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ALCOVE RANDOM WALKS, k-SCHUR FUNCTIONS AND THE MINIMAL
BOUNDARY OF THE k-BOUNDED PARTITION POSET

CEDRIC LECOUVEY AND PIERRE TARRAGO

ABSTRACT. We use k-Schur functions to get the minimal boundary of the k-bounded partition
poset. This permits to describe the central random walks on affine Grassmannian elements of
type A and yields a polynomial expression for their drift. We also recover Rietsch’s parametriza-
tion of totally nonnegative unitriangular Toeplitz matrices without using quantum cohomology
of flag varieties. All the homeomorphisms we define can moreover be made explicit by using the
combinatorics of k-Schur functions and elementary computations based on Perron-Frobenius
theorem.

1. INTRODUCTION

A function on the Young graph is harmonic when its value on any Young diagram A is equal
to the sum of its values on the Young diagrams obtained by adding one box to A. The set of
extremal nonnegative such functions (i.e. those that cannot be written as a convex combination)
is called the minimal boundary of the Young graph. It is homeomorphic to the Thoma simplex.
Kerov and Vershik proved that the extremal nonnegative harmonic functions give the asymptotic
characters of the symmetric group. O’Connell’s results [15] also show that they control the law
of some conditioned random walks. In another but equivalent direction, Kerov-Vershik approach
of these harmonic functions yields both a simple parametrization of the set of infinite totally
nonnegative unitriangular Toeplitz matrices (see [4]) and a characterization of the morphisms
from the algebra A of symmetric functions to R which are nonnegative on the Schur functions.
These results were generalized in [11] and [12]. A crucial observation here is the connection
between the Pieri rule on Schur functions and the structure of the Young graph (which is then
said multiplicative in Kerov-Vershik terminology).

In [16], Rietsch obtained a parametrization for the variety 7 of finite unitriangular (k+1) x
(k + 1) totally nonnegative Toeplitz matrices by R’% from the quantum cohomology of partial
flag varieties. More precisely, such a matrix is proved to be completely determined by the datum
of its k initial minors obtained by considering its south-west corners. On the combinatorial side,
there is also an interesting k-analogue By, of the Young lattice of partitions whose vertices are
the k-bounded partitions (i.e. those with no parts greater than k). Its oriented graph structure
is isomorphic to to the Hasse poset on the affine Grassmannian permutations of type A which
are minimal length coset representatives in W/ W, where W is the affine type A( ) group and
W the symmetric group of type Aj. The graph By is also multiplicative but we have then to
replace the ordinary Schur functions by the k-Schur functions (see [9] and the references therein)
and the algebra A by A,y = R[hy, ..., hi]. The k-Schur functions were introduced by Lascoux,
Lapointe and Morse [10] as a basis of Ay). It was established by Lam [6] that their corresponding
constant structures (called k-Littlewood-Richardson coefficients) are nonnegative. This was done
by interpreting A(y) in terms of the homology ring of the affine Grassmannian which, by works
of Lam and Shimozono, can be conveniently identified with the quantum cohomology ring of
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FIGURE 1. A reduced alcove walk on Grassmannian elements for k£ = 2

partial flag varieties studied by Rietsch. By merging these two geometric approaches one can
theoretically deduce that the set of morphisms from A to R, nonnegative on the k-Schur
functions, are also parametrized by R’;O.

In this paper, we shall use another approach to avoid sophisticated geometric notions and
make our construction as effective as possible. Our starting point is the combinatorics of k-
Schur functions. We prove they permit to get an explicit parametrization of the morphisms ¢
nonnegative on the k-Schur functions, or equivalently of all the minimal t-harmonic functions
with ¢ > 0 on By. Both notions are related by the simple equality ¢ = gp(s(l)). Each such
morphism is in fact completely determined by its values 7™ = (r1,...,7%) € ]R’;O on the Schur
functions indexed by the rectangle partitions R, = (k—a+1)®. We get a bi-continuous (homeo-
morphism) parametrization which is moreover effective in the sense one can compute from 7 the
values of ¢ on any k-Schur function from the Perron Frobenius vector of a matrix ® encoding
the multiplication by s(;) in A(;). Also, the primitive element theorem permits to prove that

for any fixed t > 0 each go(sg\k)) is a rational functions on RY,. It becomes then quite easy to
rederive Rietsch’s parametrization. So, the only place where geometry is needed in this paper
is in Lam’s proof of the nonnegativity of the k-Schur coefficients. As far as we are aware a
complete combinatorial k-Littlewood-Richardson rule is not yet available (see nevertheless [14]).

Random walks on reduced alcoves paths have been considered by Lam in [8]. They are ran-
dom walks on a particular tesselation of R* by alcoves supported by hyperplanes, where each
hyperplane can be crossed only once. The random walks considered in this paper are central
and thus differ from those of [8]. Two trajectories with the same ends will have the same prob-
ability. We characterize all the possible laws of these alcove random walks and also get a simple
algebraic expression of their drift as a rational function on R’;O. Our results are more precisely
summarized in the following Theorem. -

Theorem 1.1.

o each 7 € corresponds a unique morphism ¢ : Ay — R nonnegative on the
1) Te h 7 R’;O d ) hi A R ti th
k-Schur functions and such that ¢(sgr,) =14 for anya=1,... k.
o each 7 € corresponds a unique matriz M in T>q whose k southwest initial minors
2) To each 7€ R, d j triz M in Tso whose k southwest initial mi
are exactly ri,... 7.
(3) Both previous one-to-one correspondences are homeomophisms, moreover ¢ and M can
be explicitly computed from 7 by using Perron Frobenius theorem.
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(4) The minimal boundary of By, is homeomorphic to a simplex Sy of Rlﬁo.

(5) To each i € Sy, corresponds a central random walk (vy)n>0 on affine Grassmannian
elements which verifies a law of large numbers. The coordinates of its drift are the image
by ¢ of rational fractions in the k-Schur functions. They are moreover rational on Sy.

The paper is organized as follows. In Section 2, we recall some background on alcoves, parti-
tions and k-Schur functions. In Section 3, we introduce the matrix ® and study its irreducibility.
Section 4 uses classical tools of field theory to derive an expression of any k-Schur function in
terms of s(1) and the sg, a = 1,..., k. We get the parametrization of all the minimal ¢-harmonic
functions defined on By by ]R’;O in Section 5. In Section 6, we give the law of central random
walks on alcoves and compute their drift by exploiting a symmetry property of the matrix ®.
Finally, Section 7 presents consequences of our results, notably we rederive Rietsch’s on finite
Toeplitz matrices, establish rational expressions for the gp(sf\k)), characterize the simplex Sj and
show the inverse limit of the minimal boundaries of the graphs By, k > 2 is the Thomas simplex.

2. HARMONIC FUNCTIONS ON THE LATTICE OF k-BOUNDED PARTITIONS

2.1. The lattices C; and Bj. In this section, we refer to [9] and [13] for the material which
is not defined. Fix [ > 1 a nonnegative integer and set kK = [ — 1. Let W be the affine Weyl

group of type A,il). As a Coxeter group, W is generated by the reflections sg, s1,. .., si so that
its subgroup generated by s1, ..., sy is isomorphic to the symmetric group S;. Write ¢ for the

length function on W. The group W determines a Coxeter arrangement by considering the

hyperplanes orthogonal to the roots of type Algl). The connected components of this hyperplane

arrangement yield a tessellation of R* by alcoves on which the action of W is regular. We denote
by A© the fundamental alcove. Write R for the set of affine roots of type A,(Cl) and R for its
subset of classical roots of type Ag. The simple roots are denoted by ag,...,ar and P is the
weight lattice of type Aj with fundamental weights Ay, ..., Ag.

A reduced alcove path is a sequence of alcoves (A1,. .., Ay,) such that A; = A and for any
1=1,...,m—1, the alcoves A;11 and A; share a common face contained in a hyperplane H; so
that the sequence Hy, ..., H,,_1 is without repetition (each hyperplane can be crossed only once).
In the sequel, all the alcove paths we shall consider will be reduced. For any i =1,...,m —1,
let w; be the unique element of W such that A; = w,-(A(O)). Write < for the weak Bruhat order
on W and — for the covering relation w — w’ if and only if w <t w' and £(w') = £(w) + 1. We
then have wq — wg — -+ — w,,.

We shall identify a partition and its Young diagram. Recall that a [-core can be seen as a
partition where no box has hook length equal to I. Given a l-core A\, we denote by ¢()) its length
which is equal to the number of boxes of A with hook length less that [. Recall that the residue
of a box in a Young diagram is the difference modulo [ between its row and column indices. We

can define an arrow A — u between the two [-cores A and y when A C p and all the boxes in p /A
have the same residue i. By forgetting the label arrows, we get the structure of a graded rooted
graph C; on the [-cores. For any two vertices A — p we have £(u) = ¢(\) + 1. Nevertheless, the
difference between the rank of the partitions A and y is not immediate to get in general.

The affine Grassmannian elements are the elements w € W whose associated alcoves are
exactly those located in the fundamental Weyl chamber (that is, in the Weyl chamber containing
the fundamental alcove A(?)). The I-cores are known to parametrize the affine Grassmannian

elements. More precisely, given two [-cores such that A - p and w the affine Grassmannian
element associated to A\, w' = ws; is the affine Grassmannian element associated to p. In
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particular, we get ¢(\) = f(w). So reduced alcove paths in the fundamental Weyl chamber,
saturated chains of affine Grassmannian elements and paths in C; naturally correspond.

A k-bounded partition is a partition A such that A\; < k. There is a simple bijection between
the [-cores and the k-bounded partitions. Start with a [ core A and delete all the boxes in the
diagram of X\ having a hook length greater than [ (recall there is no box with hook length equal
to [ since A is a [-core). This gives a skew shape and to obtain a partition, move each row so
obtained on the left. The result is a k-bounded partition denoted p(A). For some examples and
the converse bijection ¢, see [9] pages 18 and 19. This bijection permits to define an analogue of
conjugation for the k-bounded partitions. Given a k-bounded partition x set

K = p(c(k)').
The graph By is the image of the graph C; under the bijection p. This means that By is the
graph obtained from C; by deleting all the boxes with hook length greater that [ and next by
aligning the rows obtained on the left. In particular, reduced alcove paths in the fundamental
Weyl chamber correspond to k-bounded partitions paths in Bi. We have the following lemma:

Lemma 2.1. We have an arrow  — § in By if and only if || = |k|+1, kK C & and %% C 6.1

Let A be the algebra of symmetric functions in infinitely many variables over R. It is endowed
with a scalar product (-,-) such that (sy,s,) = 6, for any partitions A\ and pu. Let Ay be
the subalgebra of A generated by the complete homogeneous functions hq, ..., h;. In particular,
{ha | A is k-bounded} is a basis of Ay).

2.2. The k-Schur functions. We now define a distinguished basis of Ay related to the graph
structures of C; and By. Consider A\ and p two k-bounded partitions with A C p and r < k a
positive integer.

Definition 2.2. We will say that p/X is a weak horizontal strip of size r when

(1) p/X is an horizontal strip with r bozes (i.e. the boxes in /X belong to different columns),
(2) p“k /X is a wvertical strip with r boxes (i.e. the boxes in p“k /N belong to different
rows).

Let us now define the notion of k-bounded semistandard tableau of shape A a k-bounded
partition and weight o = (a1, ..., aq) a composition of || with no part larger than k.

Definition 2.3. A k-bounded semistandard tableau of shape X is a semistandard filling of \ with
integers in {1,...,d} such that for any i = 1,...,d the boxes containing i define a horizontal
strip of size «;.

One can prove that for any k-bounded partitions A and « the number K)(\k; of k-bounded
semistandard tableaux of shape A and weight « verifies
Ki’f))\zlandK)(\lz#O:QS)\

where < is the dominant order on partitions.

Definition 2.4. The k-Schur functions s,gk), Kk € By are the unique functions in A, such that
he= 30 K

0<k,kEB

for any § in By.

130 By should not be confused with the subgraph of the Young graph with vertices the k-bounded partitions.
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Proposition 2.5 (Pieri rule for k-Schur functions). For any r < k and any k € By we have

o ol = 3 o9

»EBy,

where the sum is over all the k-bounded partitions s such that »/k is a weak horizontal strip of
size 1 in By.

When r = 1, the multiplication by h; is easily described by considering all the possible k-
bounded partitions at distance 1 from x in Bg. Thanks to a geometric interpretation of the
k-Schur functions in terms of the homology of affine Grassmannians, Lam showed that the
product of two k-Schur functions is k-Schur positive:

Theorem 2.6. [6]Given k and ¢ two k-bounded partitions, we have

S,(f)sfsk) _ Z Cif(?)s(f)
veBy

with CKEZ;) S ZZO.

2.3. Recollection of properties of k-Schur functions. The k-conjugation operation wy can
be read directly at the level of k-partitions without using the ordinary conjugation operations on
the [-cores (see (1.9)) in [9]). To do this, start with a k-partition A = (A1,..., A,) and decompose
it into its chains {¢1, ca, ..., ¢} where each chain is a sequence of parts of A obtained recursively
as follows. The procedure is such that any partition A; is in the same chain as the partition
Nitk—x,+1 when i +k — X; +1 <r (from the part \; one jumps k — A; parts to get the following
part of the chain). Observe in particular that all the parts with length k belong to the same
chain for in this case we jump 0 parts. Once the chains ¢; are determined, A\“* is the partitions
with k-columns whose lengths are the sums of the ¢;’s.

Example 2.7. Consider the 5-partition A\ = (5,5,5,4,4,3,3,3,2,2,1). Then, we get ¢; =
{5,5,5,4,3,2} next co = {4,3,2}, c3 = {3,1}, c4 = 0 and c5 = 0. So \*5 is the partition with
columns of heights 24, 9 and 4.

The following facts will be useful.

(1) Any partition A of rank at most k is a k-partition and is then equal to its associated
l-core (because A has no hook of length | =k +11!).

(2) The lattice By coincides with the ordinary Young lattice on the partitions of rank at
most k. On this subset wy is the ordinary conjugation.

(3) For any partition A of rank at most k, the k-Schur function coincides with the ordinary
Schur function that is sg\k) = s). In particular, the homogeneous functions hq, ..., hg
and the elementary functions eq, ..., e, are the k-Schur functions corresponding to the
rows and columns partitions with at most k boxes, respectively.

The k = 2 case is easily tractable because the lattice of 2-bounded partitions we consider has
a simple structure. One verifies easily that for any 2-partition A = (2¢,1"72%)  we get in that
case

n—1

n

S—a
§@ _ { h$es — when n even,
V= -

hgeQT_ael when n is odd.
When k > 2, the structure of the graph B becomes more complicated. Given a k-bounded
partition A one can first precise where it is possible to add a box in the Young diagram of A to

get an arrow in By. Assume we add a box on the row \; of A to get the k-partition u, denote by
¢={M\i,,..., i, } the chain containing \; where we have \; = \;, with a € {1,...,r}. Observe
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we can add components equal to zero to c¢ if needed since A is defined up to an arbitrary zero
parts. The following lemma permits to avoid the use of wy in the construction of Bj.

Lemma 2.8. There is an arrow A — p in By, if and only if \jy—1 = N, for anyb=a+1,...,7,
that is if each part located up to \; in the chain containing \; is preceded by a part with the same
size.

Proof. One verifies that if the previous condition is not satisfied, p“* and \“* will differ by at
least two boxes and if it is satisfied by only one as desired. O

Example 2.9.
(1) One can always add a box on the first column of A since the parts located up to the part
0 are all equal to 0.
(2) Assume k = 2, then we can add a box on the part \; equal to 1 to get a part equal to 2
if and only if there is an even parts equal to 1 up to N;. This is equivalent to says that
A has an odd number parts equal to 1, that is that the rank of A is odd since the other
parts are equals to 2 (or 0).

For any a = 1,...,k, let R, be the rectangle partition (k—a+1)®. The previous observations
can be generalized (see [9]):

Proposition 2.10.

(1) Assume X is a k-bounded partition which is also a (k + 1)-core. Then sg\k) = s (that is
the k-Schur and the Schur functions corresponding to A coincide).
(k)

(2) In particular, for any rectangle partition R,, we have sp
(3) For anya=1,...,k and any k-partition A\ we have

k) _ (k)
SRaS)\ " = S)\UR,

where AU R, is obtained by adding a parts equal to k —a + 1 to .

= SR, -

a

Corollary 2.11. For each k-bounded partition A, there exists a unique irreducible Ek-partition?
A and a unique sequence of nonnegative integers p,...,pr such that

k
k o (K
Sg\) = HS%ES(X).
a=1

In particular, the k-Schur functions are completely determined by the k-Schur functions indexed
by an irreducible k-bounded partition and by the sg,_qq1)a, a =1,... k.

Remark 2.12. Write Py, for the set of irreducible partitions. The map A : By — Pir X Zéo

which associates to each k-bounded partition A the pair (p, \) where p = (p1,...,pr) is a bijection.

Example 2.13. Assume k = 4 and A = (4,4,3,3,3,3,3,2,2,2,2,1,1,1,1,1). Then we get
A= (3,2,1) and

s&k) = 3?4)3?373)3(2,2,2)3(1,171,1)8(;)'

We conclude this paragraph by recalling other important properties of k-Schur functions. We
have first the inclusions of algebras Ay C Axq1) C A.

2A k-bounded partition is irreducible when it contains less than a parts equal to k —a for any a = 0,..., k—1.
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Proposition 2.14. [9]

(1) Each k-Schur function has a positive expansion on the basis of (k + 1)-Schur functions.
(2) Each k-Schur function has a positive expansion on the basis of ordinary Schur functions.

2.4. Harmonic functions and minimal boundary of Bj.

Definition 2.15. A function f: B — R is said harmonic when

fN) = Z f(p) for any X € By.

A= 1L
We denote by H(By) the set of harmonic functions on By.

Another way to understand harmonic functions is to introduce the infinite matrix M of the
graph Bj;. The harmonic functions on Bj then correspond to the right eigenvectors for M
associated to the eigenvalue 1. One can also consider t-harmonic functions which correspond
to the right eigenvectors for M associated to the eigenvalue t. Clearly H(By) is a vector space
over R. In fact, we mostly restrict ourself to the set HT(By) of positive harmonic functions
for which f takes values in R>q. Then, H™(B)) is a cone since it is stable by addition and
multiplication by a positive real. To study HT(B)) we only have to consider its subset H; (Bj)
of normalized harmonic functions such that f(1) = 1. In fact, H{ (By) is a convex set and its
structure is controlled by its extremal subset OH ™ (Bg). We aim to characterize the extremal
positive harmonic functions defined on B, and obtain a simple parametrization of 9H ™1 (By). By
using the Pieri rule on k-Schur functions, we get

NS = D

A=t

for any k-partitions A and p. This means that By, is a so-called multiplicative graph with associ-
ated algebra A (). Moreover, if we denote by K the positive cone spanned by the set of k-Schur
functions, we can apply the ring theorem of Kerov and Vershik (see for example [12, Section
8.4]) which characterizes the extreme points 9H T (By,). Denote by Mult™(A)) C (A))* the set
of multiplicative functions on Ay which are nonnegative on K and equal to 1 on s;. Note that
i@ By — Ay such that i(\) = Sg\k) induces a map i* : (A))* — F(Bg,R). Since we have
K.K C K, we get the following algebraic characterization of OH ™ (By).

Proposition 2.16. The map i* yields an homeomorphism between Mult+(A(k)) and OH™T (By,).

Since i(By) is a basis of Ay, this means that 0H(By) is completely determined by the R-

algebra morphisms ¢ : Ag) — R such that ©(s1) = 1 and gp(sg\k)) > 0 for any k-bounded
partition A. Each function f € OH T (By) can then be written f = ¢ oi.

By Corollary 2.11, the condition cp(sg\k)) > 0 for each k-bounded partition reduces in fact to
test a finite number of k-Schur functions, namely go(s(xk)) > 0 for each irreducible k-bounded

partition (there are (k — 1)! such partitions) and p(s(_q41)a) > 0 for any a =1,..., k.

3. RESTRICTED GRAPH AND IRREDUCIBILITY

3.1. The matrix ®. By Corollary 2.11, each morphism ¢ : A) — R is uniquely determined
(k)

by its values on the rectangle Schur functions sg,,1 < a < k and on each 55 where ) is an
irreducible k-bounded partition. Set r, = ¢(sg,),a =1,...,k and 7= (r1,...,7). Recall that
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Py is the set of irreducible k-bounded partitions (including the empty partition). Then, for
A€ Pirm

(2) ols8Np(say) = 3 s,

A= 1L
By Corollary 2.11, for each k-bounded partition p there exists a sequence {p/,ph ... 7PZ } of
elements in {1,...,k} and an irreducible partition 1z such that
(3) H sR 3~ ) and thus (s H rPe 3~

Hence by setting

I
-3 I
A—=p 1<a<lk
p=v
we get

= > o)

VEPirr

Let @, ) = (Pud)rvePi, 3 and define f € RP as the vector (gp(sf\k)))Aepirr. When there is
no risk of confusion, we simply write ® instead of ®(,, ;). The vector f is an left eigenvector
of ® for the eigenvalue ¢(s1) with positive entries having value 1 on () and p(s1) on s.

3.2. Irreducibility of the matrix ®. Recall that a matrix M € M,(R) with nonnegative
entries is irreducible if and only if for each 1 <4, j < n there exists n > 1 such that (M");; > 0.

Proposition 3.1. Assume that p(sg,) > 0 for any a = 1,...,k. Then, the matrices ® and ®*
associated to ¢ is irreducible if and only if for all1 < a < k—1, ¢(sr,) or ¢(sSg,,,) is positive.

We will prove in fact that ®! is irreducible. Let G be the graph with set of vertices P, and
a directed edge from ) to v if and only if ®,, # 0. The matrix ®* is irreducible if and only if G
is strongly connected, which means that there is a (directed) path from any vertex to any other
vertex of the graph. We prove Proposition 3.1 by showing that G is strongly connected. Let us
first establish a preliminary lemma. We say that A € Py, is isaturated when ¢ = 1 or ¢ > 2 and

A= (.., (=D)L 2R k) with XN #£ (LR (= DRI L 2k 1k,

Denote by A! the irreducible k-bounded partition ((k — 1)1, (k — 2)2,...,1%71). Remark that if
X\ € Py is ksaturated if and only if A = AL

Lemma 3.2. Any vertex A of G is connected to \'.

Proof. The statement of the lemma is a deduction of the four following facts:

(1) If X is isaturated, then A — ATi=1 where \P—1 s the partition obtained by adding one
box to the first row of size (i — 1) of A\. Moreover, AT"~1 is (i — 1)-saturated.

Proof. Let ¢ be the chain containing the first row of size ¢ — 1 in A assumed to be A,.
Since A is isaturated, a combinatorial computation shows that

c= { oy Ay )\r—i-k—ia )‘r—i-(k—i)—i-(k—i—i-l)a s 7)‘7»_;,_ i O(k H-S)}

30bserve we have defined O, ... r) as the transpose of the matrix (¢ .)xver
the multiplication by s(1) used in Section 4.

to make it compatible with

irr
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and for 0 <t <i—1, each )\T+Z§:0(k_i+s) is the (¢t + 1)-th row of length (i — 1 —¢). In
particular, each element of ¢ after A, is preceded by a row of same size, and there is less
than k — 2 rows after the last row of ¢ (which has size one). Therefore, we can apply
Lemma 2.8 to get the existence of an edge between A and AT~ O

(2) Suppose that A has less than (k — i) rows of length i. Applying successively the pre-
vious operation to A, ATG—1), (/\T(i_l))T(i_Q), ... eventually yields a partition v which is
irreducible, isaturated, such that there is a path between A and v in By and such that
the number of rows of length 7 in v is one more than that in .

(3) Suppose that A had initially [ < k —i — 1 rows of size i. Repeating the previous process
k —i — [ times yields a partition x such that X is connected to x in By and & is (i + 1)-
saturated.

(4) Repeating the previous process for i < [ < k yields a path between A and Al

O

We prove Proposition 3.1 by giving necessary and sufficient conditions to have a path on G
between A\! and (.

Proof of Proposition 3.1. Let us show that there is a path between A\' and () if and only if for

all 1 <a<k-—1, p(sgr,) or p(sr,,,) is positive.
e Suppose first that for all 1 <a <k —1, ¢(sg,) or ¢(sg,,,) is positive.

For 1 < a <k — 1, let A\* be the partition (k — 1, (k —2)?,...,aF"%), and set \¥ = ().

Let us prove that for 1 < a < k— 1, there is a path on G from A\ to A\**1. If p(sg,) > 0,

it suffices to add a part of length a at the end of A\*, which is always possible. Suppose

now that ¢(sg,) = 0, which implies that ¢(sg,,,) > 0 by the hypothesis on ¢. Let i

be minimal such that A\{ = a, and let ¢ be the chain containing 7. On the one hand,

since A{ = a, the part following A{ in c is the part A{,; .. ;. On the other hand, by the

definition of A%, )\?Jr(k_a) = )\?Jr(k_a)ﬂ = 0, thus by Lemma 2.8, we can add a box to
k—a+1

the part A¢, which makes appear a block (a + 1) . Thus, since ¢(sg, ;) > 0, there
is an arrow in G between A® and the partition ()\“_Z,Afﬂ, .. .,)\?Jr(k_a)_l). Similarly,
we can successively add a box to part A{,q,..., )\?'i'(k_ a)—1> which yields a path between
(N2 Al ,)\?Jr(k_a)_l) and A%+,

By the above results, there is a path in G from A to A\**! for all 1 < a < k — 1, thus
there is a path from \' to \F = 0.

e Suppose now that there exists 1 < a < k — 1 such that ¢(sgr,) = ¢(sg,.,) = 0. Let
pw = (u,...,p") be a path on G starting at a*~%, and denote by z; (resp. ;) the
number of parts equal to a + 1 (resp. a) in p’. Since v is a path on G, for all 1 <i <7,
r; <k—a—1andy; <k—a. Let us prove by induction on 1 <4 < r that z; +y; > k—a.

This is certainly true for ¢ = 1. Suppose that ¢ > 1 and that the result holds for
i — 1. Since ¢(sgr,) = ¢(SR,.,) = 0, the only way to get x; +y; < xj—1 +y;—1 is to
add a box to the first part of length a + 1 (if any) in p~!. Hence if ;1 = 0, then
ri+y; > w1 +yi—1 > k—a. Assume now that x;_; > 0. Let [ be minimal such that
,ui_l =a + 1 and let ¢ be the chain containing [. Hence, the part following ,uf_l in ¢ is
equaltol+k—(a+1)+1 =14+ (k—a). Since z;_1+y;—1 > k—aand z;_1 < k—a—1,

we have ,u;jr(lk_a)_l = a. Thus, by Lemma 2.8, it is possible to add a box to the part [ in

pi~tif and only if uf;i_a = a. If so, then we get z;_14+y;—1 > (I+k—a)—l+1 > k—a+1
and x; +1y; = ©;_1 +y;—1 — 1. Therefore, in any cases, x=; +y; > k — a. For any path
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starting on G at a*~%, the number of parts of length @ or a+ 1 remains larger than k —a,
thus there is no path between a*~% and 0 in G.

O

4. FIELD EXTENSIONS AND k-SCHUR FUNCTIONS

4.1. Field extensions. Recall that A= R[hy, ..., hg]. Since hy, ..., hy are algebraically inde-
pendent over R, we can consider the fraction field L = R(hy, ..., h;). Write A = R[sg,,...Sg,]
the subalgebra of Ay generated by the rectangle Schur functions Rg,a = 1,...,k. In order
to introduce the fraction field of A, we first need to check that sg,,...sg, are algebraically
independent over R. We shall use a proposition giving a sufficient condition on a family of
polynomials to be algebraically independent.

Let k be a field and k[T7,...,T,,] the ring of polynomials in Ti,...,T,, over k. For any
B € ZZ,, we set T8 = TIB Lo, Téb’”. We also assume we have a total order < on the monomials of
Ek[T1,...,Ty]. The leading monomial Im(P) of a polynomial P € k[T,...,Ty,] is the monomial
appearing in the support of P (that is, with a nonzero coefficient) maximal under the total order
<.

Proposition 4.1. (See [5])

(1) The monomial TB(I), e ,Tﬁa) are algebraically independent if and only if OV, ..., W
are linearly independent over 7.

(2) Consider Py, ..., P, polynomials in k[T1,...,Ty] such that Im(Py),...,lm(F;) are alge-
braically independent, then Py,..., P, are algebraically independent.

With Proposition 4.1 in hand, it is then easy to check that sg,,...spg, are algebraically
independent over R. Recall that each Schur function sy with indeterminate set X = {X;, X5...}
decomposes on the form

S\ = X)\ + ZKAMXM
p<A

where < is the dominant order over finite sequences of integers, that is, 8 < 3’ when 3 — 3’
decomposes as a sum of ¢; — €;,% < j with nonnegative integer coefficients. We can choose
any total order =< refining this dominance order. Then, by Assertion 1 of the previous proposi-
tion, the monomials X1 ... X% are algebraically independent since the rectangle partitions
Ry,a =1,...,k are linearly independent over Z. Assertion 2 then implies that sg,,...sg, are
algebraically independent over R. We denote by K = R(sg,,...sg,) the fraction field of the
algebra A.

Proposition 4.2.

(1) Each hq,...,hg is algebraic over K.

(2) We have L = R(hy,..., ) =Klhi,..., hgl.
(3) L is an algebraic extension of K.
(4)

4) The field L is a finite extension of K with degree [L : K| = k! and the set T = {s,gk) | K
is k-irreducible} is a basis of L over K.
(5) Ak is an integral extension of A.

Proof. 1: For any a = 1, ..., k, consider the evaluation morphism 6, : K[T] — L which associates
to any P € K[T7], the polynomial P(h,) € Agy= R(ha, ..., k). We know that {sg\k) | A € By} is
a basis of A(;) over R thus each power h'.,i € Z>¢ decomposes on the basis of k-Schur functions

with real coefficients. By Corollary 2.11, kY then decomposes on the family 7 = {s,(.@k) | Kk is
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k-irreducible} with coefficients in K. Thus, P(h,) also decomposes on the family Z = {S,.; | K
is k-irreducible} with coefficients in K. Since Z is a finite set, this shows that Im(6,) is a
finite-dimensional K-subspace of L, thus h, is algebraic over K.

2: Since hq, ..., h; are algebraic over K, we get K[hy,..., hg] = K(hy,...,hr) C L. We also
have L = R(hy, ..., hi) C K(hq,...,hy) since K is an extension of R. Thus, L = K[hq, ..., hg].

3: This easily follows from 1 and 3.

4: By using the same arguments as in the proof of 1, We get that each element Q(hq,..., hy)

with @ € K[T1,...,T)] decomposes on the family Z = {s,i | k is k-irreducible} with coefﬁments
in K. Assume we have
Yo e =0

k|k-irreducible

with ¢, € K = R(sg,,...,sr,) for any k-irreducible partition x. Up to multiplication, we can
assume these coefficients belong in fact to R[s R17 ..., SR,]). Set
=D “6 SR1 s
Bezk,

where all the coefficients a(;) are equal to 0 up to a finite number (in which case a(;) is real).

We get

(4) Z Z aﬁ sRl- s}%’; (k) — 0.

k|k-irreducible BGZ

By Remark 2.12, there is a bijection between the set of k-bounded partitions and that of pairs
(B, k) with k k-irreducible and 8 € Z%,. So equation (4) gives in fact a linear combination of
the k-Schur functions with real coefficients which equates to 0. Since we know that the set of

(%)

k-Schur functions is a basis of A(y), this imposes that each coefficient a 3 is in fact equal to 0.
So the family 7 = {s,i | k is k-irreducible} is a K-basis of L and we have [L : K] = card(Z) = k!.

5: The characteristic polynomial of each h,,a = 1,...,k belongs to A[T] because the multi-
plication by h, on the basis Z makes only appear coeﬂicients in A. Thus, each h, is an integral
element of A,y = Afhy, ..., hy] over A. O

4.2. Primitive element. By Proposition 4.2, s; = hp is algebraic over K. Denote by II its
minimal polynomial. Observe that II is an irreducible polynomial of K[T]. Also write ® for
the matrix of the multiplication by s; in L in the basis Z = {s,&k) | K is k-irreducible} (here we
assume we have fixed once for all a total order on the set P;, of k-irreducible partitions). Let
E(T) = det(T'Iy — ®) be the characteristic polynomial of the matrix ®. We thus have that IT
divides Z. Moreover both polynomials belong to A[T] since the entries of the matrix ® are in
the ring A. We have in fact the following stronger proposition.

Proposition 4.3.

(1) The invariant factors of the multiplication by s1 are all equal to I1: there exists an integer
m such that = = 11",
(2) The coefficients of 11 and Z are invariant under the flips of sgr, and sg,_,., for any

a=1,..., L%J
Proof. 1: Write Py, ..., P, for the invariant factors of ®. We must have P;/P5/--- /Py, Py, =11
and PP --- P, = =. Since II is irreducible, this imposes P, = --- = P, = II which gives the
assertion.

2: We apply similarly wy to each equality II(s(;)) = 0 and Z(s(1)) = 0. O
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Example 4.4. For k = 3, we get by listing the restricted k-partitions as sp, s(1), $(2), S(1,1)s 5(2,1)
and s(,1,1)

SR2

SR3

SR1
0
0

OO OO~ O
OO~ P~k OO
O O OoOOoOX

This gives Z(T) = T® — 2 (sr, + sg,) T® — 4sp,T? + (sr, — sr,)>. Observe the symmetry of ®
which will be elucidated in § 6.1.

In Proposition 4.3, we have just used that ® is the matrix of the multiplication by s(;) which is
algebraic over K. Given any morphism ¢ : A — R such that ¢(sg,) > 0 forany a = 1,...,k, the
matrix p(®) obtained by replacing in ® each rectangle Schur function sg, by ¢(sg,) coincides
with the matrix ® defined in § 3.1. Thus ® = ¢(®) has nonnegative integer coefficients. We can
now state the main theorem of this section.

Theorem 4.5. We have L = K(s(l)), that is s(1y is a primitive element for L regarded as an
extension of K.

Proof. 1t suffices to show that II = =. By Proposition 4.3, we already know that = = II"™ with
m € Z~qg. Then by Frobenius reduction, there exists an invertible matrix P with coefficients in
K such that

Ch 0 O
(5) ®="Pr o . 0 P_lv
0 0 C(n

that is, the matrix ® is equivalent to a block diagonal matrix with k blocks equal to Cp
the companion matrix of the polynomial II. By multiplying the columns of the matrix P
by elements of A, one can also assume that the coefficients of P belong to A. Then we can
write P71 = ﬁ(l’)Q where @ has also coefficients in A and det(P) € A is nonzero. Since
det(P) € A = R[sg,,...,Sr,] is nonzero, there exists a nonzero polynomial F' € R[T1,...,T}]
such that det(P) = F(Sgr,,...,5R,). Also a morphism ¢ : A — R such that ¢(sg,) > 0 for any
a = 1,...,k is characterized by the datum of the @(sg,)’s. The polynomial F' being nonzero,
one can find (r1,...,rg) € ]R’;O such that F(rq,...,rx) # 0. For such a k-tuple, let us define ¢
by setting ¢(sgr,) = 4. Then @(det(P)) # 0 and we can apply ¢ to (5) which gives

Coay 0 0
e=¢(P)[ o . o |aP)
0 0 Cam

The matrix ® has nonnegative coefficients and is irreducible by Lemma 3.1. So, by Perron
Frobenius theorem, it admits a unique eigenvalue ¢ > 0 of maximal module and the corresponding
eigenspace is one-dimensional. This eigenvalue ¢ should also be a root of ¢(IT), thus there is a
vector v € R? with d = deg(II) such that Czamv = tv. Then we get m right eigenvectors of ®
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linearly independent on R%™

v 0 0
0 v 0
0 0 v

Since the eigenspace considered is one-dimensional, this means that m = 1 and we are done. [
Corollary 4.6. There exist A € A and for each irreducible k-partition k a polynomial P, € A[T]
such that
1
k
S,(i) = ZPK(S(l))
In particular, for any morphism ¢ : Agy — R such that ©(A) # 0 we have

1

)y = — (P, .

(IO(SH ) C,D(A) (10( li)go(s(l))
Proof. Since s(yy is a primitive element for IL regarded as an extension of K, {1, S(1)s -+ - ,31(61!)_1}
is a K-basis of L. It then suffices to consider the matrix M whose columns are the vectors
8’(1),1' =0,...,k! — 1 expressed on the basis 7 = {s,gk),/-i € Pir}. Its inverse can be written
M~ = dethN where the entries of N belongs to A. So we have A = det(M) and the entries
on each columns of the matrix NV give the polynomials Py, k € Pir. O

Remark 4.7. In fact we get the equality of A-modules Ay, = %A[sl]. In particular, the poly-
nomial A (once assumed monic) only depends on Ay and Als1] and not on the choice of the
bases considered in these A-modules. Indeed a basis change will multiply A by an invertible in
A that is by a nonzero real.

Example 4.8. For k = 2 we get

q>:<$ SRH&”?) and M = I,.

Example 4.9. For k = 3 and with the same convention as in Example 4.4, we get

1 0 0 sg, +5sg, 28R, 0
010 0 SRy 1+ SR, 4sR,
1001 0 0 SR, + 38R,
M=1901 0 0 3sm, +sm, | O

000 2 0 0

000 0 2 0
10 0 0 TR g,
0 1 2832 2SR2 0 . SRy +SR3

SRl—SRS SRS_SRl 2
0 0 3SR1+SR3 SR1+38R3 0 0
]\4_1 = 25R, —25R;  25R3—25R,

00 0 0 3 0
00 0 0 0 :
0 0 =1 =1 0 0

25p,; —2SRg 25py—2sR,

3)
(2,1,1)

4

So in particular, s = %3(1) - %(sRl + SRy)S(1) — SRy-
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4.3. Algebraic variety associated to fixed values of rectangles. Recall that Ay =

Rlhq,...,hi] and each Schur rectangle polynomial can be written sp, = J,(hi,...,hs) for
any a = 1,...,k where J, € R[hq,...,h] is given by the Jacobi-Trudi determinantal formula.
Consider 7= (ry,...,1%) € ]Rgo.

Definition 4.10. Let Ry be the algebraic variety of R¥ defined by the equations sr, = T4 for
anya=1,... k.

We can consider the algebra K(k) = A /J where J is the ideal generated by the relations
SR, = Tq forany a =1,... k. Write @ : Ay — A, /J for the canonical projection obtained by
specializing in Ay each rectangle Schur function sg, to r,. We shall write for short b = 3(b)
for any b € A(y. Clearly K(k) = A)/J is a finite-dimensional R-algebra and K(k) = vect (S, | k
irreducible). The following proposition shows that the non-cancellation of A can be naturally
interpreted as a condition for the multiplication by §; to be a cyclic morphism in K(k).

Proposition 4.11.

(1) The algebra Ay, has dimension k! over R and {3, | & irreducible} is a basis of Ay.
(2) We have K(k) = R[51] if and only if A # 0.

Proof. 1: Assume we have reals ¢, such that
(©) S ey = 0.
K

For any k-partition A, write A = R{" U--- L R, Uk for its decomposition into rectangles and

irreducible partitions. Set uw(\) = r{"* ---r."*. Then J regarded as a R-vector space has basis
{sg\k) —u(\) | A k-partition such that x = ()}. Observe also that {sg\k) —u(A) | A k-partition} is

a basis of A(;). Then (6) can be rewritten

S enlse—ur) = Y ea(st —u(n))

KEPirr )\‘H:@

where the c¢)’s are real coefficients. Since {sg\k) —u(A) | A € B} is a basis of A(;) we obtain

¢, = 0 for any irreducible partition . Finally we get a basis for each element of K(k) decomposes
as a linear combination of the 5,.’s.

2: We have A # 0if and only if {S] | 0 < r < k!—1} is a basis of Ay since {5, | # irreducible}
is a basis of K(k) and A is then the determinant between the two bases. U

The following proposition is classical, we prove it for completion.
Proposition 4.12. The algebraic variety Ry is finite.

Proof. It suffices to see that the algebraic variety R;g of CF defined by the equations R, = r, for
any a = 1,...,k is finite. We can decompose R;(,: = Vi U---UV,, into its irreducible components.
To each such component V; is associated a prime ideal J; and we have J = Jy N --- N Jp,.
Therefore for any j = 1,...,m, Clhy,...,ht]/J; is a finite-dimensional algebra which is an
integral domain. So C[h4,...,hi|/J; is in fact a field and J; is maximal in Clh, ..., ht]/J;. By
using Hilbert’s Nullstellensatz’s theorem, we obtain that each V; reduces to a point, so Rg is
finite. O
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5. NONNEGATIVE MORPHISMS ON Ay

5.1. Nonnegative morphisms with @ irreducible. We show now that when the matrix ¢
introduced in § 3.1 is irreducible, the values of ¢ on the rectangle Schur functions sg,, 1 <a <k
determine completely the morphism ¢. Denote by Ry, the set {sg, }1<qa<k. We define an action
Of R>0 on .F(Rk,RZO) by

t-o(s\)) = to(sr, ),
fort >0, p € f(Bk,RZ()).

Theorem 5.1.

(1) Let ¢ : Ay — Rxo be a morphism, and suppose that ¢ is positive on the k-Schur
functions. Then, ¢ is uniquely determined by its values on the sgr,, 1 < a <k.

(2) Let ¢ € F(Ri,R>0) and suppose that the matriz ® associated to ¢ is irreducible. Then
¢ can be extended to a morphism ¢ : A,y — R>o which is nonnegative on the k-Schur
functions.

Proof. 1: Since ® is irreducible by Lemma 3.1 we can apply Perron Frobenius theorem and get
the values gp(sg\ )) A € Py as the coordinates of the unique positive left eigenvector of ® with
eigenvalue (s1) normalized so that ¢(sp) = 1. This proves our assertion 1.

2: Set rq = p(sg,) for a = 1,... k. Assume first that A(rq,...,7%) # 0. We have to show
that there exists a positive morphism ¢ on Ay such that ¢ is nonnegative on sg\k), A € By, and
®(SR,) = ra- The set of morphisms from Ay to R which takes values r, on sg, fora=1...kis
in bijection with the set of morphisms from K(k) to R, where we recall that K(k) = Ay/J with
J the ideal generated by the relations sp, = r, for a = 1,...,k. Since we have assumed A # 0,
Proposition 4.11 yields that A ;) = R[s1]. There exists one morphism from R[s;] to R for each
real root of the minimal polynomial of 51, which is E because deg(Z) = k! = dim(A,). Let ¢
be the root of greatest modulus of = which is positive since = is the characteristic polynomial
of the irreducible matrix ®(,, . ). Then, the specialization 5; = ¢ yields a morphism from K(k)

to R, and by extension a morphism ¢ from Ay to R. For A € Py, set X()) = &(sg\k)) For
p € By such that s,(f) =T1%_, s’é" s(~k) we have

(7) B =[] elshe ) X ().
y (2) fir any A\ € Py
tX(N) = 3(s1)B(s0)) = Bsis)) = Y @y, X
A=

Hence, X := (X))ep,,.. is a left eigenvector of ® with eigenvalue ¢t. Since ® is irreducible and
t is the Perron Frobenius eigenvalue of ®, X is an eigenvector with positive entries. Hence, by
(7), ¢ is nonnegative.

Assume now we drop the hypothesis A = 0. Consider ¥ = (rq,...,7) such that the matrix
® is irreducible. Let X" be the eigenvector of P@(y,,....rp) corresponding to the Perron Frobenius

eigenvalue tz such that X7(()) = 1. For u € By, set

o5 ( s;(f H Tp“XT ) with s H sR 3~

Then, @z is positive on By by constructlon, and it just remains to prove that @ is a morphism.

k)
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Since t7 and X" are continuous functions of 7 on the set of irreducible matrices, the map @y is
a continuous function of 7. The hypersurface V(A) := {A(7) = 0} is Zariski closed, thus V(A)
has empty interior in the set © of ¥ € R’% such that @, . is irreducible. By the previous
arguments, for all 7 € © outside V(A), the map @7 is a morphism and 7 +— @ is continuous
on O, thus @7 is a morphism for 7 € ©\ V(A). By Proposition 3.1, © is an open set. Let
7y € © NV (A). Since the interior of V(A) is empty, one can define a sequence 7™ € © \ V(A)
which tends to 7 € ©\ V(A) as n goes to infinity. Finally ¢z is a morphism and we are
done. O

An immediate consequence of the latter theorem is the description of positive extremal har-
monic measures. We define an action of Rsg on F (B, R>g) by

t-p(si) = tMlp(s),
for t > 0, ¢ € F(Bg,R>p).

Corollary 5.2. (1) Let p € OHT(By), and suppose that ¢ is positive on the k-Schur func-
tions. Then, ¢ is uniquely determined by its values on the sp,, 1 < a < k.
(2) Assume the matriz ® associated to ¢ is irreducible. Then there exists t > 0 such that
t=1 - can be extended to an element p € OHT (By).

Proof. The only non-trivial statement is the second one . Suppose that ® is irreducible. Then,
by Theorem 5.1, ¢ can be extended to a non-negative morphism @ on Bg. Let t = ©(s1).
Then, t~1.% is a nonnegative morphism on By such that ¢t~1.53(s1) = 1, which corresponds to an
extremal element of dBy,. It is clear that t~1.5 extends ¢~ .ip. O

5.2. Morphism defined from an irreducible matrix. Recall we have denoted by A =
R[sg,,.-.,5r,] the algebra generated by the k-rectangle Schur functions and we have Ay =

R[h1, ..., hg]. Also @ is the matrix of the multiplication by s(;) on the basis Z = {s,(ik) | kK € P}
Assume we have a nonnegative morphism ¢ : A — R. Since the entries of ® belong to A one
can compute ¢ = ¢(®). When & is an irreducible matrix, we can extend ¢ to a nonnegative
morphism ¢ : Ay — R in only one way : we apply Perron Frobenius theorem and get ©(s1) as

(k)

the greatest positive eigenvalue, next the other values of ¢(s;’) are given by the corresponding
left eigenvector normalized so that ¢(sy) = 1. Moreover, by Theorem 5.1 the construction is
bijective, in particular two different matrices ® will give two different morphisms.

5.3. Two parametrizations of the positive morphisms. The more immediate parametriza-
tion of the positive morphisms ¢ : Ay — R such that gp(sg\k)) > 0 for any k-bounded partition

is obtained from the factorization property (Corollary 2.11) of the k-Schur functions. Consider

- Jr(hi,...,hg)>0,i=1,....k
V:h:{(hl,...,hk)ezg’q{ }?]Zs(lil,...,llzf,z)>0w€73m }CR’;O

where we have set sg; = Jg,(h1,...,h;) and s, = Ji(hi,..., hy) where Jg,,...,Jg, and
Ji, k € Py are polynomials in R[ X7, ..., X]. To each point in V' corresponds a unique positive
morphism ¢ defined on A(;). Now define

U={F=(r,...,m) € RE,}.

By Proposition 3.1, the matrix ® is irreducible. Thus Theorem 5.1 implies that U parametrizes
the positive morphisms ¢ : Ay — R such that gp(sg\k)) > (0 for any A € Bi. We can define a

map f : U — V such that
f(rla v 7Tk) = ((p(hl)v .. 7(10(hk))
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The map f is then continuous on U since the entries of the matrix ® are and so is its Perron
Frobenius vector normalized at 1 on sy. Moreover, the map f is bijective by Theorem 5.1 and
we have

f_l . { V ->U
’ (hl,. .. ,hk) —> (JRl(h17 .. .,hk), . ,JRk(hl,. .. ,hk))
where the polynomials Jg,,...,Jg, are given by the Jacobi-Trudi determinantal formulas. In

particular f~! is continuous on V.
Lemma 5.3. The map f is bounded on any bounded subset of U.

Proof. Let B C U be a bounded subset of U. By definition of f, for any 7= (ry,...,rg) in B,
©(hy) is the first coordinate of f(rq,...,r,) and coincides with the Perron Frobenius eigenvalue
of the matrix ®, that is with its spectral radius. Since the spectral radius of a real matrix
is a bounded function of its entries, we get that ¢(hy) is bounded when 7 runs over B. To

conclude, observe that for any a = 2,...,k we have ¢(hy) < ¢(h1)® because h; = s1, the map

¢ is multiplicative and h, appears in the decomposition of s§ on the basis of k-Schur functions

(which only makes appear nonnegative real coefficients). ]
Now set

U={Ff=(r1,...,m) ER’%O} and
V

— % Jr,(hi,... b)) > 0,i=1,....k k
_{(hl"“’h’f)eR |{ J(hi,...,h) >0 Vk k-irreducible < R>o

Since Jg,, ..., Jg, are polynomials, we can extend f ~1 by continuity on V and get a continuous
map g : V — U. But this is not immediate right now that ¢ is bijective and f can also
be extended to a bijective map from U to V. Observe nevertheless that if we can extend f by
continuity on U, the continuity of g and f will imply that fog = idy and go f = idg. Therefore,

to extend f by continuity will suffice to prove that U and V are homeomorphic by f.

5.4. Extension of the map f on U. Let 7 € Rgo, and denote by A(7)) the set of limiting
values of f(7) as 7 goes to 7. Recall the notation of the previous paragraph, in particular the
function g is defined and continuous on V and g = f~! on f(U).

Lemma 5.4. The set A(7p) is a connected subset of Ry, (see Definition 4.10).

Proof. Consider K,, = B (Fo, %) ﬂR';O. This is a system of decreasing bounded connected neigh-
borhoods of 7 in RE,. By definition, A(7) = (),>; f(K,). By Lemma 5.3, we know that f
is bounded on bounded subsets of U = RE . therefore we get that f (K,) is bounded and thus
m is compact. Since f is continuous on U and K, is connected, f(K,) is also connected,

which implies that f(K,) is connected. Hence, A(7) is a decreasing intersection of connected
compact sets, and thus A(r) is connected.

Let h € A(7p). We claim there exists a sequence (75,),>1 in U converging to 7 such that

]

n = f(rp) converges to hasn goes to infinity. To see this, observe we have that h belongs to
(Ky,) for any integer n > 1. Therefore, for any such n, there exists h,, in f(K,) C V such that

—

hp — H\ < % for any n > 1. Since f : U — V is bijective, there exists for any n > 1 a unique 77, in

==

K, such that h,, = f (7). Now, we have lim,,_, 1 o7, = 7 and lim,—, 1 o0 f(77,) = limn_,+ool_in —h
as desired.
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Since g = f~! on R, g(hn) = go f(r7,) = 77, for n > 1. Moreover, since g is continuous and
(hn)n>1 converges to h as n goes to infinity,

g(l_i) = lim g(l_in) = lim r, =y

n—oo n—oo
which implies that h e R, . U

Theorem 5.5.

(1) The map f is an homeomorphism from U to V.
2) The morphisms ¢ : A,y — R nonnegative on the k-Schur functions are parametrized by
(k)

k
R3,-

Proof. The set A(7)) is a connected subset by the previous lemma and it is also finite by
Proposition 4.12. Therefore, the set A(7p) is a singleton. In particular, f(7) converges to
some f(7p) as 7 goes to 7y, and f can be extended continuously to Rgo. As explained as the

end of § 5.3, this suffices to conclude that f is an homeomorphism from U to V. O

Example 5.6. For k =2, we get for the matriz associated to ¥ = (ry,19) € R%O

. 0 7147
(1 7")

whose greatest eigenvalue is \/r1 + ro with associated normalized left eigenvector (1,+/r1 + ra).
We thus get h = f(7) = (\/r1 + r2,71) since hy = \/r1 + 12 and hy = r1. Conversely, we have
g(h) = (ha, h? — ho). If we assume hy = 1, we get OHT (Bz) = {(1,hs) | he € [0,1]}.

6. MARKOV CHAINS ON ALCOVES

6.1. Central Markov chains on alcoves from harmonic functions. Recall the notation
of § 2.1 for the notion of reduced alcove paths. A probability distribution on reduced alcove
paths is said central when the probability pr of 7 = (4; = A©) A,,... A,,) only depends on
m, Ay and A,,, that is only on its length and its alcoves ends. In the situation we consider, affine
Grassmannian central random paths correspond to central random paths on By. Similarly, affine
(non Grassmannian) central random alcove paths correspond to central random paths on the
Hasse diagram G of the weak Bruhat order. They are determined by the positive harmonic
functions on By, and G, respectively (see [4]).

More precisely any central probability distribution on the affine Grassmannian alcove paths
can be written

_ h(p)

Pr = RN
where h € HT(B},) is positive and for any path m = (Ay,..., 4,,), p and A are the k-bounded
partitions associated to A; and A,,. Also we then get a Markov chain on By, (or equivalently on
the affine Grassmannian elements) with transition matrix

h(p)
IT = ——.
When £ is extremal, it corresponds to a morphism ¢ on A(;) with ¢(s()) = 1 and nonnegative

on the k-Schur functions. We get an extremal central distribution on the trajectories starting
(k)
o(si )

at A©) verifying p, = o) The associated Markov chain has then the transition matrix
LSy
(k)
H(AMJ) = ¢(87k))'

‘P(SA )
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One can similarly determine the set 9H ™ (G) of nonnegative extremal harmonic functions of
G and the set of extremal central distributions on the alcove paths. To do this, recall that A is
endowed with a scalar product (-,-) making the basis of Schur functions orthonormal. Let us
write s for the adjoint of the multiplication by s; with respect to (-, ). In [7], Lam introduced the

affine Stanley symmetric functions F,, w € W which have the important following properties:

(1) {F, | wis affine Grassmannian} is the dual basis of {sg\k) | A € Bi}. We shall then write

F, = F where A 1~s the k-bounded Apartition associated to w.
(2) sT(Fw) = Fur for any w e W.

(3) For any w € W, there exists nonnegative integer coefficients a,, » such that F, =

> xeB, GwrF

Now if we introduce for any w € W, the polynomial sz(jf )= Yo B, Qw, Asg\k), we get the relation
s = 37 ).
w—w’

Therefore, the Hasse diagram G is multiplicative. Since each sgf ) belongs to the cone generated

by the k-Schur functions (by the above property 3), one can apply Proposition 2.4 in [12] and
conclude that OH'(G) corresponds to the morphisms Ay — R nonnegative on the functions
(k)

Sw W € W. Since the coefficients @y, are nonnegative, they coincide with the morphisms
nonnegative on the k-Schur functions. We thus get:

Theorem 6.1. We have OH1(G) ~ OHT (By).

Remark 6.2. By the previous discussion, the extremal central distributions on the alcove paths
¢(5£f/))
(st

starting at w are such that p, = where ™ ends on the alcove A,y .

Involutions on the reduced walk. By Corollary 2.11, the structure of the graph By is com-
pletely determined by the matrix ® depicted in Section 3.1 with coefficients in R[sg,,...,sr,]-
Then @, ., is the matrix ® after the specialization sg, =r1,...,sg, = rr. We are going to
see that this matrix exhibits particular symmetries coming from the underlying alcove structure.

The first symmetry is due to the action of wy on Ag)which sends sg, to sg,_, for any

a=1,...,k. Since wy is an algebra morphism, we get for 1 < a; <k and s > 1
®(T1,...77‘k)(A7u) =l< (I)(rl,...,rk)()‘wkauwk) =1,
q>(r1,...,rk)()‘y :u) =Tay + T & q>(r1,...,rk)(>‘wk7/‘wk) =Tk+l—ay T "+ Thtl—q,-

Hence, if we denote by €2 the matrix of the conjugation wy on the basis of irreducible partitions,
we get

(8) Qq)(rl,...,rk)Q_l = Q¢(T1,~~~7Tk)Q = q>(rk,...,r1)-

For the second symmetry, we need some basic facts on the affine Coxeter arrangement of type
Al(j). For any root v and any integer, let H, , be the affine hyperplane

H,,={ve Rk, (v,a) =1}

We denote by s, , the reflection with respect to this hyperplane and for § in the weight lattice
P and we write tg for the translation by 3. We have then s, , = t,qn5q,0. For w € W, we have
the commutation relations

(9) Wty = ty(a)rW,  WSar = Sw(a),W  and  tgsar = Sqri(,a)t5
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Affine Grassmannian elements are in bijection with alcoves in the dominant Weyl chamber
through a map w — A, such that w — w’ (that is we have a covering relation for the weak
order from w to w’) if and only if there is a hyperplane H, , such that A,/ = sq,(Ay). In this

case, we write w — w'.

Write v, for the center of the alcove A, (defined as the mean of the its extreme weights).
With these notations, w —s w’ if and only if v, = Sa.,(ve) and r < (@, v,y) <7+ 1.

Any alcove A, is completely determined by its center v,,. Let B be the set of alcoves corre-
sponding to affine Grassmannian elements w such that (v, «;) €]0,1[ for any i = 1,...,k (i.e.
such that the coordinates of v,, on the basis of fundamental weights belong to |0, 1]). Recall also

there is an involution on the Dynkin diagram of affine type A,(Cl) fixing the node 0 and sending
each node i € {1,...,k} to i* = k+ 1 —i. Consider now the involution 7 : R¥ — R¥ defined by

I(v) =t, 0 wp(v),
where p = Zle A; and wg the longest element of W. Observe we indeed get an involution
because wg o t, 0wy =t_,,.
Lemma 6.3. The involution I restricts to an involution on the set B .
Proof. Consider A € B with center v. Set v = Zle(vA,ai>A,-. Since wp(A;) = —Aj+ we get
wo(v) = Zle —(v, ;) Aj+. We also have p = Zle A; which gives
k

1(0) = ty 0 wo(v) = 31— (v ) Ar-
i=1
By hypothesis, (v, a;) €]0,1[ for any ¢ = 1,...k and thus 1 — (v, a;) €]0,1[. Now the coordinates
of I(v) on the basis of fundamental weights all belong to ]0,1[. This implies that I(v) is the
center of an alcove in B and [ restricts to an involution on B. O

Lemma 6.4. If A, A" are two alcoves of B such that A = A, then we have
1(A) ST g,
where o = —wp(«). In particular, A — A’ if and only if I(A") — I(A).
Proof. We have
I(A/) =1t,0wp 0 Sar(A) = tpswo(a)’Two(A) = Swo(a),r+(p,w0(a)>tpr(A)-
Since wo(a) = —a* and s, = S—_q,—, for any root «, we get
(10) I(A) == Sa*,(a,p)—rI(A,)'
Moreover, we can write
(I(v),0") = (tp 0o wo(v),a”) = (p,a”) + (v,wo(a")) = (p, ") — (v, )

where v is the center of A. Since (p,a) = (p,a*), this yields

<I(v),a*> = (p, a> - (’U,Oé>.
By hypothesis, r — 1 < (v, ) < r, thus

<p,0£> —r< <I(U)7a*> < <p,0£> —r+1

The last inequalities together with (10) implies that

a” ,<Ct,p>—7‘

1(4') I(A).
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Lemma 6.5. Suppose that A, A" are two elements of B such that A Rl ta, A, Then, we have
a=a;,r =1, and

I(A) 2 gy I(A).
In particular, A — ty, A" if and only if I(A") — ta,. I(A).
Proof. Since A Rl ta, A, the alcove s, ,(A) does not belong to B, but belongs to the dominant
Weyl chamber. Since B is delimited by the affine hyperplanes H,, o and H,, 1 for 1 <7 <k,
this implies that r = 1 and « is a simple root. Since t_p,s4,1(A) is contained in the dominant
Weyl chamber, this yields that a = ;. Let v and v’ be the centers of A and A’, respectively.
Then, v = 54, 0 tp, 0 for sq,(v) = tp,0". Using (9) we so derive
I(v) =ty 0w 0 80, 0 ta, (V) =ty 0wo O ta, ©Sar—(an;) (V)
=15 0 tug(Ay) © Swo(a)r—(aAs) © Wo(V') = ug(ay) © Swp(a)r— (@A) +(pwo(a) © tp © Wo (V')
= tug(A:) © Sw(a)r—(ah o L (V)

where (p,wp()) = (wo(p), @) = —(p, ) for the last equality. Since wo(A;) = —A+, we get
tAZ-* I(U) = sa*,(a,Ai-i-p)—TI(U/)'

Finally, we have (I(v'),a*) = (p,a*) — (v/;a) = (p,a) — (v/,a), so that the hypothesis r <
(ta, v ) <7+ 1 gives
r— (A, a) < (V',a) <r+1—(A;,a) and
(p+ ANiya) —r—1 < (I(V),a*) < (p+ Aj,a) — .
So
I(w’) o* (a,Ni+p)—r

Since o = o and 7 = 1, o = ] and

T I(w).

(a,Ai+p>—7’: (ai,Ai+p>—1:1.
U

Recall from Section 2.1 that By is the Hass diagram for the weak Bruhat order on affine
Grassmannian elements. We also have a bijection which associates to A € By, its corresponding
affine Grassmannian element wy. Let 1 < a < k. Since the multiplication of sg\k) by sgr,
is simply sgBRa, there exists a map T, on the set of alcoves in the Weyl chamber such that
To(Aw,) = Aw,,p,- By [1], interpreting k-Schur functions as elements of the affine nilCoxeter
algebra yields that 7, coincides with the translation ¢4, on the alcoves of the dominant Weyl
chamber. In particular, the partition A is irreducible if and only A,, belongs to B. By the
definition of the matrix ®(,. . in Section 3.1 we have ®(,., .. (A p) =1if A and p are two
irreducible partitions such that A — p on By, and <I>(T,17___7,nk)()\, p) =rq, + -+ 14, if and only if
A= (WURG), ..., A= (WU R,,) on By.

Proposition 6.6. There exists an involutive permutation matriz | such that

1 | = o

T‘1,...,7‘k) (rk,...,rl)

for any (r1,...,11) € Rgo.
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Proof. Let us write ® = ®,  g,)and ®p, . g,) for the matrix ® in which each R, is flipped
in Rp_q+1. We get that

(I)(Rl,...,Rk)()H,u) =1« wy — wy,

11
(11) {‘I)(Rl,...,Rk)(/\nu) = SR, Tt SR, WA > IA, Wy, WA = A, W

By Lemma 6.3, it makes sense to consider the matrix | of the restriction of the involution
I on the basis of k-bounded partitions. By Lemma 6.4 and (11), ®(g, . g\ pu) = 1 if
and only if @ERk,---,Rl)(I(“)’I(A)) = 1, and ®(g, . g,) = SR, + - + SR, if and only if
(I’ER17...7Rk)(I(N)’I()‘)) = SRpy1a, T T SRip1a,- Since nonzero entries of ®(p, . g,) are
either 1 or a sum R;, +---+ R;, with 1 <i; <k, this shows that |®g, gl = (I)IERk,...,Rl) and
thus by specializing 1®(,, I = (I)frk7---,r1)' O

The matrix @, ) exhibits thus two symmetries relating to the k-conjugation and the
involution I.

Proposition 6.7. The matrices | and & commute, and

(IQ)q)(T‘l,...,T‘k)(lg)_l = (IQ)Q)(T‘l,,Tk)(lQ) = q)i

T1yeensTh)

Proof. In order to show that  and | commute, it suffices to show that the involutions I and
wi commute at the level of their action on alcoves in the dominant Weyl chamber. On the one
hand, I is the operator t,wo. On the other hand, wy, sends the (k 4 1)-core associated to A to
its usual conjugate. Hence, if we have the reduced decomposition wy = s;, 54, - - - 54, we get the
reduced decomposition wy(y) = ;1 -+ - siz. Hence, the action of wy on the alcoves coincide to
that of —wg which commutes with ¢,wg and so 1€2 = Q. The second part of the proposition is
a direct consequence of Proposition 6.6 and (8). O

Drift under harmonic measures. Let Ay be the set of alcoves in the dominant Weyl chamber.
We denote by I'¢(Ay) the set of reduced finite alcove paths which start at A© and remain in
the dominant Weyl chamber. For any A in Aj;, write Ay € B}, its corresponding k-bounded
partition. Conversely recall that for any A € By, A,, € Ay is the alcove associated to \. Let ¢
be an extremal harmonic measure on By, associated to 7= (ry,...,r;) € R¥ and let (A,),>1 be
the central Markov chain on A, defined in Section 6.1. By considering for each n > 1 the center
vy, of the alcove A,,, we get a genuine random walk (vy,)p>1 on RF. The goal of this subsection
is to prove the law of large numbers for this random walk. This will be obtained by using the
matrix ® = ®,, . and a reduced version of the walk (vy,)n>0. For simplicity, we will assume
that @ is irreducible. Nevertheless, by continuity arguments, Theorem 6.10 below also holds in
full generality.

Observe that 1 is the maximal eigenvalue of ® for 77 € S;. We denote by X the corresponding
left eigenvector of ® normalized so that X (()) = 1. Let X be the right eigenvector also for the
eigenvalue 1 normalized so that (X, X) =1 (here (-,-) is the usual scalar product on vectors).

Let M), be the multigraph with set of vertices B such that for each affine reflection s, ,, we
have an edge between A and A" when A" = s,,A or ty,A" = sq,A. We color each edge e by
colors in {0,1,...,k} so that c(e) = i if @ = q; is simple and with c(e) = 0 otherwise *. Let
(gn)n21 be the Markov chain on the graph M, starting on A with transition probabilities

4Observe that My is the graph with adjacency matrix ® except that each arrow with weight ry; + -+ 74,
is split in m arrows with weights ry,,...,7;

m*



ALCOVE WALKS AND k-SCHUR FUNCTIONS 23

P(A S A = rc(e)%, with the convention rqg = 1. Note that (ﬁn)nzl is indeed a random
walk, since

X(\a) X(A\a) — X(\a)
e%:/ Te(e) X(\4) %{ (I)AA,)\A' X(\a) X(\a) L.
A gives A’ through e
The weight wt(y) of a path v = A9 <% A; 2 ... &% A, is defined by wt(y) = S0, Acier)s
with the convention that Ag = 0. We denote by ¢ the associated length function. Let I' (M)
and I'f(Ay) be respectively the sets of finite paths on My, and Ay, starting at Ap.

We define p : I' ¢ (M}y,) — Ay by p(y) = vy(n)+wt(y), where n is the length of v, and we extend
the map p to amap L : T'p(My) — T'f(Ay) where L(y) = (p(Ao), p(Ao, A1),...,p(Ao, ..., An)).
Let M : T'y(Ax) — I'f(My) be the map which sends a path (49 — Ay --- — A,) to the path
(fio LA S fln), where ¢; is the unique edge from A, ; to A; such that cle;)) =g if
A = 8aj,kAi—1 for some k € Z~y and 1 < j < k, and ¢; is the unique edge from A;_1 to A; with
color 0 if A; = s, ;A;—1 With o non-simple and k € Z~q. It is easy to see that LM = idrf(Ak)
and ML = ide(Mk)’

Lemma 6.8. The image of the Markov chain (z‘in)nzo through the map L is exactly the Markov
chain (An)n>0-

Proof. Let ~ be a finite path on Mj, of weight wt(v) and ending at A. By the Markov kernel
defined above,

P(y) = rm X (A7),

where () = rfl e rfk when wt(y) = S1A1 + -+ + BrAg, with §; € Z>(. Since L(7y) ends at
k

p(y) = A+ wt(y) and X(\) = gp(sg\ )) for any A € Py, we have

P(v) = P(L(7)).
O

Recall that for any n > 0, v, is the center of the alcove A,,. Denote by z;(n) = (v, «;) the
position of v, along the direction A;.

Lemma 6.9. Asn goes to infinity,

1 .
~i(n) — r; > XWX ().
e:A—().g’EMk

Proof. Set y;(n) = |x;(n)|. Then,

. 1
D, i) = g, i)
Let N > 1 and 0 < n < N. Suppose that y;(n + 1) — y;(n) = 1. Since z;(n) — y;(n) > 0, we
have (vy, Ai) < yi(n +1) < (vn41,Ai). Hence, the affine hyperplane H,, . (,41) separates the
alcoves A, and Ay 11, and thus Ay, 11 = 84, 4, (n41)An- Hence, y;(n+1) —yi(n) = 1 if and only if
the n-th edge of the path M (Ay,..., Ay) is colored by i. Hence y;(N) is the number of arrows
colored by i in the trajectory M(Aq,...,Ayn). Since M(Ay,...,Ay) is an irreducible random
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walk on My, the ergodic theorem for random walks on finite spaces yields that for each edge
eg € My, from A to A’,

1
—card({e € M(Ay,...,An), e = eg} —2> m(A)P(e),
N n—oo

where m is the invariant measure on M, with respect to P. We have

ST T X(Aw) X(Aa)
]P)An:A/ ATL— :A/ — Tce :¢ AT ANR
( | 1 ) e frorr%:to A’ « X()\A) Mt X(/\A)

thus the corresponding invariant measure is the unique vector m such that »_ . M, m(A) =1
and

Z SV %m(m =m(A).
A
m(A)

We get that < X0a)” A€ Mk) is a left eigenvector of ® with eigenvalue 1, thus is proportional

to X(Aa). In fact it is equal to X (A\4) since m is a measure and (X,X) = 1 so m(A) =
X(Aa)X(Aa). This gives

1 s - XOu) =
Ncard({e € M(vy,...,vN),e =¢€g} — X(/\A)X(/\A)Tc(eo)m = X(Aa)X(Aar)Te(eq)-

Since y;(N) is the number of arrows colored by i in the trajectory M(Aq,..., Ay) we obtain
Nyz( —>n—>oo T Z X )\A )\A’)-
e:A— A’
c(e)=i
U

Theorem 6.10.

(1) Asn goes to infinity, the normalized random walk (%v converges almost surely to

n)nZI
a vector v, € RF.

(2) Moreover for any i =1,...,k the coordinate of v, on A; satisfies
N SRi (k) (k)
v,(1) = ¢ (k) Z SXiaa) SAar

ZAGB )\A )‘IQ(A) 61(4)—)14,
=3

which is a rational function on R¥.
Proof. The previous lemma proves the first part of the theorem. It also shows that
vo(i)=mi Y X)X ().

e:A— A’
c(e)=i

By Proposition 6.7, the coordinates of the vector X are such that X (A\a) = iX (Aio(a)) for any

A € B where V = 3 g X(Aa)X(Migea)). Since the coordinates of X are the cp(sg\ )) with A
irreducible, we can write

N (k) (k) _ SR, (k) (k)
,UQO(Z) - ?7‘@' Z (70(8>\|Q(A) s)\A/) =¥ (k) (k) Z )‘IQ(A) s)‘A’

e A Al > AcB SxaSNg(a) eA—A!
c(e)=i c(e)=i
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Proposition 7.1 applied with ¢ = 1 will imply that v, (i) is indeed a rational function in
(r1,...,r,) and so v, is rational in (71,...,7x). O

7. SOME CONSEQUENCES

7.1. Limit formulas in the case ¢(A) = 0. For any k-irreducible partition x, we know by §
4.2 that there exists a polynomial P,, € A[T] such that

Pi(s1)
12 (k) _ 1~
(12) Sy A
here A € A is the determinant of the transition matrix between the bases {8?1) |0<a<kl-1}

and {S,(f) | K k-irreducible}. For any morphism ¢ : Ay — R nonnegative on the k-Schur
functions and such that p(A) # 0 we thus get

k) _ P(Pe)(p(s1))
(13) (o) = £,
Moreover, ¢(P,;) and p(A) are directly determined by the values r, = p(sg,),a =1,...,k since
P, and A belong to the subalgebra A. Also (¢(s1) is the spectral radius of the matrix ® = ¢(®).
Now assume that the morphism ¢ associated to 7is such that ¢(A) = 0. Then, we can consider
a sequence (7,)n>0 in U = RE | such that each morphism ¢, := f(,) satisfies ¢, (A) # 0. By
continuity of the map f we then get for any k-irreducible partition

S0 — iy PrBe)(@n(s1))
plsi’) = lim oA

so that the formulas (13) extends by continuity. In particular we then have ¢(P,)(s1) = 0.
Alternatively, one can consider for any nonnegative real s, the sets V, = {ﬁ €V |hy =s}and
U, = g(V,). For any 7 € U, such that A(7) = o(A) # 0 write P3(7) = ¢(P,)(s). We also set
es”) = s (7).

Proposition 7.1. For each irreducible k-partition k, the function 7+ s,(ik)(f') 1§ continuous
on Ug and rational. We have

P (7)
A(F)

In particular, the coordinates of f are continuous rational functions on each Us.

(14) st (7) =

K

7.2. The minimal boundary of B®). For k = 3, one can easily picture the domains V.

The condition to get a positive morphism ¢ indeed reduces to ¢(s1) > 0,p(s2) = ¢(hg) >

0,0(s3) = w(h3) > 0,0(s(1,1)) = ple2) > 0,0(s1,1,1)) = ples) > 0,0(s@2,1)) = 0790(38?171)) >0

and ¢(s(2,2)) > 0. We get moreover by a simple computation

3 _
S(2,1,1) = S(2)5(1,1)

(3)
(2,1,1

Jacobi-Trudi relations es = h%—hg, ez = hi’+h3—2h2h1, S(2,1) = hohy—hs and 5(2,2) = h%—hghl.
Now by using that ¢(s1) = 1 one can see that the previous inequalities are equivalent to
(15) hi=1,0<hy <1, 0<hs<h3and 2hy —h3 < 1.

By setting z = o(hs) and y = ¢(h3). This gives the domain V1 = OH*(B3) delimited in the
picture below by the x abscise, the blue line and the red parabola.

thus (s )) > 0 does not add any new constraint. We also have ¢(h1) = ¢(s1) = 1 and the
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FIGURE 2. Region V in 2 = hy and y = hg coordinates delimited by the three
curves hg =0, s29) =0 and e3 = 0.

Remark 7.2. If we consider the points of V1 = OHT(B3) such that hs = 0, we get the domain
{(1,h2,0) | hy € |0, %]) From example 5.6, one sees that its projection in R? is only strictly
contained in OHY(B2) = {(1,ha) | he € [0,1]} (see § 7.4).

7.3. Minimal boundary of Bj. By homogeneity of the Schur functions, one gets that for any
7= (ri,ra,...,m%) € R’;O and any positive real ¢

(16) F(tFr 26 ey k) = (thy, ... tFRy).

Also with the notation of § 7.1, we obtain that 8’H+(i5’k) = V_l is homeomorphic to U;. It follolvs
from _(16) that for each nonnegative real s, the sets U and V4 are completely determined by Uy
and V', respectively. Also, we can associate to any element 7 € Rgo the element in OH ™ (By)

obtained by computing h = f () and next renormalizing it according to (16) so that its first
coordinate becomes equal to 1. We also have the following description of the minimal boundary:

Proposition 7.3. OHT(By) is homeomorphic to S = {(r1,...,r) € Rgo |r+- - +rp =1}

Proof. We already know that OH " (By) = V1 is homeomorphic to U;. Also any 7= (rq,...,7%)
in U; is nonzero. There thus exists a unique positive real t(7) such that thry + 2=Dpy 4.0 4
tFr), = 1. This follows from the fact that the polynomial function p(t) = tFr{+t2F= Dot . . thry,
strictly increases on R~ with p(0) = 0 and lim;_, y o = +00. Then, () is the unique real root
of the polynomial p(T') — 1. The function ¢ : ¥ — ¢(7) is continuous on U7, therefore the function
u: Uy — Sy, defined by

u(ry,...,r) = EF)Fr, t(7)2F Dy, (R o)

is well-defined and continuous. If u(7) = u(R) with 7 and R in " (By), we have by applying
f
Fu(@) = ()L (7 ha, . 87 hy) = (((R)L, H(R)?ha, ... t(R)* ) = f(u(R)).
Thus t(7) = t(ﬁ) and we get 7 = R so that u is injective. Now given any 7 = (ri,...,7%) € Sk,
there exists a positive real s such that 7, = (s*r1,s2®~Dry, ... sFr.) belongs to OH T (By,). We
then have u(7) = 7. O

By observing that Ay = R[h1,...,hx] = Rleq, ..., e;] is in fact isomorphic to the algebra
A[X1, ..., Xk| of symmetric polynomials in k variables Xi,..., X over R, we can also get
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informations on the values taken by these variables for each point of OH™(By). For any r =

P, (7) —
1,...,k, write for short E, = %. Fach E, is a rational function on Uy which associates to

each element of U; the value of o(e,.) for the associated morphism .

Proposition 7.4. For each h € OH ' (By,), there exists a unique T = (x4, ..., x) € C* such that
the associated morphism ¢ : Ay — R, nonnegative on the k-Schur functions, coincides with the
specialization

o(P(X1,...,X,)) = P(xy,...,zp).

Moreover & is determined by the roots of the polynomial

k k—1
(T =JJA+Te) =1+t+> BT +rT"
r=1 r=2
where Eq, ..., E,. are rational continuous functions on U;.

Example 7.5.
(1) For k =2, we have Ey =1 and Ey = ry so that

(T) =1+t+tr.

(2) Fork = 3, we get by resuming Example 4.9 and using the equality =(1) = 1—2 (r1 + r3)—
4ry + (7’1 — 7’3)2 =0.

FEi=1 and Ey = %(7‘3 -7+ 1).
This gives
(T)=1+T+ %(7’3 — 7y + 1)T? 4+ r3T°.
In that simple case we get in fact polynomial functions independent of rs.

Remark 7.6. The previous proposition does not mean that OH™' (By,) is parametrized by the roots
of all the polynomials C(T). This is only true for the roots of the polynomials ((T') corresponding
to a point in U;.

7.4. Embedding and projective limit of the minimal boundaries. By Proposition 2.14,
each morphism ¢ : A¢,1 1) — R nonnegative on the (k + 1)-Schur functions yields by restriction
to A(x) C A1) a morphism nonnegative on the k-Schur functions. Here we use the natural
embedding Ay C A4y corresponding to the specialization A1 = 0. Unfortunately, this will
not give us a projection of OH™ (Byy1) on OHT(By) (see Remark 7.2). Nevertheless, we can
define such a projection g : OHT (Byy1) — OHT(By) by setting

Wk(hl, . ,hk, hk+1) = T} O f(?‘l, . ,Tk,Tk_H) = f(?‘l, . e ,Tk)
where f(ri,..., 7, g+1) = (h1,..., hg, hgy1). This indeed yields a surjective map since for any
(Ry,... k) € OHT(Bg), we can set (h},...,h}) = mz o f(r},...,r},0) where (rf,...,7) =
g(hy, ..., hY).
Proposition 7.7.

(1) The map 7, is continuous and surjective from OH (Byi1) to OHT (By).
(2) The inverse limit @Bk is homeomorphic to the minimal boundary of the ordinary Young
lattice, that is to the Thoma simplez.
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7.5. Rietsch parametrization of Toeplitz matrices. Consider the variety 7T%¢ C R’;O of
totally nonnegative unitriangular Toeplitz (k + 1) x (k + 1) matrices

o _
o1
-
M = _
hey G e
i hk hk—l hl 1_

The set 15 of totally positive unitriangular Toeplitz (k+ 1) x (k + 1) matrices is defined as the
subset of T%( of matrices M whose minors with no row and no column in the upper part of M
are positive. By Theorem 3.2.1 in [2], M is totally positive if and only if for a = 1,... k&, the
a X a, initial minors obtained by selecting a rows of M arbitrary and then the first a columns
of M are positive.

Lemma 7.8.

(1) The previous initial minors are equal to Schur functions sy, where the mazimal hook of
the partition A has length less or equal to k.

(2) We have T~ = Tq that is, each totally nonnegative unitriangular Toeplitz matriz is
the limit of a sequence of totally positive unitriangular Toeplitz matrices.

Proof. Let L = {i1,...,i,} be a subset of {1,...,k} such that iy < --- < i; and consider the
minor Ay, corresponding to the determinant of the submatrix My, (1 o). The diagonal of My, 4
is (hiy, hiy—1,- -+ , hiy—k+1) where i, —k+1 > ... > iy — 1 > 4;. Thus, by using the Jacobi-
Trudi formula we have A = s, _g41,..i—1,4;)- Lhe maximal hook length of the partition
A= (i —k+1,...,i—1,41) is equal to (i, —k+1)+ (k—1) = i, < k which proves assertion 1.

To get Assertion 2, consider M € T>¢ and U € T%(. For any real ¢t > 0 let U(¢) be the matrix
obtained by replacing each real h, by t*h, in U. Then U(t) belongs to T~¢. Indeed, with the
previous notation, if the minor Ay associated to U is equal to the Schur function sy, then the
corresponding minor in U(t) is equal to tiMlsy. The set T%¢ is stable by matrix multiplication and
we moreover get from Proposition 10 in [3] that the product matrix U(t)M is totally positive.
Since U (t) tends to the identity matrix when ¢ tends to 0, we obtain that U(¢)M tends to M as

desired. N
Observe in particular that for any a = 1,...,k, the initial minor Ap,_,, 1) gives the value
ro of the rectangle Schur function sg, evaluated in (hi,...,hx). In [16], Rietsch obtained the

following parametrization of 7%¢ by using the quantum cohomology of partial flag varieties.

Theorem 7.9. The map

{ T20—>U
(h1y ooy hi) — (1,000, 7%)

is a homeomorphism.

We now reprove this theorem from our preceding results.
Theorem 7.10. We have Tsg = V and T>¢ = V, in particular the map g : 50 — Uis a
homeomorphism.

Proof. Observe first we have V' C T¢. Indeed we know that each k-Schur function sg\k) evaluated

inh = (h1,...,h;) in V is positive. This is in particular true when A is a partition with maximal
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hook length less or equal to k£ but then, we get by Assertion 1 of the previous Lemma that
the associated Toeplitz matrix is totally positive because such k-Schur functions coincide with
ordinary Schur functions. Next consider a sequence fzn, n > 0 in V which converges to a limit
h € Tsg. Since h € Tsq, each 14 = A[k_ﬁl’k}(l_i),a =1,...,k is positive. Thus ¥ = (ry,...,rg)
belongs to U. Now h belongs to V and we have g(l_i) = 7 by definition of g. Theorem 5.5 then
implies that h €V soV is closed in T So- Now V is open in Ty because each h € V admits
a neighborhood contained in V' C T-( (V is an intersection of open subsets by definition). We
also have that 7% is connected (see for example the proof of Proposition 12.2 in [16]). So V is
nonempty both open and closed in Ty and we therefore have 75y = V. The second assertion
of Lemma 7.8 then gives Tso = To = V. O

Remarks 7.11.

(1) Since Tsg =V, we get by using the initial minors of M and Assertion 1 of Lemma 7.8
that h belongs to V if and only if the Schur functions sy with A of mazximal hook length
less or equal to k evaluated at h are positive. Thus the criterion to test the positivity
of our morphisms ® reduces to Schur functions and can be performed without using the
k-Schur functions.

(2) By Theorem 5.5 we are able to compute g = f~1 from the Perron Frobenius vectors of the
matrices . So our Theorem 7.10 permits in fact to compute the nonnegative Toeplitz
matriz associated to any point of U (i.e. to reconstruct M from the datum of the minors

Tl,...,Tk).
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