observation in the sense that

lim sup log(1/pn)/ log(n) ≤ 1 as n → ∞. Extreme orders such as pn = n−τ , τ > 1 are

thus not permitted. As illustrated by Proposition 3(i), this situation encompasses Weibull

tail-distributions with shape parameter β 6= 1 i.e far from the Exponential distribution

(the Gaussian distribution for instance).

• MDA3(Gumbel) defined by `1 = ∞ and where the relative extrapolation error tends to

zero under strong restrictions on the order pn of the extreme quantile: log(1/pn)/ log(n) =

1+o(|K2(τn log n)|1/2) as n→∞. As illustrated by Proposition 3(ii), this case corresponds

to log-Weibull tail-distributions (including the lognormal distribution).

We refer to Table 1 for examples of distributions in each sub-domain. Note that these three

sub-domains do not cover the whole MDA(Gumbel) since they require the existence of `1 and

thus K1. To conclude this part, one may obtain first order approximations of the relative

extrapolation error εET(pn;αn) thanks to Proposition 2. The results are collected in Theorem 2

below. Remark that the assumption |K2| is regularly varying is needed only in the case `1 = 1,

since, in other situations it is a consequence of (A3), see Lemma 3.
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Theorem 2 (First order approximations of εET(pn;αn)) Suppose the assumptions of The-

orem 1 hold.

(i) Assume F ∈ MDA1(Gumbel). If `1 = 1, assume there exists θ2 ≤ 0 such that |K2| ∈ RVθ2.

(a) If δ(n)→ 0 then εET(pn;αn) ∼ 1
2δ

2(n)K2(τ
′
n log n).

(b) If δ(n)→ δ∞ ∈ (0, 1) then εET(pn;αn) ∼ δ2∞(1− δ∞)−θ2c(δ∞, `1 + θ2)K2(τ
′
n log n).

(ii) Assume F ∈ MDA2(Gumbel)

(a) If δ(n)→ 0 then εET(pn;αn) ∼ `1(`1−1)
2 δ2(n).

(b) If δ(n)→ δ∞ ∈ (0, 1) then εET(pn;αn)→ δ2∞`1(`1 − 1)c(δ∞, `1).

(iii) Assume F ∈ MDA3(Gumbel)

(a) If δ(n)K1(log n)→ 0 then εET(pn;αn) ∼ 1
2δ

2(n)K2(τ
′
n log n).

(b) If δ(n)K1(log n)→ a ∈ (0,∞] then εET(pn;αn)→
∫ a
0 u exp(−u)du.

Before commenting the asymptotic behavior of εET(pn;αn), let us compare our results with [4].

Remark 2 The asymptotic equivalents provided by [4, Theorem 2] can be compared to our

results. However, let us point out that [4, Theorem 2] only holds in the case where δ(n) → 0

as n → ∞ and for the particular case of “Weibull type distributions” implying in particular

that `1 6= 0. It can be shown that the asymptotic equivalents provided by [4], Theorem 2.1,

Theorem 2.2 and Theorem 2.3 coincide with the ones of Theorem 2(ii)-(a), Theorem 2(i)-(a)

and Theorem 2(iii)-(a) respectively, up to a typo in the statement of [4, Theorem 2.2].

The only situation where δ(n) → δ∞ 6= 0 and εET(pn;αn) → 0 as n → ∞ occurs for F ∈
MDA1(Gumbel). In this particular case, it is possible to choose extreme orders such that

pn = n−τ , τ > 1, and the relative extrapolation error tends to zero at a logarithmic rate. As

expected, in the three situations (i,ii,iii)-(a) where δ(n)→ 0 and εET(pn;αn)→ 0 as n→∞, the

convergence is the fastest in MDA1(Gumbel) and the slowest in MDA3(Gumbel). Let us also

highlight that the rate of convergence is independent from the distribution in MDA2(Gumbel).

As already pointed out in Remark 1, in all three cases, the equivalent provided by Theo-

rem 2(i,ii,iii)-(a) can be rewritten in an unified way as

εET(pn;αn) ∼ 1

2
δ2(n)K2(τ

′
n log n) as n→∞, (8)

which can thus be estimated from real data, see Section 6. Before that, to illustrate these

results, let us focus on the distributions introduced in Table 1. Clearly, in all six cases, F ∈
MDA(Gumbel), K1 and |K2| are regularly varying so that the assumptions of Theorem 2 are

fulfilled. Let us consider the case where pn = 1/(n log n) and αn = (log n)/n leading to

τn = 1 +
log log n

log n
, τ ′n = 1− log logn

log n
and δ(n) ∼ 2

log logn

log n
as n→∞. (9)
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Let us stress that δ(n) → 0 and δ(n)K1(log n) → 0 so that Theorem 2(i,ii,iii)-(a) holds and

εET(pn;αn) → 0 as n → ∞ for all six distributions. The associated first order approximations

of εET(pn;αn) are provided in Table 2 (second column). In most cases the convergence of

the relative extrapolation error to zero is rather slow. The log-Weibull(β > 1) distribution

corresponds to the worst case, since arbitrary low rates of convergence can be obtained by

letting β
>→ 1. At the opposite, the Finite endpoint(β > 0) distribution is the most favorable

case, letting β
>→ 0 could lead to arbitrary high logarithmic rates of convergence.

As a conclusion, the extrapolation abilities of the ET method are poor. To overcome this

limitation, two main approaches are usually considered. The first one is to focus on a subset of

distributions, for instance Weibull tail-distributions in MDA2(Gumbel), where adapted estima-

tors can outperform the ET method, see [15] for an illustration. The second one is to rely on

new assumptions on the distribution tail, such as the log-generalized Weibull tail limit [1, 11].

4 Application to Weissman approximation

When F ∈ MDA(Fréchet), γn > 0 and the GPD approximation (1) can be simplified by letting

σn = γnq(αn), see [8, Theorem 1.2.5], leading to

q̃W(pn;αn) = q(αn)

(
αn
pn

)γn
, (10)

which is called Weissman approximation in the sequel. Weissman estimator [26] is then obtained

by replacing the intermediate quantile q(αn) and the tail index γn by appropriate estimators:

q̂W(pn;αn) = q̂(αn)

(
αn
pn

)γ̂n
.

The most common choices are q̂(αn) = Xn−kn+1,n, see Section 1, and Hill estimator [23]:

γ̂n =
1

kn

kn∑
i=1

logXn−i+1,n − logXn−kn+1,n.

Taking the logarithm of (10) yields

log q(pn)− log q̃W(pn;αn) = log q(pn)− log q(αn)− γn log(αn/pn)

and thus, similarly to the ET case (4), the extrapolation error can be interpreted as a first

order Taylor remainder. To this end, recall that y(n) = log(1/pn), x(n) = log(1/αn) with

0 < pn < αn < 1 and introduce ϕ(·) = log(F̄ )−1(1/ exp(·)) = logH−1(·) = logU(exp ·) where U

is the tail quantile function, so that

log q(pn)− log q̃W(pn;αn) = ϕ(y(n))− ϕ(x(n))− γn(y(n)− x(n)) where γn = ϕ′(x(n)).

The quantity of interest is

εW(pn;αn) := (q(pn)− q̃W(pn;αn))/q(pn) = 1− exp(−∆(n) log q(pn)), (11)

where ∆(n) is defined in (7). The next result provides a characterization of the tail behavior of

F according to the limit `1.
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Proposition 5 (Characterizations, Weissman framework) Suppose F is increasing, twice

differentiable and K ′1 is ultimately monotone.

(i) If expH ∈ RV1/γ, γ > 0, then K1 ∈ RV0 and `1 = 1.

(ii) If H ∈ RVβ, β > 0, then K1 ∈ RV0 and `1 = 0.

(iii) If H(exp(·)) ∈ RVβ, β > 0 then K1 ∈ RV0 and `1 = 1/β.

In the case (i) where expH is regularly varying with positive index, F is referred to as a Pareto

tail-distribution. Burr, Cauchy, Fréchet, Pareto, Student distributions are the most famous ones.

The cases (ii) and (iii) correspond respectively to Weibull and log-Weibull tail-distributions, see

Proposition 3(i,ii). Besides, let us highlight that, in the Weissman framework, the domain of

attraction associated with F depends on the position of θ1 with respect to 0:

Proposition 6 (Domains of attraction, Weissman framework) Suppose F is increasing,

twice differentiable and K ′1 is ultimately monotone.

(i) If F ∈ MDA(Fréchet) then K1 ∈ RV0 and `1 = 1.

(ii) If K1 ∈ RVθ1, θ1 > 0, then F does not belong to any domain of attraction.

(iii) If K1 ∈ RVθ1, θ1 < 0, then F is not a proper cumulative distribution function.

Let us first note that, in case (i), there is no perfect one-to-one correspondence betweenK1 ∈ RV0
and F ∈ MDA(Fréchet) as illustrated by the following example. Consider the distribution

defined by H−1(x) = exp(x log x), x ≥ 1. From [8, Corollary 1.2.10], this distribution does not

belong to MDA(Fréchet) while K1(x) = 1 + (x log x)−1 is verifying `1 = 1 and is thus regularly

varying with index θ1 = 0.

Second, in view of Proposition 5 and 6, the only case of interest is θ1 = 0. The asymptotic

behavior of εW(pn;αn) is thus investigated in the three situations where K1 ∈ RV0 described

by Proposition 5: Pareto / Weibull / log-Weibull tail-distributions. The next two results are

derived by applying Proposition 2 to the Weissman framework.

Theorem 3 (Necessary and sufficient conditions on (αn, pn) for εW(pn;αn)→ 0)

Suppose F is increasing, twice differentiable and (A4) holds. Let 0 < pn ≤ αn < 1 such that

lim sup δ(n) < 1 or equivalently lim sup log(1/pn)/ log(1/αn) <∞.

(i) Suppose F ∈MDA(Fréchet) with tail index γ > 0. Let L(t) := t−γU(t), η(t) := tL′(t)/L(t),

t > 0 and assume |η| ∈ RVρ with ρ < 0. If δ(n) → δ∞ ∈ [0, 1) then εW(pn;αn) → 0 as

n→∞.

(ii) Weibull tail-distributions. Suppose H ∈ RVβ, β > 0. Then, εW(pn;αn)→ 0 if and only if

δ(n)→ 0 as n→∞.

(iii) Log-Weibull tail-distributions. Suppose H(exp ·) ∈ RVβ, β > 0 and β 6= 1. Then,

εW(pn;αn)→ 0 if and only if δ2(n) log q(pn)→ 0 as n→∞.
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In the situation (i) where F ∈ MDA(Fréchet), the function L is slowly-varying [5] and η is called

the auxiliary function associated with L. The assumption |η| ∈ RVρ, ρ < 0, is recurrent in

extreme-value statistics to control the bias of estimators, ρ being known as the second-order

parameter, see e.g. [17]. This assumption holds for most heavy-tailed distributions such as

Burr, Cauchy, Fréchet, Pareto or Student distributions. Let us also remark that one can choose

extreme orders such that pn = n−τ , τ > 1 as in MDA1(Gumbel), see Theorem 2(i)-(b), and still

obtain εW(pn;αn) → 0 as n → ∞. Theorem 3(ii,iii) also shows that εW(pn;αn) asymptotically

vanishes provided δ(n) → 0 in case of Weibull distributions or provided δ2(n) log q(pn) → 0 in

case of log-Weibull tail-distributions even though they do not belong to MDA(Fréchet).

Theorem 4 (First order approximations of εW(pn;αn))

(i) Suppose the assumptions of Theorem 3(i) hold.

If δ(n)→ δ∞ ∈ [0, 1) then εW(pn;αn) ∼ − 1
1−δ∞ δ(n) log(1/αn)η(1/αn).

(ii) Suppose the assumptions of Theorem 3(ii) hold.

(a) If δ(n)→ 0 then εW(pn;αn) ∼ − 1
2β δ

2(n).

(b) If δ(n)→ δ∞ ∈ (0, 1) then εW(pn;αn)→ 1− exp
(

1
β

δ2∞
1−δ∞

)
.

(iii) Suppose the assumptions of Theorem 3(iii) hold.

(a) If δ2(n) log q(pn)→ 0 then εW(pn;αn) ∼ 1−β
2β2 δ

2(n) log q(pn).

(b) If δ2(n) log q(pn)→ a ∈ (0,∞) then εW(pn;αn)→ 1− exp
(
−1−β

2β2 a
)
.

If F ∈ MDA(Fréchet), case (i), one can choose extreme orders such that pn = n−τ , τ > 1

leading to polynomial extrapolation errors which is coherent with usual convergence rates, see

for instance [8, Section 3.2].

Remark 3 These conclusions can also be found in [4, Theorem 1] where it is established that

εW(pn;αn) ∼ c η(1/pn), for some explicit constant c ∈ R, under a second order assumption on

F ∈ MDA(Fréchet).

Up to our knowledge, situations (ii) and (iii) have not been considered so far. They can be

illustrated similarly to Section 3 by considering pn = 1/(n log n) and αn = (log n)/n. These

choices entail δ(n) → 0 and δ2(n) log q(pn) → 0, see (9), so that Theorem 4(ii,iii)-(a) can be

applied and εW(pn;αn) → 0 as n → ∞ for the last five distributions of Table 1. The first

order approximations of εW(pn;αn) are provided in Table 2 (third column). Surprisingly, in

MDA2(Gumbel) and MDA3(Gumbel), the convergence of εW(pn;αn) to zero is equivalent to,

or even faster than, the convergence of εET(pn;αn). In such cases, Weissman approximation is

better than the ET one even though Weissman estimator was not initially designed for these

frameworks. This confirms the conclusion drawn in Section 3: the extrapolation abilities of

the ET method are poor, even when compared to a priori ill-adapted competitors. Finally,

since εW(pn;αn) < 0 while εET(pn;αn) > 0 for log-Weibull tail-distributions, there is a hope to

build extrapolation methods achieving a compromise between ET and Weissman approximations

leading to smaller errors.
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5 Numerical illustrations

First, the quality of the first order approximations of the ET relative extrapolation error given

in Table 2 is assessed graphically. Recall that these results are obtained by applying The-

orem 2 to sequences (τn) and (τ ′n) given in (9) and distributions described in Table 1: Fi-

nite endpoint(β = 5), Gamma(a = 0.1), Weibull(β = 5), Gaussian, log-Weibull(β = 3) and

lognormal(σ = 0.5). The exact relative extrapolation error εET(pn;αn) as well as the corre-

sponding first order approximation provided by Theorem 2 are computed as functions of log n.

The results are displayed on Figures 1–3. It appears that, for all six distributions, the rela-

tive extrapolation error converges towards zero as predicted by Theorem 2, even though the

convergence can be very slow in MDA3(Gumbel), see Figure 3. In all cases, the asymptotic

sign of εET(pn;αn) is coherent with the first order equivalent given in Table 2 (second column):

Positive for Gamma(a < 1), log-Weibull(β > 1) and lognormal distributions, negative for Finite

endpoint(β > 0), Weibull(β > 1) and Gaussian distributions. Finally, the first order equivalent

provides a reasonable approximation of the error behavior in all situations.

Second, Figure 4 displays the relative extrapolation error εW(pn;αn) associated with Weiss-

man estimator together with its first order approximation in MDA(Fréchet) provided by The-

orem 4(i) as a function of log n. These results are obtained by choosing sequences pn = n−5/4

and αn = n−3/4 such that δ(n) = 2/5 and by considering a Burr distribution defined by

U(t) := (t−ρ−1)−1/ρ, t ≥ 1, ρ < 0, with tail index γ = 1 and auxiliary function η(t) = 1/(t−ρ−1).

Clearly, η is regularly varying with index ρ. In both cases ρ = −1/3 (top) and ρ = −1/4 (bot-

tom), it appears that the relative extrapolation error converges to zero even though δ(n) is

constant. This graphical assessment is in agreement with Theorem 4(i). As expected, both

errors are negative since the auxiliary function η is positive. It also appears that, the smaller

ρ, the faster the convergence is. This is in accordance with η ∈ RVρ. Finally, the first order

equivalent also provides a reasonable approximation of the error behavior in the Burr case.

6 Application to real data

The goal of this section is to illustrate how the first order approximations of the relative extrap-

olation error provided by Theorem 2 and Theorem 4 can be used to assess the extrapolation

range associated with ET or Weissman methods. Focusing on the ET framework and letting

αn := kn/n with kn →∞ and kn/n→ 0, Remark 3 or equivalently (8) yields

εET(pn;αn) ∼ 1

2
δ2(n)K2(log(n/kn))

when δ(n)→ 0. In view of (20) in the proof of Lemma 3, we thus introduce

ε̂ET(pn;αn) :=
1

2
δ2(n)K̂1(log(n/kn))

(
K̂1(log(n/kn)) + θ̂1 − 1

)
,

where θ̂1 and K̂1(log(n/kn)) are suitable estimators of θ1 and K1(log(n/kn) respectively. We

refer to [11, Equations (19,20)] and [1, Equations (7,8)] for examples.

12



The finite-sample behavior of ε̂ET(pn;αn) is first illustrated on simulated samples from the

Gamma(a = 0.1) distribution, where pn = 1/(n log n) and αn = 40 log(n)/n. Figure 5 displays

the behavior of ε̂ET(pn;αn) built on [11, Equations (19,20)] and averaged over N = 100 repli-

cations as a function of n ∈ {103, . . . , 106} compared to the true relative error εET(pn;αn) and

its first order approximation. It appears that ε̂ET(pn;αn) shows pretty good results in terms of

bias, even for moderate values of n. This justifies the use of ε̂ET(pn;αn) on the considered real

dataset, that we shall graphically demonstrate to be approximately Gamma distributed.

The dataset under consideration is a set of wind daily measures (in m/s) at Reims (France)

from 01/01/1981 to 04/30/2011. For seasonality reasons, only the months from October to

March are considered, resulting in n = 5, 371 measures. Figure 6 displays two estimators of

θ1 as functions of the number of exceedances kn: The proposal introduced in [1, Equation (7)]

together with its 95% asymptotic confidence interval provided in [1, Theorem 3] and the proposal

associated with [11, Equation (19)]. It appears that the two estimates are similar, and, for

kn ≥ 200, the value θ1 = 0 cannot be excluded since it belongs to all the 95% asymptotic

confidence intervals. Moreover, the quantile-quantile plot on Figure 7 (empirical quantiles vs

Gamma quantiles) displays a strong linear trend. These two graphical assessments point towards

the same conclusion: It makes sense to estimate the relative extrapolation error induced by the

ET method using ε̂ET(pn;αn). Letting k = 40 log n (which is in the stability range of θ̂1, see

Figure 6) yields |ε̂ET(pn;αn)| ≈ δ2(n)× 1% which is accordance with our previous conclusions:

The ET method is able to extrapolate far into the tails in case of Gamma-like distributions.

7 Proofs of main results

Proof of Proposition 1. (i) If `1 ∈ {0, 1} then Lemma 3(i,ii) shows that `2 = 0. Lemma 5(i)

concludes the proof.

(ii) If 0 < `1 < ∞ and `1 6= 1 then Lemma 3(iii) entails that `2 is finite and non zero.

Lemma 5(i,ii) concludes the proof.

(iii) If `1 =∞ then K2 is regularly varying from Lemma 3(iv) and thus K2(x(t)) and K2(y(t))

are of the same order as t→∞ under (A1). Lemma 5(i,ii) concludes the proof.

Proof of Proposition 2. (i) If `1 ∈ {0, 1} and δ(t) → δ∞ ∈ [0, 1) as t → ∞, then the result

is a consequence of Lemma 4(i) and of K2(y(t)) ∼ (1− δ∞)−θ2K2(x(t)) since |K2| ∈ RVθ2 .

(ii) Assume 0 < `1 <∞ and `1 6= 1. Lemma 3(iii) entails `2 = `1(`1− 1), and Lemma 4(i) yields

∆(t) ∼ δ2(t)
∫ 1

0
K2(y(t)(1− δ(t)u))(1− δ(t)u)`1−2udu.

When δ(t)→ δ∞ ∈ [0, 1) as t→∞, Lebesgue’s dominated convergence theorem entails∫ 1

0
K2(y(t)(1− δ(t)u))(1− δ(t)u)`1−2udu→ `1(`1 − 1)

∫ 1

0
(1− δ∞u)`1−2udu,

and the result is proved.

(iii) Assume `1 =∞. Then Lemma 3(iv) entails that K2(x) ∼ K2
1 (x) as x→∞. Consequently,
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(21) in the proof of Lemma 4 and Lebesgue’s dominated convergence theorem yield

∆(t) ∼ δ2(t)

∫ 1

0

K2
1 (y(t)(1− δ(t)u))

(1− δ(t)u)2
exp (K1(y(t))Lθ1(1− δ(t)u)(1 + o(1)))udu

∼ δ2(t)K2
1 (y(t))

∫ 1

0
(1− δ(t)u)2θ1−2 exp (K1(y(t))(Lθ1(1− δ(t)u)(1 + o(1)))udu,

in view of the regular variation property (A3). Two main situations are considered:

1. If δ(t)→ 0 as t→∞, then Lθ1(1− δ(t)u) ∼ −δ(t)u. Letting A(t) = δ(t)K1(y(t)), it follows

∆(t) ∼ A2(t)

∫ 1

0
exp(−A(t)u(1 + o(1)))udu ∼ Φ(A(t)(1 + o(1)))A2(t),

with Φ(·) = Ψ1(·; 1), see Lemma 1. Three sub-cases arise: (a) If A(t) → 0 as t → ∞, then

Φ(A(t))→ 1/2 in view of Lemma 1(i) and

∆(t) ∼ 1

2
δ2(t)K2

1 (y(t))∼ 1

2
δ2(t)K2

1 (x(t))

since K1 is regularly varying and x(t) ∼ y(t) when δ(t) → 0 as t → ∞. (b) If A(t) →
a ∈ (0,∞) then ∆(t) → a2Φ(a) =

∫ a
0 u exp(−u)du as t → ∞ in view of the continuity of

Φ, see Lemma 1(i). If A(t) → ∞, then Φ(A(t)) ∼ 1/A2(t) from Lemma 1(ii) and therefore

∆(t)→ 1 =
∫∞
0 u exp(−u)du as t→∞.

2. If δ(t)→ δ∞ ∈ (0, 1), then A(t)→∞ as t→∞. Two successive change of variables yield

∆(t) ∼ δ2∞K
2
1 (y(t))

∫ 1

0
(1− δ∞u)2θ1−2 exp (K1(y(t))Lθ1(1− δ(t)u)(1 + o(1)))udu

∼ K2
1 (y(t))

∫ 1

1−δ∞
(1− v)v2θ1−2 exp (K1(y(t))Lθ1(v)(1 + o(1))) dv

∼ K2
1 (y(t))

∫ 0

Lθ1 (1−δ∞)
(L−1θ1 (w))θ1−1(1− L−1θ1 (w)) exp (K1(y(t))w(1 + o(1))) dw.

Let us introduce ξ(w) = (L−1θ1 (w))θ1−1(1 − L−1θ1 (w)) for all w ∈ [Lθ1(1 − δ∞), 0]. Routine

calculations show that ξ(0) = 0 and ξ′(0) = −1. A second order Taylor expansion thus yields

ξ(w) = −w + w2ξ′′(ηw)/2 with ηw ∈ [w, 0] ⊂ [Lθ1(1− δ∞), 0]. Replacing, we get

∆(t) = −K2
1 (y(t))

∫ 0

Lθ1 (1−δ∞)
w exp (K1(y(t))w(1 + o(1))) dw(1 + o(1)) +R(t)

= K2
1 (y(t))Ψ1 (K1(y(t))(1 + o(1));−Lθ1(1− δ∞)) +R(t),

where Ψ1 is defined in Lemma 1 and

R(t) =
1

2
K2

1 (y(t))

∫ 0

Lθ1 (1−δ∞)
w2ξ′′(ηw) exp (K1(y(t))w(1 + o(1))) dw(1 + o(1)).

Remarking that |ξ′′| is bounded on compact sets, there exists M > 0 such that

|R(t)| ≤MK2
1 (y(t))Ψ2 (K1(y(t))(1 + o(1));−Lθ1(1− δ∞)) ,

where Ψ2 is defined in Lemma 1. As a consequence of Lemma 1(ii), R(t) = O(1/K1(y(t))) and

∆(t)→ 1 as t→∞.
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Proof of Proposition 3. Proposition 3(i) (resp. (ii), (iii)) is a straightforward consequence

of Lemma 2(i) (resp. (ii), (iii)), with ϕ = H−1 in the ET framework.

Proof of Proposition 4. (i) Assume K1 ∈ RVθ1 , θ1 < 1 and let U(·) = H−1(log ·) be the tail

quantile function. For all x > 0 and t > 0, consider

U ′(tx)

U ′(t)
=

1

x

(
H−1

)′
(log tx)

(H−1)′ (log t)
=

1

x

log t

log tx

H−1(log tx)

H−1(log t)

K1(log tx)

K1(log t)
∼ 1

x

H−1(log tx)

H−1(log t)

as t→∞ since K1 ∈ RVθ1 and thus K1(log ·)/ log(·) ∈ RV0. Besides,

H−1(log tx)

H−1(log t)
= exp

(∫ log tx

log t
(logH−1)′(u)du

)
= exp

(
log x

∫ 1

0

K1(log t+ v log x)

log t+ v log x
dv

)
,

and the regular variation property of K1 implies that

K1(log t+ v log x)

log t+ v log x
=
K1(log t)

log t
(1 + o(1))

as t→∞ uniformly locally on v ∈ [0, 1]. It follows that

H−1(log tx)

H−1(log t)
= exp

(
log x

K1(log t)

log t
(1 + o(1))

)
→ 1 (12)

as t → ∞ since K ∈ RVθ1 with θ1 < 1. As a conclusion, U ′(tx)/U ′(t) → 1/x as t → ∞ for all

x > 0 and thus U ′ ∈ RV−1. This implies that F ∈ MDA(Gumbel), see [8, Corollary 1.1.10].

(ii) Assume F ∈ MDA(Fréchet). From [8, Corollary 1.2.10], there exists γ > 0 such that

U ∈ RVγ . Since H−1(·) = U(exp ·), it follows that

K1(x) = x
exp(x)U ′(expx)

U(expx)
∼ γx

as x→∞ from the monotone density theorem [5, Theorem 1.7.2]. It is thus clear that K1 ∈ RV1.
(iii) Assume K1 ∈ RVθ1 , θ1 > 1. First, Proposition 3(ii) implies that x∗ = ∞ and thus F /∈
MDA(Weibull). Second, Proposition 4(ii) shows that F ∈ MDA(Fréchet) entails K1 ∈ RV1. It

is thus clear that F /∈ MDA(Fréchet). Finally, it remains to show that F /∈ MDA(Gumbel). To

this end, consider for all x > 0 and t→∞,

U(tx)

U(t)
=
H−1(log tx)

H−1(log t)
= exp

(
log x

K1(log t)

log t
(1 + o(1))

)
from (12). Recalling that θ1 > 1, it is then clear that K1(log t)/(log t) → ∞ as t → ∞ and

therefore U(tx)/U(t) → 0 if x < 1 while U(tx)/U(t) → ∞ if x > 1. Finally [8, Lemma 1.2.9]

shows that F /∈ MDA(Gumbel) since U(tx)/U(t) does not converge to 1 as t→∞.

Proof of Theorem 1. The proof of (i)–(iii) is a direct application of Proposition 1 since (A1)

is fulfilled under the assumptions 0 < pn ≤ αn < 1 and lim sup δ(n) < 1. If δ(n) → 0 and

nαn →∞ as n→∞ then, for all A > 0, (1− τ ′n) log(n) ≥ A for n large enough. Thus

τn ≤
τn
τ ′n

(
1− A

log n

)
=

1

1− δ(n)

(
1− A

log n

)
and consequently lim sup τn ≤ 1.

15



Proof of Theorem 2. The result is a consequence of Proposition 2.

Proof of Proposition 5. The proof of (i) (resp (ii), (iii)) relies on the application of Lemma 2

(iv) (resp (v), (i)) together with the fact that ϕ = logH−1 in the Weissman framework.

Proof of Proposition 6. (i) Assume F ∈ MDA(Fréchet). From [8, Corollary 1.2.1], U ∈ RVγ
for some γ > 0 which can be rewritten as expH ∈ RV1/γ . Proposition 5(i) proves the result.

(ii) Assume K1 ∈ RVθ1 , θ1 > 0 or equivalently that (logϕ)′ ∈ RVθ1−1. Then logϕ ∈ RVθ1
from [5, Theorem 1.5.11]. Consequently, log logU(exp(·)) ∈ RVθ1 and therefore U is not regularly

varying. Lemma 1.2.9 and Corollary 1.2.10 in [8] conclude the proof.

(iii) From (ii), θ1 < 0 implies that U is ultimately decreasing and the conclusion follows.

Proof of Theorem 3. (i) The proof relies on the application of Lemma 4(i) with `1 = 1:

∆(n) ∼ δ2(n)

∫ 1

0
K2 (y(n)(1− δ(n)u)) (1− δ(n)u)−1udu.

Besides, ϕ′′(t) = exp(t)η′(exp(t)) and consequently, as t→∞,

K2(t) ∼
1

γ
t exp(t)η′(exp(t)) ∼ ρ

γ
tη(exp(t)),

since |η| ∈ RVρ implies xη′(x)/η(x)→ ρ as x→∞. It follows, when δ(n)→ δ∞ ∈ [0, 1),

∆(n) ∼ y(n)δ2(n)
ρ

γ

∫ 1

0
uη
(
ey(n)(1−δ(n)u)

)
du.

Since |η| ∈ RVρ, from Potter’s bounds [8, Proposition B.1.9], there exists 0 < ε < |ρ| such that

(1− ε)ey(n)δ(n)(1−u)(ρ−ε) ≤
|η|
(
ey(n)(1−δ(n)u)

)
|η|
(
ex(n)

) ≤ (1 + ε)ey(n)δ(n)(1−u)(ρ+ε).

Recalling that η is ultimately monotone with a constant sign yields

∆(n) ∼ ρ

γ
η
(
ex(n)

)
Iny(n)δ2(n),

where I−n ≤ In ≤ I+n with

I−n = (1− ε)
∫ 1

0
uey(n)δ(n)(1−u)(ρ−ε)du and I+n = (1 + ε)

∫ 1

0
uey(n)δ(n)(1−u)(ρ+ε)du.

Straightforward calculations show that y(n)δ(n)x
∫ 1
0 ue

y(n)δ(n)(1−u)xdu→ −1, as n→∞ for all

x < 0, since y(n)δ(n)→∞ in view of αn/pn →∞ as n→∞.

Consequently, I−n ∼ (1− ε)/(y(n)δ(n)(ε− ρ)), I+n ∼ (1 + ε)/(y(n)δ(n)(−ε− ρ)) and thus

(1− ε)
(ε− ρ)

(1 + o(1)) ≤ Iny(n)δ(n) ≤ (1 + ε)

(−ε− ρ)
(1 + o(1)).
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Letting ε→ 0 entails Iny(n)δ(n)→ −1/ρ as n→∞ and thus

∆(n) ∼ −1

γ
δ(n)η

(
ex(n)

)
.

Remarking that log q(pn) = ϕ(y(n)) ∼ γy(n) ∼ γx(n)/(1− δ∞) and taking account of (11) yield

εW(pn;αn) = 1− exp

(
− γ

1− δ∞
∆(n)x(n)(1 + o(1))

)
, (13)

when δ(n)→ δ∞ ∈ [0, 1). Finally, since |η| ∈ RVρ, ρ < 0, ∆(n)x(n) ∼ −1

γ
δ(n)x(n)η(ex(n))→ 0

as n→∞ and the conclusion follows.

(ii) From (11), εW(pn;αn) → 0 if and only if ∆(n) log q(pn) → 0 as n → ∞. Besides, in view

of Proposition 5(ii), θ1 = 0 and `1 = 0 leading to K2(t) ∼ −K1(t) as t → ∞ and θ2 = 0 from

Lemma 3(i). Proposition 2(i) thus yields

∆(n) ∼ 1

2
δ2(n)K2(x(n)) if δ(n)→ 0 as n→∞, (14)

∆(n) ∼ δ2∞
1− δ∞

K2(x(n)) if δ(n)→ δ∞ ∈ (0, 1) as n→∞, (15)

since c(δ∞, 0) = 1/(1− δ∞). In view of the regular variations of H−1, the key quantity is

K1(x(n)) log q(pn) ∼ 1

β

ϕ(y(n))

ϕ(x(n))
∼ 1

β

logH−1(y(n))

logH−1(x(n))
∼ 1

β

log y(n)

log x(n)

=
1

β

(
1− log(1− δ(n))

log x(n)

)
→ 1

β
(16)

as n→∞ since lim sup δ(n) < 1. As a consequence, ∆(n) log q(pn)→ 0 if and only if δ(n)→ 0

and the result follows.

(iii) The proof is similar to (ii). From (11), εW(pn;αn) → 0 if and only if ∆(n) log q(pn) → 0

as n → ∞. Besides, in view of Proposition 5(iii), θ1 = 0 and `1 = 1/β 6= 1 leading to

K2(t)→ (1− β)/β2 as t→∞ and θ2 = 0 from Lemma 3(iii). Proposition 2(ii) thus shows that

δ(n)→ 0 is a necessary condition for ∆(n)→ 0 and, in that case, ∆(n) ∼ 1−β
2β2 δ

2(n).

Proof of Theorem 4. (i) Equation (13) in the proof of Theorem 3(i) states that

εW(pn;αn) = 1− exp

(
− γ

1− δ∞
∆(n)x(n)(1 + o(1))

)
.

with ∆(n)x(n) ∼ −1

γ
δ(n)x(n)η(ex(n))→ 0 as n→∞ and thus

εW(pn;αn) ∼ − 1

1− δ∞
x(n)δ(n)η(ex(n)) ∼ − 1

1− δ∞
log(1/αn)δ(n)η (1/αn) .

(ii) Equations (14)–(16) in the proof of Theorem 3(ii) yield

∆(n) log q(pn) ∼ − 1

2β
δ2(n) if δ(n)→ 0 as n→∞,

∆(n) log q(pn) → − 1

β

δ2∞
1− δ∞

if δ(n)→ δ∞ ∈ (0, 1) as n→∞.

The conclusion follows from (11).

(iii) The result is a direct consequence of (11) and ∆(n) ∼ 1−β
2β2 δ

2(n).
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Appendix: Auxiliary results

We begin with an elementary result whose proof is straightforward.

Lemma 1 For all (a, b, t) ∈ R3
+, let Ψa(t; b) =

∫ b
0 u

a exp(−tu)du.

(i) Ψa(·; b) is continuous, non-increasing on R+, Ψa(0; b) = ba+1

a+1 and Ψa(t; b)→ 0 as t→∞.

(ii) Ψ1(t, b) ∼ 1/t2 and Ψ2(t, b) ∼ 1/t3 as t→∞.

The next lemma establishes some links between the regular variation properties of ϕ and K1.

Lemma 2 Assume (A2) and (A4) hold.

(i) If ϕ ∈ RV1/β, β > 0 then K1 ∈ RV0 and `1 = 1/β.

(ii) Let β > 0. Then, logϕ ∈ RVβ if and only if K1 ∈ RVβ.

(iii) Let ϕ∞ := limt→∞ ϕ(t) ∈ (0,∞] and θ1 < 0. Then, ϕ∞ <∞ and 1−ϕ/ϕ∞ ∈ RVθ1 if and

only if K1 ∈ RVθ1.

(iv) If expϕ(log(·)) ∈ RVγ, γ > 0 then K1 ∈ RV0 and `1 = 1.

(v) If expϕ ∈ RV1/β, β > 0 then K1 ∈ RV0 and `1 = 0.

Proof. Recall that K1(x) = x(logϕ)′(x).

(i) If ϕ ∈ RV1/β, β > 0 then the monotone density theorem [5, Theorem 1.7.2] yields ϕ(x) ∼
βxϕ′(x) or equivalently K1(x)→ 1/β as x→∞. It follows that `1 = 1/β and K1 ∈ RV0.
(ii, =⇒) Let us assume that logϕ ∈ RVβ, β > 0. Then, the monotone density theorem implies

(logϕ)′ ∈ RVβ−1 i.e. K1 ∈ RVβ.

(ii, ⇐=) Conversely, assume K1 ∈ RVβ, β > 0. Then, necessarily `1 = ∞. From [5, Theo-

rem 1.5.8], we have for all x0 sufficiently large,

logϕ(x)− logϕ(x0) =

∫ x

x0

(logϕ(t))′dt =

∫ x

x0

K1(t)

t
dt ∼ 1

β
K1(x), (17)

as x→∞. It is thus clear that logϕ ∈ RVβ.

(iii, =⇒) Let us assume that ϕ∞ < ∞, ϕ(·) = ϕ∞(1 − h(·)) where h ∈ RVθ1 , θ1 < 0. Straight-

forward calculations and the monotone density theorem lead to

logϕ(x) = logϕ∞ + log (1− h(x)) and K1(x) =
xh′(x)

h(x)− 1
∼ −θ1h(x).

As a conclusion, K1 ∈ RVθ1 , θ1 < 0.

(iii, ⇐=) Conversely, assume K1 ∈ RVθ1 , θ1 < 0. Thus (logϕ)′ ∈ RVθ1−1 and [5, Theorem 1.5.8]

yields first, for all x sufficiently large,

logϕ∞ − logϕ(x) =

∫ ∞
x

(logϕ)′(t)dt <∞ (18)
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and thus ϕ∞ <∞. Second, one also has

K1(x)∫∞
x (logϕ)′(t)dt

→ −θ1 (19)

as x→∞. Combining the two above results (18), (19) yields K1(x)/(logϕ∞− logϕ(x))→ −θ1
as x→∞ and consequently

ϕ(x) = ϕ∞ exp

(
1

θ1
K1(x)(1 + o(1))

)
= ϕ∞

(
1 +

1

θ1
K1(x)(1 + o(1))

)
since K1(x)→ 0 as x→∞.

(iv) Assume expϕ(log(·)) ∈ RVγ , γ > 0. The monotone density theorem implies ϕ′(x) → γ as

x→∞. Thus K1(x)→ 1 as x→∞ and therefore K1 ∈ RV0.
(v) Assume expϕ ∈ RV1/β, β > 0. From the monotone density theorem, xϕ′(x) → 1/β as

x→∞. Thus ϕ ∈ RV0 implies K1 ∈ RV0 and ϕ(x)→∞ as x→∞ yields `1 = 0.

Lemma 3 shows that K1 ∈ RVθ1 implies |K2| ∈ RVθ2 when `1 6= 1. In the situation where

`1 = 1, the logistic distribution defined by H−1(x) = log(exp(x) − 1), x > 0 is a case where

−K2(x) ∼ x exp(−x) is not regularly varying as x→∞.

Lemma 3 Assume (A2)–(A4) hold.

(i) If `1 = 0 then θ1 ≤ 0, `2 = 0, −K2 ∈ RVθ1 and K2(x) ∼ (θ1 − 1)K1(x) as x→∞.

(ii) If `1 = 1 then θ1 = 0 and `2 = 0.

(iii) If 0 < `1 <∞ and `1 6= 1 then θ1 = 0, `2 = `1(`1 − 1) 6= 0 and |K2| ∈ RV0.

(iv) If `1 =∞ then θ1 ≥ 0, `2 =∞, K2 ∈ RV2θ1 and K2(x) ∼ K2
1 (x) as x→∞.

Proof. The proof relies on the following four facts: First, for all x ∈ R,

K2(x)

K2
1 (x)

= 1 +
1

K1(x)

(
xK ′1(x)

K1(x)
− 1

)
. (20)

Second, xK ′1(x)/K1(x)→ θ1 as x→∞ from the monotone density theorem [5, Theorem 1.7.2].

Third, it straightforwardly follows that `2 = `1(`1 + θ1− 1). Finally, for all positive function K,

K(x)→ c > 0 as x→∞ implies K ∈ RV0.

The next lemma establishes the links between δ and ∆ through K1 and K2.

Lemma 4 Suppose (A1)–(A4) hold.

(i) Suppose `1 <∞. Then, as t→∞,

∆(t) ∼ δ2(t)
∫ 1

0
K2(y(t)(1− δ(t)u))(1− δ(t)u)`1−2udu.

(ii) Suppose `1 6= 1. Then, for all t > 0:

|∆(t)| ≤ max(|K2(y(t))|, |K2(x(t))|) δ2(t)

(1− δ(t))2
Φ (δ(t)K1(y(t))(1 + o(1))) and

|∆(t)| ≥ min(|K2(y(t))|, |K2(x(t))|) δ2(t)Φ
(
δ(t)K1(y(t))(1− δ(t))θ1−1(1 + o(1))

)
,

where Φ(s) = Ψ1(s; 1) =
∫ 1
0 u exp(−us)du for all s ≥ 0.
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Proof. (i) Under (A2), a second order Taylor expansion with integral remainder yields

∆(t) =

∫ y(t)

x(t)

K2(s)

s2
ϕ(s)

ϕ(y(t))
(y(t)− s)ds

= δ2(t)

∫ 1

0

K2(y(t)(1− δ(t)u))

(1− δ(t)u)2
ϕ(y(t)(1− δ(t)u))

ϕ(y(t))
udu,

thanks to the change of variable u = (y(t)− s)/(y(t)− x(t)). Besides,

ϕ(y(t)(1− δ(t)u))

ϕ(y(t))
= exp

(∫ y(t)(1−δ(t)u)

y(t)
(logϕ(s))′ds

)
= exp

(
K1(y(t))

∫ 1−δ(t)u

1

K1(vy(t))

K1(y(t))

dv

v

)
.

Since 1− δ(t)u ∈ [1− δ(t), 1], (A3) yields K1(vy(t))/K1(y(t))→ vθ1 uniformly locally as t→∞
and consequently y(t)→∞. Condition (A1) then leads to

ϕ(y(t)(1− δ(t)u))

ϕ(y(t))
= exp (K1(y(t))Lθ1(1− δ(t)u)(1 + o(1))) ,

where Lθ1(x) =
∫ x
1 u

θ1−1du for all x ∈ R. It thus follows that

∆(t) = δ2(t)

∫ 1

0

K2(y(t)(1− δ(t)u))

(1− δ(t)u)2
exp (K1(y(t))Lθ1(1− δ(t)u)(1 + o(1)))udu. (21)

If `1 = 0 then

∆(t) ∼ δ2(t)
∫ 1

0
K2(y(t)(1− δ(t)u))(1− δ(t)u)−2udu.

In the situation where 0 < `1 <∞, Lemma 3(iii) entails θ1 = 0 and (21) yields

∆(t) ∼ δ2(t)
∫ 1

0
K2(y(t)(1− δ(t)u))(1− δ(t)u)`1−2+o(1)udu,

the first part of the result is proved.

(ii) From Lemma 3, when `1 6= 1 the sign of K2 is ultimately constant so that (21) entails

|∆(t)| = δ2(t)

∫ 1

0

|K2(y(t)(1− δ(t)u))|
(1− δ(t)u)2

exp (K1(y(t))Lθ1(1− δ(t)u)(1 + o(1)))udu.

Let us remark that, for all u ∈ [0, 1] and θ1 ≤ 1, one has 1− δ(t) ≤ 1− δ(t)u ≤ 1 and

−(1− δ(t))θ1−1δ(t)u ≤ Lθ1(1− δ(t)u) ≤ −δ(t)u.

It is thus clear that

|∆(t)| ≤ δ2(t)

(1− δ(t))2

∫ 1

0
|K2(y(t)(1− δ(t)u))| exp (−δ(t)K1(y(t))u(1 + o(1)))udu,

|∆(t)| ≥ δ2(t)

∫ 1

0
|K2(y(t)(1− δ(t)u))| exp

(
−δ(t)K1(y(t))(1− δ(t))θ1−1u(1 + o(1))

)
udu.

Besides, Lemma 3 entails that |K2| is regularly varying when `1 6= 1. Therefore, |K2| is ultimately

monotone and it follows that, for t large enough, m(t) ≤ |K2(y(t)(1 − δ(t)u))| ≤ M(t), where

m(t) := min(|K2(y(t))|, |K2(x(t))|) and M(t) := max(|K2(y(t))|, |K2(x(t))|), leading to

|∆(t)| ≤ M(t)
δ2(t)

(1− δ(t))2

∫ 1

0
u exp (−δ(t)K1(yn)u(1 + o(1))) du and

|∆(t)| ≥ m(t)δ2(t)

∫ 1

0
u exp

(
−δ(t)K1(y(t))(1− δ(t))θ1−1u(1 + o(1))

)
du.
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Introducing for all s ≥ 0, Φ(s) =
∫ 1
0 u exp(−us)du, the above bounds can be rewritten as

|∆(t)| ≤ M(t)
δ2(t)

(1− δ(t))2
Φ (δ(t)K1(y(t))(1 + o(1))) and

|∆(t)| ≥ m(t)δ2(t)Φ
(
δ(t)K1(y(t))(1− δ(t))θ1−1(1 + o(1))

)
,

which concludes the proof.

As a consequence of the above result, a sufficient condition as well as a necessary condition can

be established under (A1) such that ∆(t)→ 0 as t→∞.

Lemma 5 Suppose (A1)–(A4) hold.

(i) If δ2(t) max(|K2(y(t))|, |K2(x(t))|)→ 0 then ∆(t)→ 0 as t→∞.

(ii) If ∆(t)→ 0 then δ2(t) min(|K2(y(t))|, |K2(x(t))|)→ 0 as t→∞.

Proof. Let us first note that when `1 = 1 then `2 = 0 from Lemma 3(ii). It is thus clear in

view of Lemma 4(i) that ∆(t)→ 0 as t→∞ under (A1). In the following, we thus focus on the

case where `1 6= 1. Lemma 3 entails that |K2| is regularly varying since `1 6= 1. Therefore, |K2|
is ultimately monotone. Let us focus on the situation where |K2| is ultimately non decreasing

and introduce A(t) = δ(t)K1(y(t)) for all t > 0.

(i) Assume that δ2(t)|K2(y(t))| → 0 as t→∞. From Lemma 1(i), 0 ≤ Φ(s) ≤ 1/2 for all s ≥ 0

and thus Lemma 4(ii) entails

|∆(t)| ≤ δ2(t)|K2(y(t))|
2(1− δ(t))2

→ 0 (22)

as t→∞ in view of (A1).

(ii) From Lemma 4(ii), one has

|∆(t)| ≥ |K2(x(t))|δ2(t)Φ
(
A(t)(1− δ(t))θ1−1(1 + o(1))

)
≥ |K2(x(t))|δ2(t)Φ (cA(t))

for t large enough and some c > 0 since Φ is non-increasing, see Lemma 1(i). For all s ≥ 0,

let ψ(s) =
∫ s
0 x exp(−x)dx = s2Φ(s). Consider s0 ≥ c(3 − 2θ1) with θ1 ≤ 1 and remark that

Φ(s) ≥ Φ(s0) for all 0 ≤ s ≤ s0 and ψ(s) ≥ ψ(s0) for all s ≥ s0. As a consequence, for all s > 0,

Φ(s) ≥ ψ(s0)

s20
I{s ≤ s0}+

ψ(s0)

s2
I{s ≥ s0},

and thus

|∆(t)| ≥ ψ(s0)

s20
|K2(x(t))|δ2(t)I{A(t) ≤ s0/c}+

ψ(s0)

c2
|K2(x(t))|
K2

1 (y(t))
I{A(t) ≥ s0/c} (23)

≥ ψ(s0)

s20
|K2(x(t))|δ2(t)I{A(t) ≤ s0/c}+

ψ(s0)

c2
|K2(x(t))|
K2

1 (x(t))

K2
1 (x(t))

K2
1 (y(t))

I{A(t) ≥ s0/c}.

Since K1 ∈ RVθ1 , K1(x(t))/K1(y(t)) ∼ (1− δ(t))θ1 ≥ c′ > 0 as t→∞ in view of (A1) and

|∆(t)| ≥ ψ(s0)

s20
|K2(x(t))|δ2(t)I{A(t) ≤ s0/c}+ ψ(s0)

(
c′

c

)2 |K2(x(t))|
K2

1 (x(t))
I{A(t) ≥ s0/c}.
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Remarking that (20) in the proof of Lemma 3 implies that, for t large enough,

K2(x(t))

K2
1 (x(t))

= 1 +
1

K1(x(t))

(
x(t)K ′1(x(t))

K1(x(t))
− 1

)
= 1 +

δ(t)

A(t)
(θ1 − 1 + o(1))

which yields when A(t) ≥ s0/c,∣∣∣∣K2(x(t))

K2
1 (x(t))

− 1

∣∣∣∣ ≤ cδ(t)

s0
|θ1 − 1 + o(1)| ≤ c

s0
(3/2− θ1) ≤

1

2
.

It thus follows that
|K2(x(t))|
K2

1 (x(t))
I{A(t) ≥ s0/c} ≥

1

2
I{A(t) ≥ s0/c}

and therefore,

|∆(t)| ≥ ψ(s0)

s20
|K2(x(t))|δ2(t)I{A(t) ≤ s0/c}+

ψ(s0)

2

(
c′

c

)2

I{A(t) ≥ s0/c}.

As a conclusion, |∆(t)| → 0 implies |K2(x(t))|δ2(t)I{A(t) ≤ s0/c} → 0 and I{A(t) ≥ s0/c} → 0

as t→∞. Consequently, A(t) ≤ s0/c eventually and δ2(t)K2(x(t))→ 0 as t→∞.

Let us now consider the situation where |K2| is ultimately non increasing.

(i) The proof is similar, the upper bound (22) is replaced by

|∆(t)| ≤ δ2(t)|K2(x(t))|
2(1− δ(t))2

.

(ii) The lower bound (23) is replaced by

|∆(t)| ≥ ψ(s0)

s20
|K2(y(t))|δ2(t)I{A(t) ≤ s0/c}+

ψ(s0)

c2
|K2(y(t))|
K2

1 (y(t))
I{A(t) ≥ s0/c}

and the end of the proof is similar.
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F̄ (x) θ1 θ2 K1(x) K2(x) `1

MDA1(Gumbel)

Finite endpoint exp
(
−(− log x)−β

)
−1/β −1/β

1

β
x−1/β −1 + β

β2
x−1/β(1 + o(1)) 0

(β > 0) x ∈ (0, 1)

Gamma
1

Γ(a)

∫ ∞
x

ta−1e−tdt 0 −1 1 + o(1)
1− a
x

(1 + o(1)) 1

(a > 0) x ≥ 0

MDA2(Gumbel)

Weibull exp(−xβ) 0 0
1

β

1− β
β2

1/β

(β 6= 1) x ≥ 0

Gaussian
1√
2π

∫ ∞
x

exp

(
− t

2

2

)
dt 0 0

1

2
+ o(1) −1

4
+ o(1) 1/2

MDA3(Gumbel)

Log-Weibull exp(−(log x)β) 1/β 2/β
1

β
x1/β

1

β2
x2/β(1 + o(1)) +∞

(β > 1) x ≥ 1

Lognormal
1

σ
√

2π

∫ ∞
x

1

t
exp

(
−(log t)2

2σ2

)
dt 1/2 1

σ√
2
x1/2(1 + o(1))

σ2

2
x(1 + o(1)) +∞

(σ > 0) x ≥ 0

Table 1: Examples of distributions in MDA(Gumbel), ET framework: ϕ = H−1.
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Distribution εET(pn;αn) εW(pn;αn)

MDA1(Gumbel)

Finite endpoint(β > 0) −2(1 + β)

β2
(log log n)2

(log n)2+1/β

Gamma(a > 0) 2(1− a)
(log log n)2

(log n)3
−2

(log log n)2

(log n)2

MDA2(Gumbel)

Weibull(β 6= 1)
2(1− β)

β2
(log log n)2

(log n)2
− 2

β

(log log n)2

(log n)2

Gaussian −1

2

(log log n)2

(log n)2
−(log log n)2

(log n)2

MDA3(Gumbel)

Log-Weibull(β > 1)
2

β2
(log log n)2

(log n)2−2/β
2(1− β)

β2
(log log n)2

(log n)2−1/β

Lognormal σ2
(log log n)2

log n
−
√

2σ2

2

(log log n)2

(log n)3/2

Table 2: First order approximations of εET(pn;αn) and εW(pn;αn) with pn = 1/(n log n) and

αn = (log n)/n associated with the distributions described in Table 1.
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Figure 1: Extrapolation in MDA1(Gumbel). Vertically: Relative extrapolation error εET(pn;αn)

(solid line) and its first order approximation 1
2δ

2(n)K2(log n) (dashed line) provided by The-

orem 2(i)-(a). Horizontally: log n. Top: Finite endpoint(β = 5) distribution, bottom:

Gamma(a = 0.1) distribution.
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Figure 2: Extrapolation in MDA2(Gumbel). Vertically: Relative extrapolation error εET(pn;αn)

(solid line) and its first order approximation `1(`1−1)
2 δ2(n) (dashed line) provided by Theo-

rem 2(ii)-(a). Horizontally: log n. Top: Weibull(β = 5) distribution, bottom: Gaussian distri-

bution.
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Figure 3: Extrapolation in MDA3(Gumbel). Vertically: Relative extrapolation error εET(pn;αn)

(solid line) and its first order approximation 1
2δ

2(n)K2(log n) (dashed line) provided by

Theorem 2(iii)-(a). Horizontally: logn. Top: log-Weibull(β = 3) distribution, bottom:

lognormal(σ = 0.5) distribution.
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Figure 4: Extrapolation in MDA(Fréchet). Vertically: Relative extrapolation error εW(pn;αn)

(solid line) and its first order approximation − 1

1− δ∞
δ(n) log(1/αn)η(1/αn) (dashed line) pro-

vided by Theorem 4(i). Horizontally: logn. Top: Burr(ρ = −1/3) distribution (see Section 5),

bottom: Burr(ρ = −1/4) distribution.
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Figure 5: Relative extrapolation error for a Gamma(a = 0.1) distribution. Vertically:

εET(pn;αn) (solid line), first order approximation 1
2δ

2(n)K2(log(n/kn)) (dashed line) and es-

timation ε̂ET(pn;αn) built on [11, Equations (19,20)] and averaged over N = 100 replications

(dotted line). Horizontally: log n.
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Figure 6: Estimations of θ1 as functions of kn on the wind speeds dataset. Full line: θ̂1 defined

in [1, Equation (7)] together with its 95% asymptotic confidence interval. Dashed line: θ̂1

proposed by [11, Equation (19)]. Vertical dotted line: kn = 40 log n ≈ 344. Horizontal dotted

line : θ1 = 0.
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Figure 7: Quantile-quantile plot. ◦: empirical quantiles of the wind speeds dataset (vertically)

vs quantiles from a Gamma distribution (horizontally). Continuous line: diagonal line.
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