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Abstract. Elastic lattice of point masses can be a suitable representation of a
continuous rod for the study of longitudinal wave propagation. By extrapolating
the classical tuned mass damping strategy, a multimodal tuned mass damper is
introduced from the coupling of two lattices having the same modal properties.
The aim of the study is then to implement this multimodal control on a rod
coupled to an electrical network. The electromechanical analogy applied to
a lattice gives the required network and the energy conversion is performed
with piezoelectric patches. The coupled problem is modeled by a novel semi-
continuous transfer matrix formulation, which is experimentally validated by
a setup involving a rod equipped with 20 pairs of piezoelectric patches. The
broadband efficiency of the multimodal control is also experimentally proved with
vibration reductions up to 25 dB on the four first resonances of the rod. At
last, the practical interest of the network is pointed out as it limits the required
inductance. This is confirmed by the present purely passive setup that only
involves standard low value inductors.
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1. Introduction

Wave propagation in one dimensional periodic struc-
tures can be analyzed with the transfer matrix formula-
tion. As described by Mead [1], this approach is based
on the analysis of a unit cell, which periodically repeats
with the same mechanical properties. Both mechani-
cal states at the ends of the unit cell respect a relation
represented by a constant transfer matrix. This rela-
tion is then propagated in order to obtain the global
behavior of a finite structure. This applies to a rod but
also to its discrete model which can be represented by
a lattice of point masses. The periodic lattices were
presented by Brillouin [2], who gave several fundamen-
tal results related to wave propagation in mechanical
as well as in electrical periodic structures. An elec-
tromechanical analogy between lattices of different na-
ture was thus already introduced. This analogy was
formalized by Bloch [3] and Beranek [4] for more gen-
eral structures. All of this gives useful elements to find
the analogues of coupled problems involving electrical
components fitted on several piezoelectric patches [5].
First, it is seen that a resonant shunts can be appre-
hended as a tuned mass damper [6, 7]. By tuning the
electrical components, vibration reduction of a struc-
ture is expected [8]. This concept was applied by Thorp
et al. for the damping of longitudinal waves in a rod
periodically covered with piezoelectric patches [9]. The
use of the transfer matrix formulation allows studying
the propagation constants as well as the global behav-
ior of the coupled structure. It was then extended to
the study of transverse waves by taking into account
the influence of various shunts either passive as the res-
onant ones [10, 11, 12, 13] or active as those presenting
negative capacitors [14]. However, just a limited num-
ber of papers consider electrical connections otherwise
than independently between the different piezoelectric
patches. One can yet mention the work of Yu et al. [15]
who analyzed the use of an electric network in order
to delocalize vibration in a periodic blade assembly.
For the damping of vibration, dell’Isola et al. intro-
duced several principles on the influence of distributed
piezoelectric networks on transverse wave propagation
[16, 17, 18]. From a continuous formulation, one op-
timal architecture appears as the electric analogue of
a beam [19]. Nevertheless, none of the aforementioned
studies on electrical networks benefits from the trans-
fer matrix method. This was still performed by Lu and
Tang who added electrical components in state vectors

for the analysis of a periodic network [20].
The present work deals with the above mentioned

concepts in order to present a passive and multimodal
damping strategy that can apply to vibration damping
of a rod. First of all, the transfer matrix formulation
is presented and applied to a continuous rod which
is then discretized into a lattice of point masses.
The differences between the continuous model and
the lattice model are then clarified. Considering a
finite lattice, two control strategies based on modal
coupling are presented for the purpose of converting
the vibration energy of a main structure into a damping
device. The first resonance-based solution involves
independent tuned mass dampers, while the second
solution considers the coupling of the main lattice to
a damping lattice having the same modal properties.
An original multimodal tuned mass damper is thus
presented with this second strategy. Moreover,
both control strategy can be expressed for electrical
networks by using the direct electromechanical analogy
[3, 4]. From this analogy, it is introduced a parallel
between the two discrete control strategies and coupled
problems involving piezoelectric patches. For example,
independent tuned mass dampers distributed on a
lattice are the analogues of distributed resonant shunts
on a rod [9]. Consequently, the next step is to
implement the multimodal stategy by connecting the
rod to an electrical network having similar modal
properties. This network comes from the electrical
analogue of a lattice, which is represented by a
line of inductors with connection to the ground
through capacitors. The coupling to a rod through
piezoelectric patches is then modeled by focusing on
global properties of a single unit cell. This transfer
matrix formulation considerably simplify the analysis
compared to former analytic formulations where the
electrical network was seen as a continuum [18, 21].
Here, it is presented a global semi-continuous transfer
matrix that keep the natural discretization of the
electrical network together with the continuity of
the rod. This model is experimentally validated by
analyzing the effect of the two control strategies on
electrical and mechanical frequency response functions
for the four first modes of the rod. Moreover, another
main result concerns the experimental validation of
the multimodal damping strategy. With a simple
modal coupling condition obtained from the discrete
models, the efficiency of the method is clearly proved
with reductions up to 25 dB on the resonances of
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the considered frequency range. Another interest of
this control strategy is the possibility to limit the
value of the required inductors. This offers a chance
to implement a completely passive control, as it was
performed in the present experimental setup.

2. Wave propagation in a discretized rod

The transfer matrix formulation is introduced in order
to analyze vibrations of one-dimensional structures.
The classical rod model is considered before looking
at its lattice equivalent. The differences between the
two models are then clarified.

2.1. Transfert matrix formulation

As presented by Mead, a one-dimensional periodic
structure can be seen as a succession of identical unit
cells [1]. Each unit cell presents a relation between the
mechanical states at its two ends, which is described
by a transfer matrix T :[

qR

FR

]
= T

[
qL

FL

]
. (1)

The components of the state vectors, q and F , refer
to the displacements and forces at positions defined by
the subscripts L or R for the left or right ends of the
unit cell. FR is the force applied on the considered
cell by its right neighbor and FL is the force applied
by the considered unit cell on its left neighbor. This
convention allows keeping the continuity of the state
vector which is obvious for the displacements but not
for the forces.

By definition, each unit cell of a periodic structure
presents the same transfer matrix T . Then, from the
continuity of the state vector, the mechanical state at

a position 0 is propagated to the right of the nth unit
cell by raising T to the power of n:[

qn
Fn

]
= Tn

[
q
F

]
=

[
Tn
qq Tn

qF

Tn
Fq Tn

FF

] [
q
F

]
. (2)

For a finite structure, the solution of the problem
requires to consider the boundary conditions. For
example, with a prescribed force F applied to the left
end of a free-free structure, the displacement qn at its
right end is defined by:

qn = (Tn
qF − Tn

qqT
n
Fq
−Tn

FF )F. (3)

2.2. Mechanical analysis of a rod

For a one-dimensional medium of Young modulus Y
and density ρ, the longitudinal wave equation can be
expressed in the following form:

ρ
∂2u(x, t)

∂t2
= Y

∂2u(x, t)

∂x2
, (4)

Figure 1. Considered rod portion.

where u(x, t) refers to the longitudinal displacement.
A space-time separation u(x, t) = U(x)g(t) gives the
harmonic solutions of the wave equation (4) and the
dispersion relation:

ω2 =
Y

ρ
k2, (5)

where ω is the angular frequency and k is the wavenum-
ber. The longitudinal displacement amplitude of the
rod portion presented in figure 1 is given by:

U(x) = UL cos(kx) +
UR − UL cos(ka)

sin(ka)
sin(kx), (6)

where a is the length of a rod portion and the subscripts
L and R refer respectively to the positions x = 0 and
x = a.

The normal force into the rod is proportional
to the first derivative of the displacement presented
in (6), i.e. N(x) = Y SU ′(x), where S is the
cross-section area. Consequently, the end forces are
linearly obtained from the end displacements of the
rod portion. The two equations can be rearranged into
the following matrix form:[
UR

NR

]
=

[
cos(ka) 1

Y Sk sin(ka)
−Y Sk sin(ka) cos(ka)

] [
UL

NL

]
, (7)

This corresponds to the transfer matrix formulation
described in (1), the state vectors containing the
longitudinal displacement U and the normal force N .
At the end, considering a free-free rod of length l = na
excited at one end, it is possible to get the frequency
response of the displacement at the other end from (3).

2.3. Lattice model

The purpose of the previous formulation is not obvious
for an homogeneous rod as the global solution can be
obtained directly from the analysis of a single unit cell
of length l (with n = 1). Nevertheless, the transfer
matrix formulation becomes useful when looking at
periodic models where the global layout is not identical
to the local one. For the propagation of longitudinal
waves, Brillouin analyzed the periodic lattice model
as a discrete representation of a continuous medium
[2]. This applies to a rod by considering periodically
lumped masses m linked serially by springs of identical
stiffness K. The unit cell can thus be represented by
two half masses at each ends of a spring as shown in
figure 2. The mass and the stiffness are determined
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Figure 2. Lattice of point masses and a corresponding unit cell.

from the local properties of the rod and the length a
of the unit cell:

m = ρSa and K =
Y S

a
. (8)

The mechanical analysis of the discrete unit
cell gives two equations involving the longitudinal
displacement and the normal force at both ends. This
can be presented with the transfer matrix formulation:[
UR

NR

]
=

[
1− f 1

K

−2Kf
(

1− f
2

)
1− f

] [
UL

NL

]
, (9)

where f = ω2m/(2K). Since the eigenvalues λ
of this transfer matrix are related to the equivalent
wavenumber k̄ of the discrete problem by λ =
exp(±jk̄a), one gets the following non-linear dispersion
relation when k̄a ≤ π:

ω2 =
Y

ρ

(
sin( k̄a2 )

k̄a
2

)2

k̄2. (10)

Already introduced in [2], this equation is here
obtained from the transfer matrix and it can be
compared to the rod dispersion relation presented
in (5). The two relations are equivalent when the
product k̄a goes to zero, i.e. when the size of the unit
cell is sufficiently small compared to the considered
wavelength. As a reference, it can be seen from
(10) that with 10 unit cells per wavelength (k̄a =
2π/10), the frequency obtained with the discrete model
differs by less than 2% from the one got with the rod
dispersion relation. In any case, by comparing (7) and
(9), it is seen that it is still possible to convert the
lattice into its initial continuous model by applying the
following reverse transformation:

f → 1− cos(ka) and K → Y S

a

ka

sin(ka)
. (11)

Consequently, all the previous elements give a way to
study the mechanical behavior of a rod as well as its
discrete equivalent. The difference between those two
models can be evaluated and the conversion from one
to the other is clarified in both ways.

Figure 3. A tuned mass damper connected to each unit cell.

3. Vibration control based on modal coupling

When considering vibration of a structure, passive
control have the benefit of being self-sufficient and
unconditionally stable. It is presented two resonance-
based passive strategies for the purpose of attenuate
vibration of a main lattice. The first strategy involves
several identical tuned mass dampers while the second
presents a multimodal coupling. Both solutions have
electrical analogues, which present similar transfer
matrices.

3.1. Independent tuned mass dampers

A way to limit vibration of a structure is to add
multiple control devices locally. When looking at
passive solutions, the tuned mass damping strategy
is suitable to convert vibration energy from a main
structure to the added masses [6]. This energy transfer
applies around a specific frequency, which is chosen
by tuning the resonance of the added systems. The
strategy can be implemented in a periodic lattice by
distributing identical tuned mass systems as it was
introduced in the Vincent’s model [2]. A variant is
presented in figure 3, where a strain in the main
structure is converted into a displacement of the added
system thanks to a lever of e ratio. This stresses
the spring of stiffness K̂ which put the tuned mass
m̂/4 in motion. In all the following study, the hatted
symbols characterize the control device and the non-
hatted symbols refer to the main structure that need
to be controlled.

As achieved previously for the basic unit cell, the
mechanical analysis of this new sub-structure can be
realized for the purpose of getting the transfer matrix
formulation of the problem. The following system of
equations is obtained for small displacements:[
UR

NR

]
=

[
1− ff̃ f̃

K

−2Kf
(

1− ff̃
2

)
1− ff̃

] [
UL

NL

]
,(12)

where f̃ =
1−ω2 m̂

4K̂

1−ω2 m̂
4

(
e2

K + 1

K̂

) .

When e = 0, it can be seen that f̃ = 1 and the
transfer matrix becomes equal to the one presented in
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(9). Without coupling, the added system has no effect
and the structure behaves as a simple lattice. Then,

for e 6= 0 and ω = 2

√
K̂/m̂, which correspond to the

natural frequency of the added spring-mass systems, f̃
becomes equal to zero. Therefore, UR = UL for every
unit cells. The displacement is the same in all the
primary lattice and no strain is observable whatever
the boundary conditions.

The independent tuned mass damping strategy
can be applied to a l = 1 m free-free duralumin rod. Its
Young modulus is Y = 73.9 GPa, its density ρ = 2780
kg/m3 and the cross-section area is set to S = 4 cm2.
This finite structure is discretized in a lattice of n = 20
unit cells and each one is fitted with an identical tuned
mass damper, as presented in figure 3. The added mass
m̂/4 is then set to one tenth of the mass m and K̂ is
tuned so that the natural frequency of the spring-mass
systems corresponds to the first natural frequency of
the main structure.

The right end velocity is computed from (3)
and (12) by applying an harmonic unit force on the
left end of the lattice. The results are shown in
figure 4, where three cases are presented. The first
one corresponds to a situation with a lever ratio e
equal to 0. The lattice is vibrating without any
effect of the added system and the four first natural
frequencies are displayed. As no damping is added
in the model, the velocity goes naturally to infinity
at those particular frequencies. The second case is
obtained with e = 1 and again without damping.
Around the first natural frequency the initial resonance
is no more observable as the energy is transferred to the
added masses. Yet, new resonances appear on either
side of the previous one, as it is classically observed
when using undamped tuned mass systems [6]. The
amplitude of those new resonances can be reduced by
introducing damping. The solution provided in most of
the tuned mass strategies consists in adding a damper
in parallel to the springs of stiffness K̂. However, it is
also possible to consider a damper linking directly the
tuned masses to the ground [7]. It is this last solution
which is implemented in the third case by replacing
the tuned masses m̂/4 by m̂?/4 = m̂/4 − jĉ/ω, where
ĉ is the viscous coefficient of the added dampers. With
ĉ = 5 N/(m/s), the velocity amplitude around the first
resonance is reduced to -50 dB. This illustrates the
efficiency of the independent tuned mass dampers for
a control focusing on one particular resonance.

3.2. Multimodal tuned mass damper

The previous control strategy consists in connecting
identical unimodal devices to a multimodal structure.
By extension, it is possible to consider a coupling
between two multimodal structures. This concept can

Figure 5. Unit cell for the coupling of two lattices.

be illustrated by analyzing two lattices involving the
same number of unit cells. The main lattice is the
structure that need to be controlled and the other
one is considered as a multimodal control device. If
all the natural frequencies of the control device are
simultaneously tuned to those of the main structure,
this added system should behave as a multimodal
tuned mass damper.

The first step is to find a way to mechanically
connect the two lattices in order to allow energy
transfers between facing pairs of unit cells. A solution
is presented in figure 5 as a generalization of the tuned
mass damper architecture of figure 3.
The fundamental difference is that the added masses
are no more free but are inherent components of the
secondary lattice. When the lever ratio e is equal
to 0, the two lattices of n unit cells are completely
independent. On the contrary, if e is different to
zero, they interact through the n lever mobilities. The
study of the global problem requires firstly to focus
on the unit cell presented in figure 5. A mechanical
analysis for small displacements leads to the following
formulation:
UR

ÛR

NR

N̂R

 =

 1 − f e K̂
K

f̂ 1
K

− e
K

ef 1 − Λf̂ − e
K

Λ
K̂

−2Kf

(
1 − f

2

)
−eK̂ff̂ 1 − f ef

−eK̂ff̂ −2K̂f̂

(
1 − Λf̂

2

)
e K̂
K

f̂ 1 − Λf̂



UL

ÛL

NL

N̂L

 , (13)

where f = ω2m/(2K), f̂ = ω2m̂/(2K̂) and Λ =
1+e2K̂/K. By forcing N̂L and N̂R to zero, it is verified
that the unit cell of figure 3 is a particular case of the
one illustrated in figure 5. Indeed, the 4×4 transfer
matrix can then be condensed in a 2×2 matrix which
is equal to the matrix presented in (12).

After having connected the two lattices, a second
step consists in tuning the added lattice to suit the
modal properties of the main one. It can be seen
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Figure 4. Frequency response functions with independent tuned masses - (· · ·) for e = 0, (− · −) for e = 1 and ĉ = 0, (—) for
e = 1 and ĉ = 5.

from (9) that a same mass-stiffness ratio and identical
boundary conditions lead to a similar eigenmode
problem for the two lattices. In this situation, all the
natural frequencies and mode shapes are identical in
the two structures. In order to show the effect of the
modal coupling, the example of a free-free lattice with
n = 20 unit cells is again considered. The mass m̂ is
set to m/100 and the modal coupling condition on the
mass-stiffness ratio gives:

K̂ = m̂
K

m
. (14)

Considering the boundary conditions, the end forces of
the secondary lattice, N̂0 and N̂n, are set to zero in
order to satisfy the equivalence with the main free-free
structure.

The 4×4 transfer matrix is used to compute the
frequency response function of the right end velocity
in the main lattice. The results of the multimodal
coupling are shown in figure 6. When e is equal to
zero, the frequency response function is the same as
the one obtained with the independent tuned mass
dampers. Indeed, no energy is transferred to the
added masses which have no effect on the main lattice.
However, the shape of the curve is clearly different
when e differs from 0. A tuned mass effect is then
observable on either side of all the initial natural
frequencies. As mentioned previously, the amplitudes
can be reduced by adding damping in the control
system. Again, replacing m̂ by m̂? = m̂ − jĉ/ω is
equivalent to the addition of dampers between the
ground and the masses of the secondary lattice. With
ĉ = 1, it is seen that the velocity is strongly limited
whatever the considered frequency. This highlights
the interest of the multimodal tuned mass damping
strategy compared to the unimodal strategy. It is still
remarked that the modal coupling condition presented
(12) doesn’t take into account the influence of the
damping parameter. This induces observable errors
compared to an optimal configuration as the damping
slightly shifts the resonances of the secondary lattice.
Nevertheless, as seen in the following, this shift remains
limited compared to the one introduced by the reverse
transformation to a primary continuous structures.

Figure 7. Electrical analogue of a lattice and corresponding
unit cell.

3.3. Electrical analogues

All the previous lattice models can be transposed
to electrical architectures by applying the direct
electromechanical analogy [3, 4]. This analogy assumes
the equivalence between force and voltage and between
velocity and intensity. Consequently, a mass is
equivalent to an inductance and a stiffness to the
inverse of a capacitance. Thereby, a lattice of point
masses corresponds to an electrical network made of
a line of inductors with connections to the ground
through capacitors [2]. This is illustrated in figure 7
together with the corresponding electrical unit cell.

When comparing the mechanical and the electrical
unit cells, it can be seen that the analogues of the left
and right intensities are directly the derivatives of the
left and right displacements. Yet, the two voltages are
equivalent to the opposite of the normal forces in order
to respect their definition. The resulting equations
describing the electrical behavior are then identical to
the mechanical ones by replacing m by L and K by
1/C. Consequently, from (9), the following transfer
matrix formulation is obtained:[
iR
VR

]
=

[
1− f −jCω

2
jCωf

(
1− f

2

)
1− f

] [
iL
VL

]
, (15)

where f = ω2LC/2.
As for the mechanical lattices, it is possible to

consider the coupling of two electrical networks. In
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Figure 6. Frequency response functions with a multimodal coupling - (· · ·) for e = 0, (− · −) for e = 1 and ĉ = 0, (—) for e = 1
and ĉ = 1.

Figure 8. Unit cell for the coupling of two electrical networks.

this way, the analogue of the coupled mechanical unit
cell of figure 5 is presented in figure 8. A transformer
of e ratio transfers the energy from a network to
the other. This is indeed the analogue of the lever
represented in the mechanical model. Consequently,
with the analogies L ↔ m, C ↔ 1/K, i ↔ jωU and
V ↔ −N , the electrical equations are the same as
when coupling two mechanical lattices. The electric
transfer matrix corresponding to the coupling of two
networks can thus be easily deduced from (13). Then,
by setting V̂L = V̂R = 0 in the electric scheme of
figure 8, it appears the electrical analogue of a tuned
mass damper. Here, it consists of a capacitor Ĉ
and an inductor L̂/4 in parallel. Finally, this last
configuration is equivalent to the mechanical unit cell
fitted with a tuned mass damper as it was illustrated in
figure 3. All the presented discrete mechanical models
can thus be transposed into their analogue electrical
problems. The corresponding transfer matrices are
described and can be used to study wave propagation in
an electrical network. The unimodal and multimodal
control strategies still applies and could give the
possibility to avoid electric line resonances.

4. Application to piezoelectric damping

The two resonance-based control solutions are ex-
tended to the damping of a rod covered with dis-
tributed piezoelectric patches. The damping systems
are build with electrical components and the piezoelec-

tric elements take the role of connecting the rod to the
electrical structure at the level of each unit cell. We
obtain an electromechanical problem, which can be de-
scribed with a transfer matrix formulation.

4.1. Global piezoelectric model

A connection of a mechanical structure to an electrical
structure requires a component capable of converting
mechanical energy into electric energy and reciprocally.
Piezoelectric material fulfills this function as it links a
strain to an electric field through its direct and reverse
effects. It is then considered a transversely polarized
piezoelectric rod under plane stress assumption. With
’1’ referring to the longitudinal direction and ’3’ to the
direction of polarization, the 3D linear formulation can
be simplified into the following one-dimensional stress-
charge form [22]:{
σ1 = c̄E11ε1 − ē31E3

D3 = ē31ε1 + ε̄ε33E3

, (16)

where c̄E11 = 1/sE11, ē31 = d31/s
E
11 and ε̄ε33 =

εσ33 − d2
31/s

E
11. σ1 and ε1 represents the longitudinal

stress and strain, D3 and E3 are the transverse
electric displacement and electric field. Concerning
the material constants, sE11 is the elastic compliance
at constant electric field, d31 is the piezoelectric charge
constant and εσ33 is the permittivity at constant stress.
Those constants are here highlighted because they are
commonly used by the piezoelectric material suppliers.
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Figure 9. Global model of the piezoelectric element.

Regarding a thin piezoelectric patch vibrating
along its longitudinal direction, if its length lp
is sufficiently small compared to the considered
wavelength, the strain ε1 can be seen as uniform
over lp. Consequently, the strain is defined thanks
to a difference between the positions of the left and
right ends of the element: ε1 = (UpR

− UpL
)/lp.

The electric field E3 can also be regarded as a
constant for a small thickness hp [22]. E3 is then

expressed from V̂p, the voltage between the two

electrodes, by E3 = −V̂p/hp. Then, if b is the
width of the patch, Sp = hpb is its cross-section
area. Considered uniform in the cross-section, the
longitudinal stress is thus obtained by σ1 = Np/Sp,
Np being the normal force applied to the patch. At

last, the intensity îp passing through the electrodes
of surface area Ap = lpb is related to the derivative
of the charge displacement D3. This is expressed
by D3 = −îp/jApω. The sign of the intensity is

defined relatively to the voltage V̂p by considering a
passive sign convention for the piezoelectric element.
Consequently, the local piezoelectric formulation (16)
gives a system of equations where appears the global
variables of the considered patch:−Np =

KE
p

jω
(U̇pL

− U̇pR
) + epV̂p

îp = −ep(U̇pL
− U̇pR

) + jωĈεpV̂p

, (17)

where KE
p = c̄E11Sp/lp, ep = −bē31 and Ĉεp =

ε̄ε33Ap/hp. It also reveals global properties, as KE
p

which is the stiffness of the patch at constant electric
field, i.e. when the patch is short circuited (V̂p = 0).
Then, ep represents the global coupling coefficient of

the piezoelectric patch and Ĉεp is its capacitance at
constant strain. This constant strain condition is
obtained when the difference between the end velocities
is equal to zero (U̇pL

− U̇pR
= 0).

The global formulation given in (17) can be illus-
trated by the electric scheme introduced in figure 9.
The transformer, representing the piezoelectric cou-
pling, is between the left and right branch, which are
respectively related to the mechanical and electrical

behavior. One can remark that this architecture cor-
responds to the one which couples two networks in fig-
ure 8. As a consequence, it becomes possible to use dis-
crete representations in order to study coupled problem
involving piezoelectric elements.

4.2. Electromechanical unit cell

When analyzing an homogeneous rod fitted with a
periodic distribution of piezoelectric patches, it is
possible to extract the unit cell that repeats all
along the structure. Here is considered the unit
cell represented in figure 10, whose rod portion have
a length a, a width b and a thickness hs. It is
symmetrically covered with a pair of piezoelectric
patches of length lp, width b and thickness hp, which
are polarized in opposite directions. For the purpose
of controlling longitudinal vibrations, the patches are
electrically connected in parallel, as it was done by
Thorp et al. [9]. Concerning the added electrical
components, it is chosen to represent a general resonant
configuration with two inductors L̂/2 on both sides
of the pair of patches. Indeed, depending on the
connection of the free ends of the inductors, it is
possible to treat two different cases. First, a connection
to the ground leads to the case of independent resonant
shunts [5] involving inductors L̂/4. However, linking
the inductors to those of the neighboring unit cells
reveals an electric line where inductors L̂ are placed
between each pairs of patches. Both cases will
be analyzed and related to the damping strategies
presented in section 3.

In order to study a finite structure consisting
of n unit cells as the one presented in figure 10, a
first step is to define its transfer matrix. Contrary
to previous studies on distributions of piezoelectric
patches [9, 10, 11, 12, 13, 14, 17, 16, 18, 19, 21, 20], it is
here chosen to firstly discretize the mechanical medium
to simplify the problem and to suit with the discrete
nature of the electrical network. The present goal is
thus to transform the unit cell of the coupled problem
into a discrete model having the same architecture than
the analogues presented in figures 5 and 8. Even if the

Figure 10. Unit cell of the electromechanical problem.
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Figure 11. Discrete model of the electromechanical unit cell.

mechanical model is also suitable, it is chosen to focus
on the electrical representation, which offers an easiest
analysis. Consequently, the discrete model of the
electromechanical unit cell is illustrated by the electric
scheme of figure 11, where appear global constants that
will need to be determined. The hatted notation is
used in the right branch, which corresponds to the
electrical structure added for vibration control. No
hats are yet present in the left branch as it is related to
the mechanical structure where vibrations need to be
attenuated. From this model, it is already apparent
that a multimodal control can be implemented by
applying the modal coupling condition (14) adapted
to the present configuration:

1

L̂Ĉε
=
KE

m
. (18)

It is also possible to consider independent resonant
shunts by fixing V̂L and V̂R to zero. The target
angular frequency will then be defined by the value

of 2/
√
L̂Ĉε. Consequently, the two resonance-based

strategies defined in section 3 can be applied to the
present coupled problem. It still remains to know the
global properties of the discretized unit cell of figure 11.

4.3. Global properties

As seen in section 2, the masses m involved in the
mechanical lattice comes directly from the total mass
of the continuous unit cell. If ρs and ρp are respectively
the density of the rod structure and the density of the
piezoelectric patches, it gives:

m = ρsSsa+ 2ρpSplp, (19)

where Ss = hsb. Then, it is observed from figure 11
that the stiffness KE of the lattice corresponds to the
longitudinal stiffness of the unit cell when the pair of
patches is short circuited (V̂I = 0). In this situation,
the equivalent Young modulus of the piezoelectric
material is Y Ep = c̄E11. The Young modulus of the

rod being Ys, the stiffness KE is obtained from the

continuous unit cell after considering that all the cross
sections remain undeformed:

1

KE
=

lp

YsSs + 2Y Ep Sp
+
a− lp
YsSs

. (20)

For the electrical branch, the inductance L̂/2 corre-
sponds directly to the value of the inductors connected
to the patches but it remains to define the capacitance
Ĉε and the global coupling coefficient e. Concerning
Ĉε, it is the capacitance of the pair of patches when
U̇L − U̇R is equal to zero. It is not simply equal to two
times Ĉεp, the capacitance of a single isolated patch at
constant stain, for two reasons. First, the two patches
are no more free along the ’2’ direction because they are
bonded to the rod. Secondly, even with UL = UR = 0,
the patches are not completely blocked along the ’1’
direction when a 6= lp. The analytic calculation of Ĉε

is thus non trivial and needs to take into account 3D
effects as it was remarked by Maurini et al. [23]. The
same problem appears when focusing on the global cou-
pling coefficient e, which can not be obtained directly
from a simple one dimensional model. However, this
issue can be avoided by allowing a direct capacitance
measurement.

The measure of Ĉε is difficult in practice because
it would require to fix the ends of one specific unit
cell. Yet, the capacitance in free conditions Ĉσ is
more easily reachable, as it can be obtained by direct
measurement without any normal forces (NL = NR =
m = 0). Moreover, figure 11 gives the following
relation:

Ĉσ = Ĉε +
e2

KE
. (21)

The global coupling coefficient e is still unknown, which
requires a new equation. To find this complementary
information, it is first remarked that Y Dp , the
equivalent piezoelectric Young modulus in open circuit,
can be obtained. The condition of large wavelength
compared to lp is again considered in (16) and D3 = 0
gives:

Y Dp = c̄E11 +
ē2

31

ε̄ε33

. (22)
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Then, the global stiffness in open circuit KD comes
from (20) when replacing Y Ep by Y Dp and figure 11 links

KD to the other global constants:

KD = KE +
e2

Ĉε
. (23)

At the end, the capacitance Ĉε and the global coupling
coefficient e are obtained from (21) and (23):
e =

√
KE(1− KE

KD
)Ĉσ

Ĉε = Ĉσ
KE

KD

. (24)

Consequently, the discrete model of the unit cell is
complete and its transfer matrix can be deduced
from (13).

4.4. Semi-continuous transfer matrix

The transformation of the unit cell presented in
figure 10 into its discrete model of figure 11 requires to
approximate the continuous rod by a discrete lattice.
As mentioned in section 2, this is only valid when
the considered wavelength is large compared to the
length of the unit cells. However, it is possible to come
back to a continuous mechanical medium by applying
the reverse transformation described in (11). The
unit cell can thus be described with a semi-continuous
transfer matrix that respects both the continuity of
the mechanical structure and the discrete nature of the
electrical network:[

U̇R
îR
NR
V̂R

]
=


1 − f e

KĈε
f̂

jω
K

jeω
K

ef 1 − Λf̂ − jeω
K

−jΛĈεω

− 2K
jω

f

(
1 − f

2

)
− e

jĈεω
ff̂ 1 − f −ef

e
Ĉεω

ff̂
2f̂

jĈεω

(
1 − Λf̂

2

)
− ef̂

KĈε
1 − Λf̂

[U̇L
îL
NL
V̂L

]
(25)

where f = 1− cos
(√

m/KEω
)

,

K = KE(
√
m/KEω)/ sin

(√
m/KEω

)
, f̂ = ω2L̂Ĉε/2

and Λ = 1 + e2/(KĈε). It can be remarked that the
reverse transformation is applied on the homogenized
mechanical constants m and KE . Consequently, the
spatial discontinuity induced by the thickness of the
piezoelectric patches doesn’t appear in the formulation.
This model is thus not suitable to track the band gap
phenomenon [9, 12, 13] but it better fits the continuous
behavior than the lattice model.

The transfer matrix presented in (25) gives a
relation between the electromechanical state vectors
containing the velocities, intensities, normal forces and
voltages at both ends of the unit cell. After defining
mechanical and electrical boundary conditions, it
becomes possible from (3) to study a finite structure
consisting of n coupled unit cells. The multimodal
control strategy can be implemented by applying (18)
together with analogue boundary coditions at the end

of the two structures. Therefore, the network being
tuned to fit the modes of the equivalent mechanical
lattice, it will obviously not match exactly the modes of
the continuous rod. However, as presented in section 2,
10 unit cells per wavelength gives a frequency difference
of less than 2%. So, this mistuning is negligible for
a sufficiently high number of unit cells. Finally, the
independent resonant shunts configuration can also be
analyzed from the previous general formulation. The
4×4 transfer matrix presented in (25) is condensed in
a 2×2 matrix by setting V̂L and V̂R equal to 0. At the
end, (3) is still employed to obtain the global behavior
the finite electromechanical structure.

5. Experiments and discussion

The two control strategies based on independent
resonant shunts and on a multi-resonant network
are applied on a rod which is periodically equipped
with piezoelectric patches. The experimental results
are compared to the numerical results obtained with
the semi-continuous transfer matrix. Both strategies
are evaluated by taking into account their practical
implementation.

5.1. Experimental setup

The main structure is a one meter duralumin rod,
which is periodically covered with n = 20 pairs
of piezoelectric patches. Referring to figure 10,
the geometry of the setup is presented in table 1.
Concerning the piezoelectric material, the PIC 151
ceramic is selected in order to keep the possibility
to extend some of the results presented in previous
studies [8, 22]. The properties of the PIC 151 are also
described in table 1, which reports values appearing in
the PI Ceramic data sheet. The resulting structure is
suspended by elastic straps in order to tend to a free-
free configuration. Then, as presented in figure 12,
a suspended shaker is connected to one end of the
rod through an impedance head that measures the
acceleration and the transmitted force. At the other
end, a scanning laser vibrometer measures the velocity.
A white noise excitation is generated and two signals
are analyzed: the velocity acquired by the vibrometer
and the force measured by the impedance head. A last
step consists in obtaining the transfer function between
the velocity and the force signals. To this end, a fast
Fourier transform is performed on a 11.5 kHz frequency
range with a 2 Hz resolution.

The analysis is firstly performed without adding
any electrical components on the piezoelectric patches.
The experimental frequency response functions are
compared to the results obtained with the purely
mechanical homogenized model computed from (2)
and (6). It is seen that the model can be improved by
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Figure 12. Experimental setup.

Table 1. Geometry and material properties.

Rod (AU4G) Patches (PIC 151)

Length ls = Na = 20 × 5 cm lp = 3 cm
Width b = 2 cm b = 2 cm
Thickness hs = 2 cm hp = 0.5 mm

Density ρs = 2780 kg/m3 ρp = 7800 kg/m3

Young modulus Ys = 73.9 GPa 1/sE11 = 66.7 GPa
Charge constant - d31 = −210 pC/N
Permittivity - εσ33 = 21.2 nF/m

considering three new elements related to the setup.
First, it is remarked that the impedance head is not
directly connected to the rod as a small connecting
element is used for practical purpose. This induces
that the measured force Nmes is not exactly equal to
the normal force N0 really applied to the rod. Yet,
those two forces can be related by remarking that the
displacement of the connecting element is equal to the
displacement of the excited end of the rod q0. This
gives:

Nmes

N0
= 1 + ω2madd

q0

N0
, (26)

where madd is the mass of the connecting element
which was measured equal to 4 grams. This force
ratio is thus used to correct the frequency response
function obtained from (3). Secondly, it is observed
that the stiffness added by the patches is slightly
lower than the theoretical value obtained with the
longitudinal model. This is due to 3D effects and to the
unconsidered flexibility induced by the glue that bond
the patches to the rod. The loss of stiffness is corrected
in the model by adding a coefficient γ that modify the
value of the Young modulus in short and open circuit
(γY Ep and γY Dp ). The coefficient γ is fixed to 0.86 to
approach the experimental results. At the end, the
third add in the model concerns the damping. It is
observed experimentally that the maximum velocity
at resonance decrease with an increase of the mode
number. This can be modeled by using equivalent
complex Young moduli on the form Y ? = Y (1+jη(ω)),

where η(ω) = αω. The coefficient α is evaluated to
3 ·10−8 in order to get close to the four first maxima of
the velocity with open circuited piezoelectric patches.

Concerning the electrical components, as it was
chosen to focus on a completely passive control
solution, they are only selected in standard series
with a 10% tolerance. It was observed that
the internal resistance of the standard inductors is
non negligible and often too high for the present
application. Consequently, the inductors were chosen
as low resistive as possible, which justify the absence
of damping optimization. In the same time, no
specific resistors need to be added, which simplifies
the network. The suppliers of standard electrical
components proposing a set of discrete values, it is not
always possible to find inductors that suits with the
inductance L̂ required for a modal coupling. However,
it is possible to finalize the tuning by adding capacitors
in parallel to the piezoelectric patches. This increases
the capacitance Ĉε and gives a new degree of freedom
in the choice of L̂. Nano or tenth of nano Farad are
available in metallized polyester film capacitors series.
This suits with the value of Ĉε which was evaluated to
36 nF without added capacitors.

5.2. Independent resonant shunts

The first experiment consists in the implementation of
the first control strategy, which involves independent
resonant systems. The periodicity of the structure
is kept by distributing identical resonant shunts all
along the rod. The first resonance of the free-free rod
is chosen as the target of the control strategy (2500
Hz). Consequently, the electrical resonance needs to be
tuned to this specific frequency. Direct measurements
on a set of 20 inductors selected in a 100 mH series give
an average inductance L̂/4 = 96 mH and an average
serial resistance R̂s = 80 Ω. For this inductance, a
tuning at 2500 Hz requires to increase Ĉε by 6.2 nF.
This is done by placing individual capacitors in parallel
to the pairs of piezoelectric patches. The frequency
response function corresponding to the end velocity
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Figure 13. Frequency responses for the distributed shunts strategy - (· · ·) for the experiment with open circuits, (—) for the
experiment with resonant shunts, (−−) for the transfer matrix model with resonant shunts.

obtained with a unit exiting force is presented in
figure 13. The four first modes of the free-free rod
are observed in the 11.5 kHz frequency range. One can
see that the passive damping system gives a reduction
of about 25 dB on the velocity amplitude of the 1st

resonance. On the contrary, the other resonances only
present a limited attenuation. This agrees with the
frequency response obtained in figure 4 for a similar
strategy with lattice models.

The response of the longitudinal model involving
the 2×2 matrix condensed from (25) is compared to
the experimental results. As performed in section 2 for
the tuned masses, the damping is taken into account
by replacing the tuned inductance by L̂?/4 = L̂/4 −
jR̂s/ω. This corresponds to the equivalent inductance
model that is obtained when adding a resistor in series
with an inductor. The expectations concerning the
velocity reduction on the fist mode are fully satisfied
as there is a difference of less than 1 dB between
the two maxima. Nevertheless, the theoretical curve
presents a local minimum, which is a characteristic of a
slightly underdamped tuned mass system [5, 6, 8]. This
double peak shape doesn’t clearly appear in the present
experiment. It is observed a more damped behavior
than the one predicted by the model. Actually, the 10%
tolerance of the standard passive components creates
small tuning differences all along the twenty shunts.
Thus, as introduced in [9], the electrical resonances
are distributed around an average frequency value,
which flattens the experimental frequency response
function. Anyway, a significant vibration reduction
is obtained on one particular mode with a completely
passive system. Yet, it remains the question of the
frequency range of interest. For a constant capacitance,
the resonance frequency of the shunt is proportional

to 1/
√
L̂. Consequently, if the target frequency is

divided by two, the inductance needs to be four times
higher. This becomes a real problem when looking at
low frequencies. Indeed, it would requires to use large
and heavy components that are no more in the scope
the standard passive series considered in this study.
Increasing the number of piezoelectric patches doesn’t

solve the problem as it can be seen from (17) that
the capacitance is roughly proportional to 1/n. As
a consequence, the strategy involving a succession of
several similar resonant shunts have significant limits
on its frequency range of application.

5.3. Multi-resonant network

The second experiment is related to the validation of
the multimodal damping strategy. For the geometry
and material properties described in table 1, the
application of the modal coupling condition (18) gives
an inductance L̂ around 2.8 mH. As it was possible
to find a set of components presenting this average
inductance, no capacitors need to be added. All
the capacitive behavior is supported by the pairs of
piezoelectric patches. So, the electrical network was
realized by simply linking successive unit cells with the
selected inductors. The two ends of the line are then
closed by a L̂/2 inductance. This allows to respect the
unit cell architecture and the zero voltage boundary
conditions which are the equivalent of the free-free
mechanical boundary conditions of the rod.

It is possible to control the tuning of the electrical
network before looking at its effect on vibration
reduction. A white noise voltage is applied at one
end of the network and voltage is measured in the
middle of the network. This gives the electrical
frequency response function presented in figure 14.
The mechanical analogue of this experiment would be
to measure the force in the middle of the rod when
applying a force at one end. As a free-free configuration
is analyzed, the middle of the rod is a node for the even
force modes. The same remark applies to the voltage
as the electrical network was designed to tend to the
analogue of the free-free rod. This is confirmed by the
electrical frequency response function where only the
odd resonances appears. A second remark concerns
the sharp antiresonances that can be observed on the
response. They corresponds to an energy transfer from
the network to the rod at the mechanical resonances.
Consequently, the tuning of the network is electrically
validated by controlling that the mechanical resonances
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Figure 14. Electrical frequency responses for the multimodal damping strategy - (—) for the experiment with an optimal network,
(−−) for the transfer matrix model with an optimal network,(− · −) for the transfer matrix model with a non-optimal network.

Figure 15. Model for the electrical components.

are centered on the electrical resonances.
The 4×4 matrix in (25) can be used to compare

the semi-continuous transfer matrix model to the
experimental results on the voltage response. It was
found that an accurate numerical result is obtained
when using both a serial and a parallel resistance, RZs
and RZp , when modeling the electrical components.
This model, presented in figure 15, applies on the
inductors with Z(ω) = jL̂ω and on the capacitors
with Z(ω) = 1/(jĈεω). From this representation, it is
obtained the equivalent electrical formulations that are
introduced in the transfer matrix in order to consider
damping:
L̂? =

RLpL̂

RLp + jL̂ω
− RLs

ω

1

Ĉε
? =

jRCpω

1 + jRCp Ĉεω
+ jRCs ω

. (27)

The following average values were measured directly on
the electrical components in the considered frequency
range: RLs = 1.3 Ω, RLp = 12 kΩ, RCs = 2.8 Ω

and RCp = 180 kΩ. Those values are then used to
compute the electrical frequency response function.
It can be remarked in figure 14 that the theoretical
antiresonances are deeper than the experimental ones.
In fact, for practical reasons, the rod was placed
on a foam carpet during electrical measurements,
which added mechanical damping. Apart from
antiresonances, the numerical and experimental curves
are sufficiently close to validate the transfer matrix
model, that can then be used for a network evaluation
purpose. Indeed, it is also represented in figure 14 a
numerical frequency response function for a network
that doesn’t respect the coupling condition (18) (half

of the required inductance). In this last case, it is
clearly observable that the electrical resonances are not
centered on the mechanical ones.

Once the electrical network is correctly tuned, the
effect of the multimodal coupling on the mechanical
vibrations can be observed. Figure 16 represents
the experimental frequency response functions with
a tuned network and without any added electrical
components. The performances are significant as the
reduction is close to 25 dB for the first three resonances.
This clearly highlights the power of a multimodal
damping by the use of a passive electrical network.
It can still be remarked that a slight increase of
the damping would flattens the response and add a
complementary reduction of few decibels. The lowest
resistive 2.8 mH inductors found in standard series
have thus a serial resistance which is finally a bit
too low for the present application. In any case,
the experimental results are again compared to the
matrix computation. The two response are again very
similar, which gives a strong support for the semi-
continuous transfer matrix formulation for vibration
control analysis. It can be noticed that the only
adjusted model parameters are γ and α, the stiffness
loss and the viscous damping coefficients, which are
determined from the purely mechanical responses. All
the other constants come from direct measurements or
from data sheets. Moreover, the vibration reduction
effect of the present control system is so important
that the adds of γ and α in the model doesn’t induce
noticeable effect when the modal coupling is functional.

Concerning the tuning of the electrical network,
it can be seen from figure 16 that the induced
antiresonances are placed at lower frequencies than the
initial mechanical resonances. This effect is not clearly
observable for the first mode but is more pronounced
for higher mode numbers. It significantly exceeds
the resonance shift due to the addition of damping.
This increasing mistuning is due to the fact that the
electrical network is a discrete structure. As seen in
section 2, for a same wavelength equal to 10 unit cells,
there is a frequency difference close to 2% between
the continuous rod and its discrete analogue. With 20
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Figure 16. Mechanical frequency responses for the multimodal damping strategy - (· · ·) for the experiment without network,
(—) for the experiment with an optimal network and (−−) for the transfer matrix model with an optimal network.

cells on a free-free structure, this frequency difference is
obtained on the fourth modes. The mistuning remains
limited but becomes clearly non-negligible for higher
mode. If a larger number of modes needs to be
controlled, it is still possible to increase the number of
unit cells. This simply enhances the frequency range
in which the discretized behavior remains close the
continuous one.

At last, it is seen from the modal coupling condi-
tion (18) and the definition of the global constants that
the required inductance is approximately proportional
to the inverse of the number of unit cells: L̂ ∝ 1/n.
This conclusion was already highlighted by Maurini et
al. [18] from the analysis an electrical continuum. The
relation is here illustrated for the discrete formulation
but still induces that the increase of the number of
unit cells leads to lower values of the required induc-
tance. As a consequence, it becomes possible to look
at lower frequency applications without being limited
by the values proposed in standard passive series of in-
ductors. This strongly increases the potential of the
multimodal damping strategy, which was already at-
tractive for its broadband capabilities.

6. Conclusions

It is observed that a continuous rod can be seen
as a periodic structure and analyzed through a
transfer matrix formulation. This formulation is also
relevant when modeling a rod with a lattice of point
masses that are serially connected with springs. The
differences between the continuous and the discrete
models is presented. The lattice period is compared
to the considered wavelength as the unit cells need
to be sufficiently small to approximate a continuous
behavior. Secondly, it is looked for solutions that
could lead to the conversion of vibration energy from
a main lattice to a control system. A first strategy
consists in using independent tuned mass dampers that
are distributed all along the structure. A constant
tuning gives the possibility to target one specific
frequency, which corresponds to the resonance of the
added systems. Then, a multimodal control strategy

is introduced. This can be obtained by connecting
a main structure to its modal equivalent. The unit
cell that couple two lattices is presented and simple
modal coupling conditions are obtained. With similar
dispersion relations and boundary conditions, it is
possible to reach a multimodal tuned mass damping
that apply on all the natural frequencies of the main
structure. The two resonance-based strategies are
transposed in the electrical domain by using a direct
electromechanical analogy. The corresponding unit cell
are defined as well as the way to obtain the electrical
transfer matrices.

In a context of rod vibration control with
piezoelectric patches, the electromechanical analogy
implies that the independent tuned mass dampers
strategy is the analogue to the use of distributed
resonant shunts. Moreover, the electrical analogue
of a mechanical lattice points out the fact that a
multimodal strategy can be achieved by connecting
an electrical network to the continuous rod. After
defining a global model for the piezoelectric elements, a
unit cell of the electromechanical problem is presented.
The global properties of this coupled unit cell are
then defined from the equivalent discrete electrical
architecture. All of this gives the possibility to
define a 4×4 transfer matrix that suits with the
analysis of longitudinal wave propagation for the two
control strategies. A novel semi-continuous transfer
matrix formulation is presented in order to consider
both the continuity of the rod and the discrete
nature of the electrical network. Experiments on a
rod equipped with 20 pairs of piezoelectric patches
validate this model for both mechanical and electrical
responses. Furthermore, the two control strategies are
implemented with standard passive components. The
multimodal damping strategy is clearly validated as
the performances are considerable on all the observed
modes. Another strong interest of this strategy is the
fact the inductance can be kept sufficiently low by
increasing the number of unit cells. This differs from
the more classical independent shunts strategy that
becomes impractical when looking at low frequencies.

Finally, it is shown that the use of a network link-
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ing several piezoelectric elements can offer substantial
benefits, for both control performances and practical
implementation. Periodic longitudinal configurations
can be modeled with a transfer matrix formulation in-
volving electromechanical state vectors. All of this is
here applied to the control of longitudinal waves and it
will then be extended to transverse propagation. This
future work should lead to an experimental validation
of a multimodal control involving a bending beam cou-
pled to a dispersive electrical network.
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