J. D. Harper and P. Lansbury, MODELS OF AMYLOID SEEDING IN ALZHEIMER'S DISEASE AND SCRAPIE:Mechanistic Truths and Physiological Consequences of the Time-Dependent Solubility of Amyloid Proteins, Annual Review of Biochemistry, vol.66, issue.1, pp.385-407, 1997.
DOI : 10.1146/annurev.biochem.66.1.385

D. B. Teplow, Structural and kinetic features of amyloid ??-protein fibrillogenesis, Amyloid, vol.268, issue.2, pp.121-142, 1998.
DOI : 10.1126/science.7604268

D. J. Selkoe, Alzheimer's Disease: Genes, Proteins, and Therapy, Physiological Reviews, vol.77, issue.2, pp.741-766, 2001.
DOI : 10.1016/0024-3205(96)00310-4

D. J. Selkoe, Alzheimer Disease: Mechanistic Understanding Predicts Novel Therapies, Annals of Internal Medicine, vol.140, issue.8, pp.627-638, 2004.
DOI : 10.7326/0003-4819-140-8-200404200-00047

G. M. Shankar and D. M. Walsh, Alzheimer's disease: synaptic dysfunction and A beta, Mol. Neurodegener, vol.4, issue.48, pp.10-1186, 2009.

P. T. Lansbury and H. A. Lashuel, A century-old debate on protein aggregation and neurodegeneration enters the clinic, Nature, vol.10, issue.7113, pp.774-779, 2006.
DOI : 10.1016/S0962-8924(00)01852-3

C. Haass and D. J. Selkoe, Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid ??-peptide, Nature Reviews Molecular Cell Biology, vol.26, issue.2, pp.101-112, 2007.
DOI : 10.1212/01.WNL.0000073623.84147.A8

A. S. Detoma, S. Salamekh, A. Ramamoorthy, and M. H. Lim, Misfolded proteins in Alzheimer's disease and type II diabetes, Chem. Soc. Rev., vol.18, issue.2, pp.608-621, 2012.
DOI : 10.1016/j.bmc.2010.02.045

. I. Hamley, The Amyloid Beta Peptide: A Chemist???s Perspective. Role in Alzheimer???s and Fibrillization, Chemical Reviews, vol.112, issue.10, pp.5147-5192, 2012.
DOI : 10.1021/cr3000994

M. Goedert and M. G. Spillantini, A Century of Alzheimer's Disease, Science, vol.314, issue.5800, pp.777-781, 2006.
DOI : 10.1126/science.1132814

M. Bucciantini, Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases, Nature, vol.309, issue.6880, pp.507-511, 2002.
DOI : 10.1016/S0076-6879(99)09050-3

C. G. Glabe, Common mechanisms of amyloid oligomer pathogenesis in degenerative disease, Neurobiology of Aging, vol.27, issue.4, pp.570-575, 2006.
DOI : 10.1016/j.neurobiolaging.2005.04.017

C. M. Dobson, Protein misfolding, evolution and disease, Trends in Biochemical Sciences, vol.24, issue.9, pp.329-332, 1999.
DOI : 10.1016/S0968-0004(99)01445-0

M. Bucciantini, Prefibrillar Amyloid Protein Aggregates Share Common Features of Cytotoxicity, Journal of Biological Chemistry, vol.3, issue.30, pp.31374-31382, 2004.
DOI : 10.1038/sj.cdd.4401042

URL : http://www.jbc.org/content/279/30/31374.full.pdf

C. Hilbich, B. Kisterswoike, J. Reed, C. L. Masters, and K. Beyreuther, Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer's disease ??A4 peptides, Journal of Molecular Biology, vol.228, issue.2, pp.460-473, 1992.
DOI : 10.1016/0022-2836(92)90835-8

S. J. Wood, R. Wetzel, J. D. Martin, and M. R. Hurle, Prolines and Aamyloidogenicity in Fragments of the Alzheimer's Peptide .beta./A4, Biochemistry, vol.34, issue.3, pp.724-730, 1995.
DOI : 10.1021/bi00003a003

L. O. Tjernberg, Arrest of -Amyloid Fibril Formation by a Pentapeptide Ligand, Journal of Biological Chemistry, vol.268, issue.15, pp.8545-8548, 1996.
DOI : 10.1021/bi00003a003

L. O. Tjernberg, Controlling Amyloid ??-Peptide Fibril Formation with Protease-stable Ligands, Journal of Biological Chemistry, vol.64, issue.19, pp.12601-12605, 1997.
DOI : 10.1073/pnas.91.4.1470

URL : http://www.jbc.org/content/272/19/12601.full.pdf

M. A. Findeis, Modified-Peptide Inhibitors of Amyloid ??-Peptide Polymerization, Biochemistry, vol.38, issue.21, pp.6791-6800, 1999.
DOI : 10.1021/bi982824n

D. J. Gordon, R. Tappe, and S. C. Meredith, Design and characterization of a membrane permeable N-methyl amino acid-containing peptide that inhibits A??????1-40 fibrillogenesis, The Journal of Peptide Research, vol.266, issue.1, pp.37-55, 2002.
DOI : 10.1073/pnas.97.13.7609

A. Fernandez-escamilla, F. Rousseau, J. Schymkowitz, and L. Serrano, Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins, Nature Biotechnology, vol.74, issue.10, pp.1302-1306, 2004.
DOI : 10.1016/0005-2795(75)90109-9

F. Rousseau, J. Schmykovitz, and L. Serrano, Protein aggregation and amyloidosis: confusion of the kinds?, Current Opinion in Structural Biology, vol.16, issue.1, pp.118-126, 2006.
DOI : 10.1016/j.sbi.2006.01.011

A. P. Pawar, Prediction of ???Aggregation-prone??? and ???Aggregation-susceptible??? Regions in Proteins Associated with Neurodegenerative Diseases, Journal of Molecular Biology, vol.350, issue.2, pp.379-392, 2005.
DOI : 10.1016/j.jmb.2005.04.016

Y. Kallberg, M. Gustafsson, B. Persson, J. Thyberg, and J. Johansson, Prediction of Amyloid Fibril-forming Proteins, Journal of Biological Chemistry, vol.399, issue.16, pp.12945-12950, 2001.
DOI : 10.1038/399a023

G. Zhang, M. J. Leibowitz, P. J. Sinko, and S. Stein, Multiple-Peptide Conjugates for Binding ??-Amyloid Plaques of Alzheimer's Disease, Bioconjugate Chemistry, vol.14, issue.1, pp.86-92, 2003.
DOI : 10.1021/bc025526i

V. Castelletto, G. Cheng, and I. W. Hamley, Amyloid peptides incorporating a core sequence from the amyloid beta peptide and gamma amino acids: relating bioactivity to self-assembly, Chemical Communications, vol.10, issue.46, pp.12470-12472, 2011.
DOI : 10.1002/mabi.200900217

M. J. Krysmann, Self-Assembly and Hydrogelation of an Amyloid Peptide Fragment, Biochemistry, vol.47, issue.16, pp.4597-4605, 2008.
DOI : 10.1021/bi8000616

M. Taylor, Development of a Proteolytically Stable Retro-Inverso Peptide Inhibitor of ??-Amyloid Oligomerization as a Potential Novel Treatment for Alzheimer???s Disease, Biochemistry, vol.49, issue.15, pp.3261-3272, 2010.
DOI : 10.1021/bi100144m

M. Lindgren, K. Sorgjerd, and P. Hammarstrom, Detection and Characterization of Aggregates, Prefibrillar Amyloidogenic Oligomers, and Protofibrils Using Fluorescence Spectroscopy, Biophysical Journal, vol.88, issue.6, pp.4200-4212049700, 2005.
DOI : 10.1529/biophysj.104.049700

O. K. Gasymov, B. J. Glasgow, and . Ans-fluorescence, ANS fluorescence: Potential to augment the identification of the external binding sites of proteins, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1774, issue.3, pp.403-411, 2007.
DOI : 10.1016/j.bbapap.2007.01.002

A. Hawe, M. Sutter, and W. Jiskoot, Extrinsic Fluorescent Dyes as Tools for Protein Characterization, Pharmaceutical Research, vol.21, issue.7, pp.1487-1499, 2008.
DOI : 10.1016/S0167-4838(01)00295-3

URL : https://link.springer.com/content/pdf/10.1007%2Fs11095-007-9516-9.pdf

V. Castelletto, R. Gouveia, C. J. Connon, and I. W. Hamley, New RGD-peptide amphiphile mixtures containing a negatively charged diluent, Faraday Discussions, vol.27, pp.381-397, 2013.
DOI : 10.1021/la202113j

V. Castelletto, Self-Assembly of the Toll-Like Receptor Agonist Macrophage-Activating Lipopeptide MALP-2 and of Its Constituent Peptide, Biomacromolecules, vol.17, issue.2, pp.631-640, 2016.
DOI : 10.1021/acs.biomac.5b01573

H. Levine, Thioflavine T interaction with synthetic Alzheimer's disease ??-amyloid peptides: Detection of amyloid aggregation in solution, Protein Science, vol.8, issue.3, pp.404-410, 1993.
DOI : 10.1017/S0317167100032479

H. Levine, [18] Quantification of ??-sheet amyloid fibril structures with thioflavin T, Methods in Enzymology, vol.309, pp.274-284, 1999.
DOI : 10.1016/S0076-6879(99)09020-5

R. Khurana, Mechanism of thioflavin T binding to amyloid fibrils, Journal of Structural Biology, vol.151, issue.3, pp.229-238006, 2005.
DOI : 10.1016/j.jsb.2005.06.006

M. R. Krebs, E. H. Bromley, and A. M. Donald, The binding of thioflavin-T to amyloid fibrils: localisation and implications, Journal of Structural Biology, vol.149, issue.1, pp.30-37, 2005.
DOI : 10.1016/j.jsb.2004.08.002

V. Castelletto, I. W. Hamley, T. Lim, M. B. De-tullio, and E. M. Castano, A beta-amino acid modified heptapeptide containing a designed recognition element disrupts fibrillization of the amyloid beta-peptide, Journal of Peptide Science, vol.16, pp.443-450, 2010.

M. J. Krysmann, V. Castelletto, and I. W. Hamley, Fibrillisation of hydrophobically modified amyloid peptide fragments in an organic solvent, Soft Matter, vol.70, issue.11, pp.1401-1406, 2007.
DOI : 10.1016/S0925-4439(00)00029-6

G. Cheng, V. Castelletto, C. M. Moulton, G. E. Newby, and I. W. Hamley, Hydrogelation and Self-Assembly of Fmoc-Tripeptides: Unexpected Influence of Sequence on Self-Assembled Fibril Structure, and Hydrogel Modulus and Anisotropy, Langmuir, vol.26, issue.7, pp.4990-4998, 2010.
DOI : 10.1021/la903678e

A. Barth, Infrared spectroscopy of proteins, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1767, issue.9, pp.1073-1101004, 2007.
DOI : 10.1016/j.bbabio.2007.06.004

A. Barth and C. Zscherp, What vibrations tell about proteins, Quarterly Reviews of Biophysics, vol.35, issue.4, pp.369-430, 2002.
DOI : 10.1017/S0033583502003815

J. T. Pelton and K. R. Mclean, Spectroscopic Methods for Analysis of Protein Secondary Structure, Analytical Biochemistry, vol.277, issue.2, pp.167-1764320, 1999.
DOI : 10.1006/abio.1999.4320

H. Gaussier, H. Morency, M. C. Lavoie, and M. Subirade, Replacement of Trifluoroacetic Acid with HCl in the Hydrophobic Purification Steps of Pediocin PA-1: a Structural Effect, Applied and Environmental Microbiology, vol.68, issue.10, pp.4803-4808, 2002.
DOI : 10.1128/AEM.68.10.4803-4808.2002

L. C. Serpell, Alzheimer???s amyloid fibrils: structure and assembly, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1502, issue.1, pp.16-30, 2000.
DOI : 10.1016/S0925-4439(00)00029-6

URL : https://doi.org/10.1016/s0925-4439(00)00029-6

. I. Hamley, Peptide Fibrillization, Angewandte Chemie International Edition, vol.98, issue.43, pp.8128-8147, 2007.
DOI : 10.1002/9780470016985

J. S. Pedersen, Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting, Advances in Colloid and Interface Science, vol.70, pp.171-210, 1997.
DOI : 10.1016/S0001-8686(97)00312-6

M. L. Giuffrida, ??-Amyloid Monomers Are Neuroprotective, Journal of Neuroscience, vol.29, issue.34, pp.10582-10587, 2009.
DOI : 10.1523/JNEUROSCI.1736-09.2009

URL : http://www.jneurosci.org/content/jneuro/29/34/10582.full.pdf

M. B. De-tullio, Proteolytically Inactive Insulin-Degrading Enzyme Inhibits Amyloid Formation Yielding Non-Neurotoxic A?? Peptide Aggregates, PLoS ONE, vol.8, issue.6, p.59113, 2013.
DOI : 10.1371/journal.pone.0059113.s005

S. M. Chafekar, Branched KLVFF Tetramers Strongly Potentiate Inhibition of ??-Amyloid Aggregation, ChemBioChem, vol.96, issue.15, pp.1857-1864, 2007.
DOI : 10.1042/bse0330117

Y. Miura, Inhibition of Alzheimer Amyloid Aggregation with Sulfated Glycopolymers, Biomacromolecules, vol.8, issue.7, pp.2129-2134, 2007.
DOI : 10.1021/bm0701402

M. Andreasen, The Importance of Being Capped: Terminal Capping of an Amyloidogenic Peptide Affects Fibrillation Propensity and Fibril Morphology, Biochemistry, vol.53, issue.44, pp.10-1021, 2014.
DOI : 10.1021/bi500674u

J. N. Anker, Detection and Identification of Bioanalytes with High Resolution LSPR Spectroscopy and MALDI Mass Spectrometry, The Journal of Physical Chemistry C, vol.113, issue.15, pp.5891-5894, 2009.
DOI : 10.1021/jp900266k

D. Kessner, M. Chambers, R. Burke, D. Agus, and P. Mallick, ProteoWizard: open source software for rapid proteomics tools development, Bioinformatics, vol.5, issue.21, pp.2534-2536, 2008.
DOI : 10.1021/pr0503533

URL : https://academic.oup.com/bioinformatics/article-pdf/24/21/2534/16882584/btn323.pdf

T. Bald, pymzML--Python module for high-throughput bioinformatics on mass spectrometry data, Bioinformatics, vol.9, issue.21, pp.1052-1053, 2012.
DOI : 10.1186/1471-2105-9-163

URL : https://academic.oup.com/bioinformatics/article-pdf/28/7/1052/552144/bts066.pdf

L. G. Hilgenberg and M. A. Smith, Preparation of Dissociated Mouse Cortical Neuron Cultures, Journal of Visualized Experiments, vol.10, issue.10, p.562, 2007.
DOI : 10.3791/562