S. Li, P. Butler, Y. Wang, Y. Hu, D. C. Han et al., The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells, Proceedings of the National Academy of Sciences, vol.93, issue.6, p.3546, 2002.
DOI : 10.1002/(SICI)1097-0169(1998)40:4<317::AID-CM1>3.0.CO;2-8

A. Bershadsky, N. Q. Balaban, and B. Geiger, Adhesion-Dependent Cell Mechanosensitivity, Annual Review of Cell and Developmental Biology, vol.19, issue.1, p.677, 2003.
DOI : 10.1146/annurev.cellbio.19.111301.153011

V. Vogel and M. P. Sheetz, Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways, Current Opinion in Cell Biology, vol.21, issue.1, p.38, 2009.
DOI : 10.1016/j.ceb.2009.01.002

V. Vogel and M. Sheetz, Local force and geometry sensing regulate cell functions, Nature Reviews Molecular Cell Biology, vol.323, issue.4, p.265, 2006.
DOI : 10.1016/S0022-2836(02)01001-X

L. Trichet, J. L. Digabel, R. J. Hawkins, S. R. Vedula, M. Gupta et al., Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness, Proceedings of the National Academy of Sciences, vol.8, issue.3, p.6933, 2012.
DOI : 10.1016/j.ccr.2005.08.010

K. Anselme and M. Bigerelle, Topography effects of pure titanium substrates on human osteoblast long-term adhesion, Acta Biomaterialia, vol.1, issue.2, p.211, 2005.
DOI : 10.1016/j.actbio.2004.11.009

A. Folch and M. Toner, Microengineering of Cellular Interactions, Annual Review of Biomedical Engineering, vol.2, issue.1, p.227, 2000.
DOI : 10.1146/annurev.bioeng.2.1.227

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Geometric Control of Cell Life and Death, Science, vol.276, issue.5317, p.1425, 1997.
DOI : 10.1126/science.276.5317.1425

M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen et al., The extracellular matrix guides the orientation of the cell division axis, Nature Cell Biology, vol.32, issue.10, p.947, 2005.
DOI : 10.1007/s00249-003-0282-2

J. Y. Park, D. H. Lee, E. J. Lee, and S. H. Lee, Study of cellular behaviors on concave and convex microstructures fabricated from elastic PDMS membranes, Lab on a Chip, vol.11, issue.14, p.2043, 2009.
DOI : 10.1038/nbt712

S. J. Lee and S. Yang, Micro glass ball embedded gels to study cell mechanobiological responses to substrate curvatures, Review of Scientific Instruments, vol.3, issue.9, p.94302, 2012.
DOI : 10.1007/s11340-007-9119-8

D. H. Kim, P. P. Provenzano, C. L. Smith, and . Levchenko, Matrix nanotopography as a regulator of cell function, The Journal of Cell Biology, vol.62, issue.3, p.351, 2012.
DOI : 10.1038/nmat1365

T. Nagasawa, Microenvironmental niches in the bone marrow required for B-cell development, Nature Reviews Immunology, vol.10, issue.2, p.107, 2006.
DOI : 10.1038/nm973

R. Shechter, A. London, and M. Schwartz, Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates, Nature Reviews Immunology, vol.328, issue.3, p.206, 2013.
DOI : 10.1126/science.1185837

M. Bigerelle, S. Giljean, and K. Anselme, Existence of a typical threshold in the response of human mesenchymal stem cells to a peak and valley topography, Acta Biomaterialia, vol.7, issue.9, p.3302, 2011.
DOI : 10.1016/j.actbio.2011.05.013

M. Bigerelle, K. Anselme, B. Noël, I. Ruderman, P. Hardouin et al., Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response, Biomaterials, vol.23, issue.7, p.1563, 2002.
DOI : 10.1016/S0142-9612(01)00271-X

A. Mathur, S. W. Moore, M. P. Sheetz, and J. Hone, The role of feature curvature in contact guidance, Acta Biomaterialia, vol.8, issue.7, p.2595, 2012.
DOI : 10.1016/j.actbio.2012.03.025

K. H. Song, S. J. Park, D. S. Kim, and J. Doh, Sinusoidal wavy surfaces for curvature-guided migration of T??lymphocytes, Biomaterials, vol.51, p.151, 2015.
DOI : 10.1016/j.biomaterials.2015.01.071

J. R. Soiné, N. Hersch, G. Dreissen, N. Hampe, B. Hoffmann et al., Measuring cellular traction forces on non-planar substrates, Interface Focus, vol.105, issue.5, p.20160024, 2016.
DOI : 10.1371/journal.pcbi.1004076

M. C. Kim, C. Kim, L. Wood, D. Neal, R. D. Kamm et al., Integrating focal adhesion dynamics, cytoskeleton remodeling, and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix, Integrative Biology, vol.33, issue.11, p.1386, 2012.
DOI : 10.1016/j.biomaterials.2011.12.002

J. A. Sanz-herrera, P. Moreo, J. M. García-aznar, and M. Doblaré, On the effect of substrate curvature on cell mechanics, Biomaterials, vol.30, issue.34, p.6674, 2009.
DOI : 10.1016/j.biomaterials.2009.08.053

M. E. Chicurel, C. S. Chen, and D. E. Ingber, Cellular control lies in the balance of forces, Current Opinion in Cell Biology, vol.10, issue.2, p.232, 1998.
DOI : 10.1016/S0955-0674(98)80145-2

N. Wang, K. Naruse, D. Stamenovi´cstamenovi´c, J. J. Fredberg, S. M. Mijailovich et al., Mechanical behavior in living cells consistent with the tensegrity model, Proceedings of the National Academy of Sciences, vol.75, issue.3, p.7765, 2001.
DOI : 10.1016/S0006-3495(98)74076-7

N. Wang, J. P. Butler, and D. E. Ingber, Mechanotransduction across the cell surface and through the cytoskeleton, Trends in Cell Biology, vol.3, issue.8, p.257, 1993.
DOI : 10.1016/0962-8924(93)90050-B

N. Wang, I. M. Toli´ctoli´c-nørrelykke, J. Chen, S. M. Mijailovich, J. P. Butler et al., Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells, American Journal of Physiology-Cell Physiology, vol.4, issue.3, p.606, 2002.
DOI : 10.1016/S0006-3495(94)81017-3

J. Pourati, A. Maniotis, D. Spiegel, J. L. Schaffer, J. P. Butler et al., Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells?, American Journal of Physiology-Cell Physiology, vol.103, issue.37, p.1283, 1998.
DOI : 10.1139/o95-041

S. Wendling, P. Cañadas, and P. Chabrand, Toward a Generalised Tensegrity Model Describing the Mechanical Behaviour of the Cytoskeleton Structure, Computer Methods in Biomechanics and Biomedical Engineering, vol.108, issue.1, p.45, 2003.
DOI : 10.1016/S0006-3495(00)76725-7

K. Wang and D. Sun, Influence of semiflexible structural features of actin cytoskeleton on cell stiffness based on actin microstructural modeling, Journal of Biomechanics, vol.45, issue.11, p.1900, 2012.
DOI : 10.1016/j.jbiomech.2012.05.030

P. Cañadas, V. M. Laurent, C. Oddou, D. Isabey, and S. Wendling, A Cellular Tensegrity Model to Analyse the Structural Viscoelasticity of the Cytoskeleton, Journal of Theoretical Biology, vol.218, issue.2, p.155, 2002.
DOI : 10.1006/jtbi.2002.3064

C. Sultan, D. Stamenovi´cstamenovi´c, and D. E. Ingber, A Computational Tensegrity Model Predicts Dynamic Rheological Behaviors in Living Cells, Annals of Biomedical Engineering, vol.32, issue.4, p.520, 2004.
DOI : 10.1023/B:ABME.0000019171.26711.37

C. Lim, E. Zhou, and S. Quek, Mechanical models for living cells???a review, Journal of Biomechanics, vol.39, issue.2, p.195, 2006.
DOI : 10.1016/j.jbiomech.2004.12.008

Y. Ujihara, M. Nakamura, H. Miyazaki, and S. Wada, Proposed Spring Network Cell Model Based on a Minimum Energy Concept, Annals of Biomedical Engineering, vol.67, issue.4, p.1530, 2010.
DOI : 10.1152/ajpcell.00269.2001

J. L. Milan, S. Wendling-mansuy, M. Jean, and P. Chabrand, Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation, Biomechanics and Modeling in Mechanobiology, vol.115, issue.Pt 15, p.373, 2007.
DOI : 10.1152/ajpcell.00269.2001

URL : https://hal.archives-ouvertes.fr/hal-00475545

J. Milan, S. Lavenus, P. Pilet, G. Louarn, S. Wendling et al., Computational model combined with in vitro experiments to analyse mechanotransduction during mesenchymal stem cell adhesion, European Cells and Materials, vol.25, p.97, 2013.
DOI : 10.22203/eCM.v025a07

URL : https://hal.archives-ouvertes.fr/hal-00961227

M. Jean, Computer methods in applied mechanics and engineering, p.235, 1999.

A. J. Maniotis, C. S. Chen, and D. E. Ingber, Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure, Proceedings of the National Academy of Sciences, vol.307, issue.1, p.849, 1997.
DOI : 10.1038/307363a0

K. J. Green, J. C. Talian, and R. D. Goldman, Relationship between intermediate filaments and microfilaments in cultured fibroblasts: Evidence for common foci during cell spreading, Cell Motility and the Cytoskeleton, vol.83, issue.4, p.406, 1986.
DOI : 10.1002/cm.970060406

M. P. Sheetz, D. P. Felsenfeld, and C. G. Galbraith, Cell migration: regulation of force on extracellular-matrix-integrin complexes, Trends in Cell Biology, vol.8, issue.2, p.51, 1998.
DOI : 10.1016/S0962-8924(98)80005-6

Y. Fang and K. W. Lai, Modeling the mechanics of cells in the cell-spreading process driven by traction forces, Physical Review E, vol.279, issue.4, p.42404, 2016.
DOI : 10.1016/j.actbio.2007.12.007

F. Gittes, B. Mickey, J. Nettleton, and J. Howard, Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape, The Journal of Cell Biology, vol.120, issue.4, p.923, 1993.
DOI : 10.1083/jcb.120.4.923

S. Deguchi, T. Ohashi, and M. Sato, Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells, Journal of Biomechanics, vol.39, issue.14, p.2603, 2006.
DOI : 10.1016/j.jbiomech.2005.08.026

M. P. Stewart, J. Helenius, Y. Toyoda, S. P. Ramanathan, D. J. Muller et al., Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding, Nature, vol.69, issue.7329, p.226, 2011.
DOI : 10.1016/S0006-3495(95)79897-6

O. Zinger, K. Anselme, A. Denzer, P. Habersetzer, M. Wieland et al., Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography, Biomaterials, vol.25, issue.14, p.2695, 2004.
DOI : 10.1016/j.biomaterials.2003.09.111

A. E. Pelling, F. S. Veraitch, C. P. Chu, C. Mason, and M. A. Horton, Mechanical dynamics of single cells during early apoptosis, Cell Motility and the Cytoskeleton, vol.2, issue.2, p.409, 2009.
DOI : 10.1016/j.nano.2006.11.006

M. C. Gustin, X. L. Zhou, B. Martinac, and C. Kung, A mechanosensitive ion channel in the yeast plasma membrane, Science, vol.242, issue.4879, p.762, 1988.
DOI : 10.1126/science.2460920

J. Dai, H. P. Ting-beall, and M. P. Sheetz, The Secretion-coupled Endocytosis Correlates with Membrane Tension Changes in RBL 2H3 Cells, The Journal of General Physiology, vol.26, issue.1, p.1, 1997.
DOI : 10.1016/S0006-3495(92)81904-5

H. T. Mcmahon and J. L. Gallop, Membrane curvature and mechanisms of dynamic cell membrane remodelling, Nature, vol.278, issue.7068, p.590, 2005.
DOI : 10.1074/jbc.M302865200

B. Martinac, Mechanosensitive ion channels: molecules of mechanotransduction, Journal of Cell Science, vol.117, issue.12, p.2449, 2004.
DOI : 10.1242/jcs.01232

E. Farge, D. M. Ojcius, A. Subtil, and A. Dautry-varsat, Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells, American Journal of Physiology-Cell Physiology, vol.5, issue.3, p.725, 1999.
DOI : 10.1083/jcb.140.1.39

J. Swift, I. L. Ivanovska, A. Buxboim, T. Harada, P. C. Dingal et al., Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation, Science, vol.26, issue.15, p.1240104, 2013.
DOI : 10.1128/MCB.00211-06

URL : http://europepmc.org/articles/pmc3976548?pdf=render

M. Rabineau, F. Flick, E. Mathieu, A. Tu, B. Senger et al., Cell guidance into quiescent state through chromatin remodeling induced by elastic modulus of substrate, Biomaterials, vol.37, p.144, 2015.
DOI : 10.1016/j.biomaterials.2014.10.023

A. Crow, K. D. Webster, E. Hohlfeld, W. P. Ng, P. Geissler et al., Contractile Equilibration of Single Cells to Step Changes in Extracellular Stiffness, Biophysical Journal, vol.102, issue.3, p.443, 2012.
DOI : 10.1016/j.bpj.2011.11.4020