A Meta-Learning Approach to One-Step Active-Learning

Abstract : We consider the problem of learning when obtaining the training labels is costly, which is usually tackled in the literature using active-learning techniques. These approaches provide strategies to choose the examples to label before or during training. These strategies are usually based on heuristics or even theoretical measures, but are not learned as they are directly used during training. We design a model which aims at learning active-learning strategies using a meta-learning setting. More specifically, we consider a pool-based setting, where the system observes all the examples of the dataset of a problem and has to choose the subset of examples to label in a single shot. Experiments show encouraging results.
Keywords : Budget Learning
Type de document :
Communication dans un congrès
International Workshop on Automatic Selection, Configuration and Composition of Machine Learning Algorithms, Sep 2017, Skopje, Macedonia. CEUR, 1998, pp.28-40, 2017, CEUR Workshop Proceedings
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01691472
Contributeur : Thierry Artieres <>
Soumis le : mercredi 24 janvier 2018 - 08:40:59
Dernière modification le : vendredi 31 août 2018 - 09:25:57
Document(s) archivé(s) le : jeudi 24 mai 2018 - 14:22:25

Fichier

paper_04.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01691472, version 1

Collections

Citation

Gabriella Contardo, Ludovic Denoyer, Thierry Artières. A Meta-Learning Approach to One-Step Active-Learning. International Workshop on Automatic Selection, Configuration and Composition of Machine Learning Algorithms, Sep 2017, Skopje, Macedonia. CEUR, 1998, pp.28-40, 2017, CEUR Workshop Proceedings. 〈hal-01691472〉

Partager

Métriques

Consultations de la notice

502

Téléchargements de fichiers

71