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Abstract

Learning the structure of Bayesian networks
from data is a NP-Hard problem that involves
an optimization task on a super-exponential
sized space. In this work, we show that in
most real life datasets, a number of the arcs
contained in the final structure can be pre-
screened at low computational cost with a
limited impact on the global graph score.
We formalize the identification of these arcs
via the notion of quasi-determinism, and pro-
pose an associated algorithm that reduces the
structure learning to a subset of the original
variables. We show, on diverse benchmark
datasets, that this algorithm exhibits a sig-
nificant decrease in computational time and
complexity for only a little decrease in per-
formance score.

1 INTRODUCTION

Bayesian networks are probabilistic graphical models
that present interest both in terms of knowledge dis-
covery and density estimation. Learning Bayesian net-
work from data has been however proven to be NP-
Hard by Chickering (1996).
There has been extensive work on tackling the ambi-
tious problem of Bayesian network structure learning
from observational data. Algorithms fall under two
main categories: constraint-based and score-based.

Constraint-based structure learning algorithms rely on
testing for conditional independencies that hold in the
data in order to reconstruct a Bayesian network en-
coding these independencies. The PC algorithm by
Spirtes et al. (2000) was the first practical application

of this idea, followed by several optimized approaches
as the fast incremental association (Fast-IAMB) algo-
rithm from Yaramakala and Margaritis (2005).

Score-based structure learning relies on the definition
of a network score, then on the search for the best-
scoring structure among all possible directed acyclic
graphs (DAGs). The number of possible DAG struc-
tures is super-exponential in the number of nodes,
which prevents exhaustive search when n is typically
larger than 30, even for the most recent algorithms
(Yuan and Malone (2012), Silander and Myllymaki
(2012) or Yuan et al. (2013)).
Most of the score-based algorithms used in practice
therefore rely on heuristics, as the original approach
from Cooper and Herskovits (1992) which supposed a
prior ordering of the variables to perform parent set
selection, or Bouckaert (1995) who proposed to search
through the structure space using greedy hill climb-
ing with random restarts. Since these first algorithms,
different approaches have been proposed: some based
on the search for an optimal ordering as Chen et al.
(2008) or Teyssier and Koller (2012), others on opti-
mizing the search task in accordance to a given score
(usually BIC) as de Campos and Ji (2011), Scanagatta
et al. (2015) and de Campos et al. (2017).

Meanwhile, data itself may contain determinism in do-
mains such as cancer risk identification (de Morais
et al. (2008)) or nuclear safety (Mabrouk et al. (2014)).
Moreover, data is increasingly collected and gener-
ated by software systems whether in social networks,
smart buildings, smart grid, smart cities or the in-
ternet of things (IoT) in general (Koo et al. (2016)).
These systems in their vast majority rely on rela-
tional data models or lately on semantic data mod-
els (El Kaed et al. (2016)) which cause deterministic
relationships between variables to be more and more
common in datasets. Determinism has been shown to
interfere with Bayesian network structure learning, no-
tably constraint-based methods as mentioned by Luo
(2006).

In this paper, we focus on score-based algorithms. Af-



ter reminding the background of Bayesian network
structure learning in section 2, we state some theo-
retical results in section 3, that enable to bridge the
gap between determinism and Bayesian network scor-
ing.
In section 4, exploiting the intuition brought by these
theoretical results, we propose and study the complex-
ity of the quasi deterministic screening algorithm. The
idea is that some of the arcs contained in the desired
Bayesian network can be learned during a quick screen-
ing phase where quasi-deterministic relationships are
detected, thus reducing the learning phase to a subset
of the original variables.
In practice on benchmark datasets, not only does this
algorithm accelerate the overall learning procedure
with very low performance loss, but it also leads to
sparser and therefore more interpretable graphs than
state of the art methods, as presented in section 5.
Finally, section 6 is dedicated to a discussion and
to numerous perspectives emerging from this work.
Proofs of all lemmas and propositions are available in
the supplementary material.

2 BAYESIAN NETWORK
STRUCTURE LEARNING

2.1 Bayesian networks

Let X = (X1, . . . , Xn) be a n-tuple of categor-
ical random variables with respective value sets
V al(X1), . . . , V al(Xn). The distribution of X is de-
noted by, ∀ x = (x1, . . . , xn) ∈ V al(X),

p(x) = P (X1 = x1, . . . , Xn = xn).

For I ⊂ J1, nK, we define XI = {Xi}i∈I , and the no-
tation p(·) and p(·|·) is extended to the marginals and
conditionals of any subset of variables: ∀(xI ,xJ) ∈
V al(XI∪J), p(xI |xJ) = P (XI = xI |XJ = xJ).
Moreover, let D be a dataset containing M i.i.d. in-
stances of (X1, . . . , Xn). All quantities empirically
computed from D will be written with a .D exponent
(e.g. pD refers to the empirical distribution with re-
spect to D).

A Bayesian network is an object B = (G, θ) where

• G = (V,A) is a directed acyclic graph (DAG) struc-
ture with V the set of nodes and A ⊂ V × V the
set of arcs. We suppose V = J1, nK where each node
i ∈ V is associated with the random variable Xi,
and πG(i) = {j ∈ V s.t. (j, i) ∈ A} is the set of i’s
parents in G. The exponent G may be dropped for
clarity when the referred graph is obvious.

• θ = {θi}i∈V is a set of parameters. Each θi defines
the local conditional distribution P (Xi|Xπ(i)).

More precisely, θi = {θxi|xπ(i)
} where for i ∈ V, xi ∈

V al(Xi) and xπ(i) ∈ V al(Xπ(i)),

θxi|xπ(i)
= p(xi|xπ(i)).

A Bayesian network B = (G, θ) encodes the follow-
ing factorization of the distribution of X: for x =
(x1, . . . , xn) ∈ V al(X),

p(x) =

n∏
i=1

p(xi|xπG(i)) =

n∏
i=1

θxi|xπG(i)
.

Such a factorization notably implies that each variable
is independent of its non-descendents given its parents.

2.2 Score-based approach to Bayesian
network structure learning

Suppose we have a scoring function s : DAGV → R,
where DAGV is the set of all possible DAG structures
with node set V . Score-based Bayesian network struc-
ture learning comes down to solving the following com-
binatorial optimization problem:

G∗ ∈ argmax
G∈DAGV

s(G). (1)

It can be shown that 2
n(n−1)

2 ≤ |DAGV | ≤ 2n(n−1)

where |V | = n. There are therefore 2O(n2) possible
DAG structures containing n nodes: the size of DAGV
is said to be super-exponential in |V |.
Most scoring functions used in practice are based on
the Max log-likelihood sore, that we now present.

The Max log-likelihood score Let l(θ : D) =
log(pθ(D)) be the log-likelihood of the set of parame-
ters θ given the dataset D.
For a given DAG structure G ∈ DAGV , we define the
Max log-likelihood (MLL) score of G associated with
a dataset D as:

sMLL(G : D) = max
θ∈ΘG

l(θ : D).

where ΘG is the set of all θ’s such that B = (G, θ) is a
Bayesian network.
The MLL score is very straightforward and intuitive,
but it favorizes denser structures: if G1 = (V,A1)
and G2 = (V,A2) are two graph structures such that
A1 ⊂ A2, we can show that: sMLL(G1 : D) ≤
sMLL(G2 : D).
There are two main (non-exclusive) approaches to
solve this problem:

• Constrain the structure space to avoid learning
overly complex graphs, which is the idea of hy-
brid structure learning algorithms such as the sparse
candidate algorithm presented by Friedman et al.
(1999), or the Max-Min Hill Climbing (MMHC) al-
gorithm introduced by Tsamardinos et al. (2006).



• Use a penalized version of the MLL score, as BIC
(Schwarz et al. (1978)) or BDe (Heckerman et al.
(1995)).

The BIC score We define the BIC score of G ∈
DAGV as follows: (it can vary from a −2 factor, we
chose to follow the definition of Koller and Friedman
(2009) coherent with the implementation by Scutari
(2009)):

sBIC(G : D) = sMLL(G : D)− log(M)

2
P(G)

where M is the number of observations in D, and P(G)
is the dimension (i.e. number of free parameters) of a
Bayesian network B = (G, θ), given by:

P(G) =

n∑
i=1

(|V al(Xi)| − 1) |V al(XπG(i))|,

where by convention, |V al(X∅)| = 1.

3 DETERMINISM AND BAYESIAN
NETWORKS

3.1 Definitions

We propose the following definitions of determinism
and deterministic DAGs using the notion of condi-
tional entropy. In this paper, determinism will always
be meant empirically, with respect to a dataset D.

Definition 1 Determinism wrt D
Given a dataset D containing observations of variables
Xi and Xj, the relationship Xi → Xj is deterministic
with respect to D iff HD(Xi|Xj) = 0,
where HD(Xi|Xj) = −

∑
xi,xj

pD(xi, xj) log(pD(xi|xj))

is the empirical conditional Shannon entropy.

It is straightforward to prove that Definition 1 relates
to a common and intuitive perception of determinism,
as the one presented by Luo (2006). Indeed,

HD(Xi|Xj) = 0

⇔ ∀xj ∈ V al(Xj),∃!xi ∈ V al(Xi) s.t. p
D(xi|xj) = 1.

This definition is naturally extended to XI and XJ for
I, J ⊂ V , i.e. XI → XJ is deterministic with respect
to D iff HD(XJ |XI) = 0.

Definition 2 Deterministic DAG wrt D
G ∈ DAGV is said to be deterministic with respect to
D iff ∀i ∈ V s.t. πG(i) 6= ∅, XπG(i) → Xi is determin-
istic wrt D.

3.2 Deterministic trees and MLL score

We first recall a lemma that relates the MLL score
presented in section 2 to the notion of empirical con-
ditional entropy. This result is well known and notably
stated by Koller and Friedman (2009).

Lemma 1 For G ∈ DAGV associated with variables
X1, . . . , Xn observed in a dataset D,

sMLL(G : D) = −M
n∑
i=1

HD(Xi|Xπ(i))

where by convention HD(Xi|X∅) = HD(Xi).

Proof: First let us rewrite the MLL score in terms of
data counts. We denote xi [m] the mth observation of
variable Xi in the dataset D. For a given G ∈ DAGV
and θ ∈ ΘG,

l(θ : D) =

M∑
m=1

log(pθ(x1 [m] . . . , xn [m])︸ ︷︷ ︸∏n
i=1 θxi[m]|xπ(i)[m]

)

=

M∑
m=1

n∑
i=1

log(θxi[m]|xπ(i)[m])

=

n∑
i=1

∑
xi,xπ(i)

CD(xi,xπ(i)) log(θxi|xπ(i)
)

where CD(·) is the count function associated with D:

∀I ⊂ V , CD(xI) =
M∑
m=1

IxI [m]=xI = MpD(xI).

Moreover, it is well known that for categorical vari-
ables, the maximum likelihood estimator θMLE is
given by the local empirical frequencies i.e.

θMLE
xi|xπ(i)

= pD(xi|xπ(i)) =
CD(xi,xπ(i))

CD(xπ(i))
.

Therefore we get:

sL(G : D) = max
θ∈ΘG

l(θ : D)

= l(θMLE : D)

=

n∑
i=1

∑
xi,xπ(i)

CD(xi,xπ(i)) log(θMLE
xi|xπ(i)

)

=

n∑
i=1

∑
xi,xπ(i)

MpD(xi,xπ(i)) log(pD(xi|xπ(i)))

= −M
n∑
i=1

HD(Xi|Xπ(i)).

�

The next proposition follows then straightforwardly.
We remind that a tree is a DAG in which each node has



exactly one parent, except one node (the root node)
which has none.

Proposition 1 If T is a deterministic tree with re-
spect to D then T is a solution of (1):

sMLL(T : D) = max
G∈DAGV

sMLL(G : D).

Proof: Let G ∈ DAGV with V = J1, nK and D con-
taining observations of X1, . . . , Xn respectively associ-
ated with nodes in V .
First, we notice that sL(G : D)is upper-bounded by
the score of a dense DAG. We have shown in Lemma
1 that:

sL(G : D) = −M
n∑
i=1

HD(Xi|Xπ(i)).

It is commonly known that all DAGs are compatible
with at least one ordering of the nodes, i.e. that ∃σ ∈
Sn such that

∀i, j ∈ V s.t. j ∈ πG(i), σ(j) < σ(i).

In other words, σ represents an ordering in which each
node comes after its parents.
Let σ ∈ Sn be an ordering compatible with G. Using
the fact that for any variables X,Y, Z, HD(X|Y ) ≥
HD(X|Y,Z) we then get that ∀i ∈ V \ {σ−1(1)},

HD(Xi|Xπ(i)) ≥ HD(Xi|Xσ−1({1,...,σ(i)−1})).

Plugging this inequality in the first equation, reorder-
ing the sum according to σ, and using the chain rule
for entropies, we get:

−s
L(G : D)

M
≥

n∑
i=1

HD(Xi|Xσ−1({1,...,σ(i)−1}))

= HD(Xσ−1(1))

+

n∑
σ(i)=2

HD(Xσ−1(σ(i))|Xσ−1({1,...,σ(i)−1}))

= HD(Xσ−1(1))

+HD(Xσ−1(2)|Xσ−1(1)) + . . .

+HD(Xσ−1(n)|Xσ−1(1), . . . , Xσ−1(n−1))

= HD(Xσ−1(1), . . . , Xσ−1(n))

= HD(X1, . . . , Xn),

which gives

sL(G : D) ≤ −M HD(X1, . . . , Xn).

Let T be as in the hypothesis of Proposition 1, we are
now going to prove that this bound is reached for T
which will give us the wanted result.

Without any loss of generality, let us suppose that T ’s
root is 1. Then,

sL(T : D) = −M
n∑
i=1

HD(Xi|Xπ(i))

= −M

HD(X1) +

n∑
i=2

HD(Xi|Xπ(i))︸ ︷︷ ︸
=0


≥ −M HD(X1, . . . , Xn)

= max
G∈DAGV

sL(G : D).

�

It is worth noticing that complete DAGs also maximize
the MLL score. The main interest of Proposition 1
resides in the fact that, under a strong hypothesis, we
are able to explicit a sparse solution of (1), with n− 1

arcs instead of n(n−1)
2 for a complete DAG.

3.3 Deterministic forests and the MLL score

The deterministic tree hypothesis of Proposition 1 is
very restrictive. In this section, it is extended to de-
terministic forests, defined as follows:

Definition 3 Deterministic forest wrt D
F ∈ DAGV is said to be a deterministic forest with

respect to D iff F =
p⋃
k=1

Tk, where T1, . . . , Tp are p

disjoint deterministic trees wrt D s.t.
p⋃
k=1

VTk = V .

In the expression
p⋃
k=1

Tk, ∪ is the canonical union for

graphs: G ∪G′ = (VG ∪ VG′ , AG ∪AG′).

For a given deterministic forest F wrt D, we define

R(F ) = {i ∈ V | πF (i) = ∅}

the set of F ’s roots (the union of the roots of each of
its trees), and note DR(F ) the restriction of D to the
observations of XR(F ).

Proposition 2 Suppose F is a deterministic forest
wrt D. Let G∗R(F ) be a solution of the structure learn-

ing optimization problem (1) for XR(F ) and the MLL
score i.e.

sMLL(G∗R(F ) : DR(F )) = max
G∈DAGR(F )

sMLL(G : DR(F )).

Then, G∗ = F ∪G∗R(F ) is a solution of (1) for X:

sMLL(G∗ : D) = max
G∈DAGV

sMLL(G : D).



Proof: Let F =
p⋃
k=1

Tk and G∗R(F ) be as in the

Proposition’s hypotheses. Without loss of generality,
we consider i to be the root of the tree Ti. Therefore,
R(F ) = J1, pK.
Let us also define the following root function that as-
sociates to each node the root of the tree it belongs
to:

r :

∣∣∣∣ V −→ R(F )
i 7−→ k s.t. Xi ∈ VTk .

Let G∗R(F ) ∈ DAGR(F ) such that:

G∗R(F ) ∈ argmax
G∈DAGR(F )

sL(G : D)

and G∗ = F ∪G∗R(F ) i.e.

• VG∗ = V

• AG∗ = (
⋃p
k=1ATk) ∪AG∗

R(F )

We will show as in the proof of Proposition 1 that

sLDAGV (G∗ : D) ≥ max
G∈DAGV

sLDAGV (G : D)

which implies that G∗ ∈ argmax
G∈DAGV

sLDAGV (G : D).

We write:

sLDAGV (G∗) = −M
n∑
i=1

HD(Xi|XπG∗ (i))

= −M
p∑
i=1

HD(Xi|XπG∗ (i))︸ ︷︷ ︸
(a)

−M
n∑

i=p+1

HD(Xi|XπG∗ (i))︸ ︷︷ ︸
(b)

We then compute separately the terms (a) and (b):

• Computation of (a)
The first term corresponds to the score of the graph
G∗R(F ) as an element of DAGR(F ).
Indeed, by construction of G∗,

∀i ∈ R(F ), πG
∗
(i) = πG

∗
R(F )(i).

Moreover, G∗R(F ) maximizes the MLL score on
DAGR(F ). We can now write:

(a) = −M
p∑
i=1

HD(Xi|XπG∗ (i))

= −M
p∑
i=1

HD(Xi|X
π
G∗
R(F ) (i)

)

= sL(G∗R(F ) : D)

= max
G∈DAGR(F )

sL(G : DR(F ))

= −MHD(X1, . . . , Xp).

• Computation of (b)
By construction of G∗,

∀i ∈ V \R(F ), πG
∗
(i) = πTr(i)(i).

Moreover since the Tk’s are deterministic trees, it
follows that

∀i ∈ V \R(F ), HD(Xi|Xπ
Tr(i) (i)

) = 0.

Therefore we can write

(b) = −M
n∑

i=p+1

HD(Xi|XπG∗ (i))

= −M
n∑

i=p+1

HD(Xi|Xπ
Tr(i) (i)

)

= 0.

Collecting the above results yields

sLDAGV (G∗) = (a)

= −MHD(X1, . . . , Xp)

≥ −MHD(X1, . . . , Xn)

= max
G∈DAGV

sL(G : D).

�

The idea of the proof relies on the fact that HD(X) =
HD(XR(F )): the information associated with all the
variables X1, . . . , Xn is entirely contained in the root
variables XR(F ).
It should be noted however that the assumptions of
Proposition 2 are always verified: if there is no deter-
minism in the dataset D, then R(F ) = V , and every
tree Tk is reduced to its root k. In that case solving
problem (1) for G∗R(F ) is the same as solving it for G∗.

As seen in section 2, the main issue with the MLL
score for structure learning is that it favors complete
graphs. However, a deterministic forest containing p
trees is very sparse (n− p arcs), and even if the graph
G∗R(F ) is dense, the graph G∗ may still satisfy sparsity
conditions.
Let us state a specific example: suppose the structure
learning problem (1) with the MLL score is regularized
by a restriction of the learning space DAGV to {G ∈
DAGV | max

i∈V
|πG(i)| ≤ P} for P ∈ N significantly

smaller than n. If F is a deterministic forest wrt D
containing p ≤ P trees, then G∗ = F ∪ GcompR(F ) (with

GcompR(F ) a fully connected DAG ∈ DAGR(F )) would be a

solution of problem (1) (from Proposition 2), while still
satisfying the regularizing condition max

i∈V
|πG(i)| ≤ P .

This idea is the inspiration for the algorithm presented
in the next section.



4 STRUCTURE LEARNING WITH
QUASI-DETERMINISM
SCREENING

4.1 Quasi-determinism

When it comes to Bayesian network structure learning
algorithms, even heuristics are computationally inten-
sive. We would like to use the theoretical results pre-
sented in section 3 to simplify the structure learning
problem.

Our idea is to reduce the problem to a subset of the
original variables, the roots of a deterministic forest, in
order to significantly decrease the overall computation
time. This is what we call determinism screening.

However, in many datasets, one does not observe real
empirical determinism, although there are very strong
relationships between some of the variables. We there-
fore propose to relax the aforementioned determinism
screening to quasi-determinism screening, where quasi
is meant with respect to a parameter ε: we talk about
ε−quasi-determinism.
There are several ways to measure how close a relation-
ship is from deterministic. Huhtala et al. (1999) con-
sider the minimum number of observations that must
be dropped from the data for the relationship to be
deterministic. Since we are in a score-maximization
context, we will rather use ε as a threshold on the em-
pirical conditional entropy. The following definition is
the natural generalization of Definition 1.

Definition 4 ε−quasi-determinism (ε−qd)
Given a dataset D containing observations of variables
Xi and Xj, the relationship Xi → Xj is ε−qd wrt D
iff HD(Xj |Xi) ≤ ε.

It has been seen in Proposition 2 that deterministic
forests are included in an optimal DAG with respect
to the MLL score. Moreover, forests have a very low
complexity in terms of number of arcs, which also im-
plies a low complexity in terms of number of parame-
ters if max

1≤i≤n
|V al(Xi)| is reasonably bounded.

We are therefore confident that a DAG built from the
union of a deterministic forest and an optimized root
DAG will have good performance in terms of penalized
log-likelihood scores as BDe or its asymptotical equiv-
alent BIC. Combining this intuition with the ε−qd cri-
teria presented in Definition 4, we propose the quasi-
determinism screening approach to Bayesian network
structure learning, defined in the next subsections.

4.2 Quasi-determinism screening algorithm

Algorithm 1 details how to find the simplest ε−qd
forest Fε from a dataset D and a threshold ε. Here

simplest refers to the complexity in terms of number
of parameters P(Fε).

This algorithm takes for input:

• D: a dataset containing M observations of X,

• ε: a threshold for quasi-determinism.

Algorithm 1 Quasi-determinism screening (qds)

Input: D , ε
1: Compute empirical conditional entropy matrix

HD =
(
HD(Xi|Xj)

)
1≤i,j≤n

2: for i = 1 to n do #identify the set of potential
ε−qd parents for each i

3: compute πε(i) = {j ∈ J1, nK \ {i} | HDij ≤ ε}
4: for i = 1 to n do #check for cycles in ε−qd rela-

tions
5: if ∃j ∈ πε(i) s.t. i ∈ πε(j) then
6: if HDij ≤ HDji then
7: πε(j)← πε(j) \ {i}
8: else
9: πε(i)← πε(i) \ {j}

10: for i = 1 to n do #choose the simplest among all
potential parents

11: π∗ε (i)← argmin
j∈πε(i)

|V al(Xj)|

12: Compute forest Fε = (VFε , AFε) where VFε =
J1, nK and AFε = {(π∗ε (i), i) | i ∈ J1, nK s.t. π∗ε (i) 6=
∅}
Output: Fε

The next proposition states that Algorithm 1 is well
defined.

Proposition 3 For any rightful input D and ε, the
output of Algorithm 1 is a forest (i.e. a directed acyclic
graph with at most one parent per node).

Proof: Let D and ε be objects that satisfy the input
constraints of Algorithm 1, and let Fε be the object
that is returned by Algorithm 1 with inputs D and ε.
Fε is a directed graph, by definition. Moreover, it is
built so that all of its nodes had at most one parent
(line 12).
To conclude, we therefore only have to prove that Fε
does not contain cycles.
Let us suppose that there is a cycle i1, . . . ip in Fε.
There are two cases:

1. Either all associated variables have the same en-
tropy: HD(Xi1) = HD(Xi2) = · · · = HD(Xip).
In which case, there is necessarily two succesive
nodes in the cycle il, il+1 such that il < il+1.
However, HD(Xil |Xil+1

) = HD(Xil+1
|Xil) ≤ ε,

which means that when the algorithm reaches



line 4, il+1 ∈ πε(il) and il ∈ πε(il+1). Since il
is treated before il+1 in the for loop, this would
result in il being removed from πε(il+1), thus pre-
venting for il to ever be il+1’s parent: we have a
contradiction.

2. Either there exist at least two variables in
the cycle that do not have the same entropy:
HD(Xik) 6= HD(Xik′ ), for k, k′ ∈ J1, pK.
In this case, there also exist two successive nodes
il, il+1 such that HD(Xil) 6= HD(Xil+1

).
Let us suppose that HD(Xil+1

) > HD(Xil). In
that case:

HD(Xil |Xil+1
) = HD(Xil+1

|Xil)

+HD(Xil)−HD(Xil+1
)︸ ︷︷ ︸

<0

< HD(Xil+1
|Xil)

≤ ε.

Therefore when the algorithm reaches line 4,
il+1 ∈ πε(il). But when treating either il or
il+1 during the for loop of lines 4-9, the test on
line 6 necessarily implies that il is removed from
πε(il+1) (since HD(Xil |Xil+1

) < HD(Xil+1
|Xil)).

This is in contradiction with the fact that il is
il+1’s parent.

Therefore, HD(Xil+1
) < HD(Xil), and arcs

in AFε follow nonincreasing entropies, with at
least one decrease since we suppose that all
entropies are not equal. This is not possible in a
cycle: there is a contradiction.

We conclude that there is no cycle in Fε. �

Proposition 4 Let ε, D and sota-BNSL be rightful
input to Algorithm 2, and G∗ε the associated output.
Then, if sota-BNSL is exact (i.e. always returns an
optimal solution) with respect to the MLL score, we
have the following lower bound for sMLL(G∗ε : D):

sMLL(G∗ε : D) ≥
(

max
G∈DAGV

sMLL(G : D)

)
−Mnε.

Proof: The structure of the proof is the same as the
one from Proposition 2. The only difference lies in the
computation of term (b):

(b) = −M
n∑

i=p+1

HD(Xi|XπG∗ (i))

= −M
n∑

i=p+1

HD(Xi|Xπ
Tr(i) (i)

)︸ ︷︷ ︸
≤ε

≥ −M(n− p)ε
≥ −Mnε.

plugging this in the separated expression of the MLL
score of G∗ in terms (a) and (b) yields the wanted
result.
�

4.3 Learning Bayesian networks using
quasi-determinism screening

We now present Algorithm 2 that uses quasi-
determinism screening to accelerate Bayesian network
structure learning. This algorithm takes the following
input:

• D: a dataset containing M observations of X,
• ε: a threshold for quasi-determinism,
• sota-BNSL: a state of the art structure learning al-

gorithm, taking for input a dataset, and returning a
Bayesian network structure.

Algorithm 2 Bayesian network structure learn-
ing with quasi deterministic screening (qds-
BNSL)

Input: D, ε, sota-BNSL
1: Compute Fε by running Algorithm 1 with input
D and ε

2: Identify R(Fε) = {i ∈ J1, nK | πFε(i) = ∅}, the set
of Fε’s roots.

3: Compute G∗R(Fε)
by running sota-BNSL on XR(Fε)

4: G∗ε ← Fε ∪G∗R(Fε)

Output: G∗ε

One of the advantages of the introduction of quasi-
determinism given by Definition 3 is that it straightfor-
wardly yields the following guarantee concerning the
graph G∗ε returned by Algorithm 2:

Proposition 5 Let ε, D and sota-BNSL be rightful
input to Algorithm 2, and G∗ε the associated output.
Then, if sota-BNSL is exact (i.e. always returns an
optimal solution) with respect to the MLL score, we
have the following lower bound for sMLL(G∗ε : D):

sMLL(G∗ε : D) ≥
(

max
G∈DAGV

sMLL(G : D)

)
−Mnε.

In practice, this bound is not very tight and this result
therefore has few applicative potential. However, it
shows that:

sMLL(G∗ε : D) −→
ε→0

max
G∈DAGV

sMLL(G : D).

In other words, ε 7→ sMLL(G∗ε : D) is continuous in 0,
and Proposition 4 generalizes Proposition 2.

Algorithm 2 is therefore promising, notably if for small
ε we can significantly decrease the number of variables
to be considered by sota-BNSL. We would in this case
have a much faster algorithm for a controlled perfor-
mance loss.



4.4 Complexity analysis

Complexity of the state of the art algorithm
The number of possible DAG structures being super
exponential in the number of nodes, state of the art
algorithms do not entirely explore the structure space
but use smart caching and pruning methods to have a
good performance & computation time trade-off.
Let sota-BNSL be a state of the art Bayesian network
structure learning algorithm and Csota(M,n) be its
complexity.
Csota(M,n) should typically be thought of as linear in
M and exponential, or at least high degree polynomial,
in n for the best algorithms.

Complexity of Algorithm 1 We have the follow-
ing decomposition of the complexity of Algorithm 1:

1. Lines 1-3: O(Mn2). Computation of HD: we
need counts for every couple (Xi, Xj) for i < j
(each time going through all rows of D), which

implies M n(n−1)
2 operations.

2. lines 4-9: O(n2). Going through all elements of
HD once.

3. lines 10-12: O(n2). Going through all elements of
HD once.

Overall one has that CAlg1(M,n) = O(Mn2).

Complexity of Algorithm 2 For a given dataset
D, we define:

∀ε ≥ 0, nr(ε) = |R(Fε)|.

The function nr(·), associates to ε ≥ 0 the number of
roots of the forest Fε returned by Algorithm 1. The
complexity of Algorithm 2 then decomposes as:

1. Line 1: O(Mn2). Run of Algorithm 1.

2. Lines 2-4: Csota(M,nr(ε)). Run of sota-BNSL on
reduced dataset DR(Fε) with nr(ε) columns.

This yields CAlg2(M,n) = O(Mn2) +Csota(M,nr(ε)).
We are interested in how much it differs from
Csota(M,n), which depends mainly on:

• how nr(ε) compares to n,

• how Csota(M,n) varies with respect to n.

It is hard to obtain a theoretical difference Csota −
CAlg2, since it is not clear how to estimate the com-
plexity of state of the art learning algorithms, of-
ten based on local search heuristics. However, we
know that all Bayesian network structure learning al-
gorithms are very time-intensive, which lets us expect
an important decrease in computational time for Al-
gorithm 2 compared to a state of the art algorithm.
In the next section, we run a state of the art struc-
ture learning algorithm and Algorithm 2 on bench-
mark datasets in order to confirm this intuition.

5 EXPERIMENTS

Data Table 1 summarizes the data used in our ex-
periments. We chose open-source1 datasets presented
by Davis and Domingos (2010) which contained more
than 50 variables: 20 Newsgroup, Adult, Book (Ziegler
et al. (2005)), Covertype, KDDCup 2000, MSWeb,
Plants and Reuters-52, some of which are also accessi-
ble on the UCI machine learning repository (Lichman
(2013)). Moreover, as it was done by Scanagatta et al.
(2016), we chose the largest Bayesian networks avail-
able in the literature2, for each of which we simulated
10000 observations: Andes, Hailfinder, Hepar 2, Link,
Munin 1-4, PathFinder and Win95pts.

Table 1: Datasets presentation

name short name n M
20 newsgroups 20ng 930 11293
adult adult 125 36631
book book 500 8700
covertype covertype 84 30000
kddcup 2000 kddcup 64 180092
msweb msweb 294 29441
plants plants 69 17412
reuters 52 r52 941 6532
andes andes 223 10000
hailfinder hailfinder 56 10000
hepar 2 hepar2 70 10000
link link 724 10000
munin 1 munin1 186 10000
munin 2 munin2 1003 10000
munin 3 munin3 1041 10000
munin 4 munin4 1038 10000
pathfinder pathfinder 109 10000
windows 95 pts win95pts 76 10000

Code and selected state of the art algorithm
Most of the code associated with this project was done
in R, enabling an optimal exploitation of the bnlearn

package from Scutari (2009), which is a very good ref-
erence among open-source packages treating Bayesian
networks structure learning.
We need a state of the art Bayesian network structure
learning algorithm, both to use inside Algorithm 2 af-
ter the quasi-determinism screening phase, and to run
separately on the full dataset to use as a reference for
evaluating qds-BNSL. After carefully evaluating sev-
eral algorithms implemented in the bnlearn package,
we chose to use Greedy Hill Climbing with 20 random
restarts as it consistently outperformed other built-in

1http://alchemy.cs.washington.edu/papers/
davis10a/

2http://www.bnlearn.com/bnrepository/

http://alchemy.cs.washington.edu/papers/davis10a/
http://alchemy.cs.washington.edu/papers/davis10a/
http://www.bnlearn.com/bnrepository/


algorithms both in time and score. In what follows,
we refer to this algorithm as sota-BNSL.

Choice of ε for qds-BNSL An approach to choos-
ing ε in the case of the qds-BNSL algorithm is to pick
values for nr(ε), and manually find the corresponding
values for ε. For a given dataset and x ∈ [0, 1], we
define εx = n−1

r (bxnc). In other words, εx is the value
of ε for which the number of roots of the deterministic
forest Fε represents the proportion x of the total num-
ber of variables.
It must be noted that once HD is computed and stored,
evaluating nr(ε) can be done in constant time, and
finding one of nr(·)’s quantiles is doable in at most
O(log(n)) operations (dichotomy), which is negligible
compared to the overall complexity of the screening
phase.

Algorithm evaluation The algorithms are evalu-
ated using 3 axes of performance:

• Bayesian network BIC score: this corresponds to the
sBIC presented in section 2. It is the most straight-
forward penalized-likelihood score, used in a number
of recent papers as de Campos and Ji (2011), Yuan
et al. (2011), Scanagatta et al. (2015), Scanagatta
et al. (2016). It is quickly computable, with efficient
caching, and does not require the tuning of a hyper-
parameter.

• Bayesian network number of arcs. The complexity of
Bayesian networks is included in the aforementioned
BIC score through the number of parameters. But
it is interesting to look at the number of arcs, since
this is closer in practice to how complex a Bayesian
network structure appears to a human being, and
therefore to its interpretability.

• Computing time trun of the structure learning algo-
rithm (all algorithms were run on the same machine).

We now present the obtained results for our selected
state of the art algorithm sota-BNSL, and 3 versions
of qds-BNSL. We picked the following values for nr(ε):
0.9n, 0.75n and 0.5n (corresponding to the values ε0.9,
ε0.75 and ε0.5 of ε), in order to reduce the learning task
to 90%, 75% and 50% of the original variables respec-
tively.
The results are shown in Tables 2-4, one per evalua-
tion criterion. In each table, the actual value of the
criterion is displayed for sota-BNSL, and the relative
difference is displayed for the three versions of qds-
BNSL we consider (ε0.9, ε0.75 and ε0.5).

It appears in Table 2 that the decrease in BIC score is
smaller than 5% for all the considered datasets when
90% variables remain after the pre-screening (ε0.9),
and for most of them when 75% variables remain

Table 2: BIC score averaged by observation. Every
result that is less than 5% smaller than sota-BNSL’s
score is boldfaced.

dataset sota qdsε0.9 qdsε0.75 qdsε0.5
(%) (%) (%)

20ng -144.22 -0.56 -1.83 -4.16
adult -13.09 -0.18 -0.10 -3.56
book -35.93 -0.41 -0.98 -3.64
covertype -13.89 -0.10 -0.96 -10.37
kddcup -2.40 -0.26 -0.84 -3.40
msweb -9.90 -0.02 -0.02 -0.42
plants -13.22 -2.25 -6.93 -19.80
r52 -97.44 -0.60 -1.58 -5.09
andes -93.28 -0.48 -6.21 -16.52
hailfinder -49.84 -0.05 -2.67 -10.06
hepar2 -32.63 -0.28 -1.33 -3.15
link -221.50 -0.01 -0.25 -16.14
munin1 -43.49 -0.06 -0.17 -10.05
munin2 -171.82 -0.02 -0.02 -1.83
munin3 -172.44 0.00 0.00 -0.89
munin4 -194.86 -0.03 -0.03 -3.09
pathfinder -28.59 -0.14 -0.11 -4.30
win95pts -9.31 0.00 -1.00 -8.72

(ε0.75). This is also observed with ε0.5 for datasets that
contain a lot of very strong one to one relationships as
20 newsgroup, kddcup 2000, msweb, munin2-4, etc.
Table 3 and Table 4 show a significant decrease in com-
putational time and model complexity for qds-BNSL,
which consistently intensifies when ε gets larger.

In the best cases, we have both a very small decrease
in BIC score, and an important decrease in computa-
tional time, e.g. the algorithm qds-BNSL with ε = ε0.5
is 43% faster for msweb, and 61% for munin 3, while
producing graphs that score less that 1% below sota-
BNSL. If we allow a 5% score decrease, qds-BNSL can
be up to around 70% faster (20 newgroups, kddcup
2000, hepar2, pathfinder).
Even when only 25% of the variables are eliminated
by the screening (ε = ε0.75), we observe important de-
creases in computational time: more than 30% less
for 20 newsgroup, covertype, kddcup 2000, reuters 52,
hepar 2, munin 3 for scores that stay in the 5% tol-
erance range from sota-BNSL’s score. These results
confirm the complexity analysis of the previous sec-
tion, in which we supposed that the screening phase
had a very small computational cost compared to the
standard structure learning phase.

Graphs learnt by qds-BNSL are consistently less com-
plex than those learnt by sota-BNSL. Several graphs
learnt with ε0.5-qd screening have more than 25% less



Table 3: Computation time (seconds). Every result
that corresponds to a BIC score less than 5% smaller
than sota-BNSL’s score is boldfaced.

dataset sota qdsε0.9 qdsε0.75 qdsε0.5
(seconds) (%) (%) (%)

20ng 19, 521 -8.98 -38.35 -70.04
adult 1, 02 -6.61 -22.03 -61.20
book 3, 851 -11.80 -23.68 -57.97
covertype 540 -10.53 -36.52 -72.67
kddcup 1, 531 -6.91 -37.40 -70.79
msweb 2, 711 7.23 5.65 -43.18
plants 228 -17.10 -39.60 -74.94
r52 17, 194 -18.62 -41.81 -74.75
andes 792 -4.43 -30.40 -70.93
hailfinder 47 -0.09 -22.81 -57.69
hepar2 76 -3.60 -40.43 -68.20
link 6, 668 -10.77 -12.40 -66.32
munin1 497 6.18 -21.44 -62.68
munin2 7, 093 -20.46 -21.66 -43.68
munin3 10, 438 -34.88 -34.96 -61.39
munin4 7, 774 -4.29 -0.98 -49.15
pathfinder 221 -12.97 -34.42 -69.36
win95pts 114 -2.98 -29.41 -66.41

arcs while still scoring less than 5% below state of the
art: 20 newsgroups, book, kddcup 2000, hepar 2 and
pathfinder.

6 DISCUSSION

We have seen that both in theory and in practice,
the quasi-determinism screening approach enables a
decrease in computational time and complexity for a
small decrease in graph performance. This tradeoff is
all the more important that there actually are strong
one to one relationships in the data, that can be de-
tected during the screening phase, thus enabling a de-
crease in the number of variables to be considered by
the state of the art structure learning algorithm dur-
ing the second phase of Algorithm 2.
Optimal cases for this algorithm take place when we
get nr(ε) significantly smaller than n for ε reasonably
small (this is what happens for datasets 20 newsgroup,
munin2-4 and webkb among others).
We have also tested our algorithm on industrial de-
scriptive metadatasets, for which most of the variables
possess empirically-deterministic parents: in this case
we have nr(ε = 0) very small with respect to n (typ-
ically nr(ε = 0) ≈ 2 − 3 for n ≈ 80). This is a very
specific case (data stored in relational databases in al-
most perfect third normal form), which is however in-
teresting as it is highly advantageous for qds-BNSL,

Table 4: Model complexity (number of arcs). Every
result that corresponds to a BIC score less than 5%
smaller than sota-BNSL’s score is boldfaced.

dataset sota qdsε0.9 qdsε0.75 qdsε0.5
(%) (%) (%)

20ng 3136 -4.50 -14.89 -31.89
adult 371 3.23 7.01 -13.75
book 1296 -4.55 -9.49 -24.92
covertype 337 -0.89 -11.28 -37.69
kddcup 217 -1.38 -13.36 -31.80
msweb 464 -0.86 -0.65 2.37
plants 291 -8.93 -18.56 -41.58
r52 2713 -3.65 -9.14 -25.14
andes 336 -0.89 -7.14 -22.92
hailfinder 64 -1.56 6.25 -15.62
hepar2 92 -3.26 -21.74 -30.43
link 1146 -1.83 -0.44 -22.43
munin1 208 0.00 0.96 -9.62
munin2 879 0.00 0.00 -13.31
munin3 898 0.00 0.00 -7.80
munin4 903 0.00 0.00 -8.53
pathfinder 161 -4.35 -8.70 -24.22
win95pts 115 0.00 -0.87 -12.17

which can be up to 20 times faster than state of the
art for no performance loss.

Our main research perspective is to be able to antici-
pate how good the tradeoff may be before running any
algorithm all the way through, saving us from trying
qds-BNSL on datasets in which there are absolutely
no strong one to one relationships, and enabling us
to choose an optimal value of ε on datasets for which
there is a lot of potential for computational time win
with controlled performance loss.
The bound presented in Proposition 4 concerns the
MLL score and is far from tight in practice. However,
if we could find a tight bound on the BIC score of the
graphs generated by qds-BNSL (that should depend
notably on K = max

1≤i≤n
|V al(Xi)|), it would be much

easier to estimate the most promising value of ε.

Besides, we still have potential to improve the qds-
BNSL algorithm, by paralellizing the computation of
HD, and implementing it in C instead of R.

Finally, we have some insights on ways to generalize
our quasi-determinism screening idea.
The proof of Proposition 2 suggests that the result still
holds when F is any kind of deterministic DAG (and
not only a forest). We could therefore use techniques
that detect determinism in a broader sense than only
one to one, to make the screening more efficient. For
this purpose we could take inspiration from papers of



the knowledge discovery in databases (KDD) commu-
nity, as Huhtala et al. (1999), Liao et al. (2005) or more
recently Papenbrock et al. (2015) which compares dif-
ferent functional dependencies discovery methods.
We also could broaden our definition of quasi-
determinism: instead of considering the information-
theoretic quantity HD(X|Y ) to describe the strength

of the relationship Y → X, one could choose HD(X|Y )
HD(X)

,

which represents the proportion of X’s entropy that is

explained by Y . Moreover, H
D(X|Y )
HD(X)

≤ ε can be rewrit-

ten as MID(X,Y )
H(X) ≥ 1− ε, which gives another lighting

to quasi-determinism screening: for a given variable
X, this comes down to finding a variable Y such that
MID(X,Y ) is high. This is connected to the idea of
Chow and Liu (1968), and later Cheng et al. (1997), for
whom pairwise empirical mutual information is cen-
tral. This alternate definition of ε−quasi-determinism
does not change the algorithms and complexity con-
siderations described in section 4. Lastly, we could
consider other definitions of entropy as the ones pre-
sented by Rényi et al. (1961).
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