M. Bagnol, A. Doumane, and A. Saurin, On the Dependencies of Logical Rules, 2015.
DOI : 10.1007/978-3-662-46678-0_28

URL : https://hal.archives-ouvertes.fr/hal-01110340

J. Bang-jensen and G. Gutin, Digraphs. Theory, algorithms and applications, 2009.
URL : https://hal.archives-ouvertes.fr/lirmm-01348862

A. M. David and . Barrington, Quasipolynomial size circuit classes, Structure in Complexity Theory Conference, 1992.

G. Bellin and J. Van-de-wiele, Subnets of proof-nets in MLL ?, Advances in Linear Logic, 1995.

G. Bellin, Subnets of proof-nets in multiplicative linear logic with MIX, Mathematical Structures in Computer Science, vol.7, issue.6, pp.663-669, 1997.
DOI : 10.1017/S0960129597002326

K. Ashok, L. Chandra, U. Stockmeyer, and . Vishkin, Constant depth reducibility, SIAM Journal on Computing, vol.13, issue.2, pp.423-439, 1984.

V. Danos, La Logique Linéaire appliquée à l'étude de divers processus de normalisation (principalement du Lambda-calcul), 1990.

V. Danos and L. Regnier, The structure of multiplicatives, Archive for Mathematical Logic, vol.28, issue.3, pp.181-203, 1989.
DOI : 10.1007/BF01622878

J. Edmonds, Paths, trees, and flowers, Journal canadien de math??matiques, vol.17, issue.0, pp.449-467, 1965.
DOI : 10.4153/CJM-1965-045-4

A. Fleury and C. Retoré, The mix rule, Mathematical Structures in Computer Science, vol.28, issue.02, pp.273-285, 1994.
DOI : 10.1016/0304-3975(93)90181-R

N. Harold, H. Gabow, R. E. Kaplan, and . Tarjan, Unique maximum matching algorithms, Journal of Algorithms, vol.40, issue.2, pp.159-183, 2001.

N. Harold, R. E. Gabow, and . Tarjan, A linear-time algorithm for a special case of disjoint set union, Journal of Computer and System Sciences, vol.30, issue.2, pp.209-221, 1985.

J. Girard, Linear logic, Theoretical Computer Science, vol.50, issue.1, pp.1-101, 1987.
DOI : 10.1016/0304-3975(87)90045-4

URL : https://hal.archives-ouvertes.fr/inria-00075966

L. Gourvès, A. Lyra, C. A. Martinhon, and J. Monnot, Complexity of trails, paths and circuits in arc-colored digraphs, Discrete Applied Mathematics, vol.161, issue.6, pp.819-828, 2013.
DOI : 10.1016/j.dam.2012.10.025

S. Guerrini, A linear algorithm for MLL proof net correctness and sequentialization, Theoretical Computer Science, vol.412, issue.20, pp.1958-1978, 2011.
DOI : 10.1016/j.tcs.2010.12.021

URL : https://doi.org/10.1016/j.tcs.2010.12.021

T. M. Hoang, M. Mahajan, and T. Thierauf, On the Bipartite Unique Perfect Matching Problem, 2006.
DOI : 10.1007/11786986_40

URL : http://www.imsc.res.in/~meena/papers/upm-icalp06.pdf

J. Holm, E. Rotenberg, and M. Thorup, Dynamic bridge-finding in O(log 2 n) amortized time, SODA, 2018.
DOI : 10.1137/1.9781611975031.3

URL : http://orbit.dtu.dk/files/142465959/1707.06311.pdf

P. Jacobé, D. Naurois, and V. Mogbil, Correctness of linear logic proof structures is <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>N</mml:mi><mml:mi>L</mml:mi></mml:math>-complete, Theoretical Computer Science, vol.412, issue.20, pp.1941-1957, 2011.
DOI : 10.1016/j.tcs.2010.12.020

A. Kotzig, Z teórie kone?ných grafov s lineárnym faktorom. II. Matematicko-fyzikálny ?asopis, pp.136-159, 1959.

D. Kozen, U. V. Vazirani, and V. V. Vazirani, NC algorithms for comparability graphs, interval graphs, and testing for unique perfect matching, 1985.
DOI : 10.1007/3-540-16042-6_28

L. Lovász, On determinants, matchings, and random algorithms, FCT, 1979.

K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, Matching is as easy as matrix inversion, Combinatorica, vol.58, issue.1, pp.105-113, 1987.
DOI : 10.6028/jres.071B.033

URL : http://http.cs.berkeley.edu/~vazirani/pubs/matching.pdf

A. S. Murawski and C. Ong, Fast verification of MLL proof nets via IMLL, ACM Transactions on Computational Logic, vol.7, issue.3, pp.473-498, 2006.
DOI : 10.1145/1149114.1149116

M. Pagani, Visible acyclic differential nets, Part I: Semantics. Annals of Pure and Applied Logic, pp.238-265, 2012.
DOI : 10.1016/j.apal.2011.09.001

URL : https://hal.archives-ouvertes.fr/hal-00698973

O. Michael, V. V. Rabin, and . Vazirani, Maximum matchings in general graphs through randomization, Journal of Algorithms, vol.10, issue.4, pp.557-567, 1989.

C. Retoré, Handsome proof-nets: R&B-graphs, perfect matchings and series-parallel graphs, Research Report, 1999.

C. Retoré, Handsome proof-nets: perfect matchings and cographs, Theoretical Computer Science, vol.294, issue.3, pp.473-488, 2003.
DOI : 10.1016/S0304-3975(01)00175-X

O. Svensson and J. Tarnawski, The Matching Problem in General Graphs Is in Quasi-NC, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), 2017.
DOI : 10.1109/FOCS.2017.70

S. Szeider, Finding paths in graphs avoiding forbidden transitions, Discrete Applied Mathematics, vol.126, issue.2-3, pp.261-273, 2003.
DOI : 10.1016/S0166-218X(02)00251-2

URL : https://doi.org/10.1016/s0166-218x(02)00251-2

S. Szeider, On theorems equivalent with Kotzig's result on graphs with unique 1-factors, Ars Combinatoria, p.73, 2004.

. Robert-endre-tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics, 1983.