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A B S T R A C T

The possible depth of imaging of laser-scanning microscopy is limited not only by the working distances of
objective lenses but also by image degradation caused by attenuation and diffraction of light passing through the
specimen. To tackle this problem, one can either flip the sample to record images from both sides of the specimen
or consecutively cut off shallow parts of the sample after taking serial images of certain thickness. Multiple image
substacks acquired in these ways should be combined afterwards to generate a single stack. However, subtle
movements of samples during image acquisition cause mismatch not only in the translation along x-, y-, and z-axes
and rotation around z-axis but also tilting around x- and y-axes, making it difficult to register the substacks
precisely. In this work, we developed a novel approach called 2D-SIFT-in-3D-Space using Scale Invariant Feature
Transform (SIFT) to achieve robust three-dimensional matching of image substacks. Our method registers the
substacks by separately fixing translation and rotation along x-, y-, and z-axes, through extraction and matching of
stable features across two-dimensional sections of the 3D stacks. To validate the quality of registration, we
developed a simulator of laser-scanning microscopy images to generate a virtual stack in which noise levels and
rotation angles are controlled with known parameters. We illustrate quantitatively the performance of our
approach by registering an entire brain of Drosophila melanogaster consisting of 800 sections. Our approach is
also demonstrated to be extendable to other types of data that share large dimensions and need of fine registration
of multiple image substacks. This method is implemented in Java and distributed as ImageJ/Fiji plugin. The
source code is available via Github (http://www.creatis.insa-lyon.fr/site7/fr/MicroTools).
1. Introduction

Laser-scanning fluorescent microscopy is a powerful tool for
analyzing three-dimensional (3D) complex structures found in life sci-
ences such as neuronal structures, which can be visualized using
fluorophore-conjugated antibody labeling or targeted-expression of
fluorescent proteins [1]. Combinations of multiple fluorescent markers
and excitation filters can be used to highlight various neuronal objects,
e.g., axons as well as pre- and postsynaptic sites, in the same specimen
[2]. Such imaging techniques promise to give access, for instance in
neurology, to connectomics which aims to produce a comprehensive and
systematic analysis of the connections between brain regions and be-
tween numerous neurons within them [3]. The success of such analysis
depends on the capacity to acquire in great detail, i.e., at the scale of the
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synapsis, the entire volume of the brain specimen.
Although laser-scanning microscopy can acquire images of thin op-

tical sections from thick tissues [4], the possible depth of imaging is
limited by three factors. First, the working distance of the microscope
objective limits the depth for which images can be recorded. Second,
signals become darker in deeper regions of the samples, because both
excitation laser beam and emitted fluorescence are attenuated by the
sample tissue that is optically not completely translucent [5]. This causes
diminution of signal intensity and signal-to-noise ratio. And third, image
quality degrades in deeper regions even when it is still within the
working distance of the lens. Although new techniques such as clearing
agents (e.g., CLARITY and Scale) can make sample tissues transparent [6,
7], light rays are deflected and scattered when they pass through tissues.
Deep objects therefore appear blurry and lose contrast.
d’Angers, France.
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Fig. 1. Flow chart of the proposed automatic registration and stiching algorithm 2D-SIFT-
in-3D Space.
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Thus, spatial resolution decreases with the depth from the sample
surface. Even with the objectives with high numerical aperture and long
working distance (more than 200 μm), image quality decreases consid-
erably when the focal plane becomes as deep as 100 μm [8]. Two work
around techniques have been employed to overcome this problem. For
the specimen that is thinner than 300 μm along the optical axis (z-axis), it
is possible to record the image from both sides of the sample that is
embedded between thin cover slips. The first image substack covering the
frontal half of the sample is taken from one side of the cover slip. The
sample is then flipped, and the second image substack is recorded from
the other side. For a thicker specimen, the sample can be embedded in a
soft medium and using tissue sectioning (e.g., vibratome), a sample
section is cut off from the top of the sample block after taking image
stacks of this section. By repeating this procedure, called two-photon
tomography, in principle any thick specimen can be imaged [9,10].

In both approaches, image substacks should be acquired in an over-
lapping manner: the overlapping sections will serve as a guide indicating
how neighboring substacks can be concatenated, or stitched. However,
such concatenation is not straightforward, because small rotation and
translation can occur when the sample is flipped or when the block
surface is cut off. Rotation can occur not only around the z-axis of the
specimen but also around x- and y-axes (tilting). Moreover, because of
the photobleaching that occurs during image stack acquisition and
because of the different depths from the sample surface, the intensity of
the corresponding optical sections in two overlapping stacks often
appear different.

This is why registration is crucial for properly stitching image sub-
stacks of the same sample. Each neuronal fiber from neighboring stacks
must be perfectly connected to each other after stitching. A discontinuity
in the final image stack would strongly affect further analysis such as
neuron tracing [2,11,12]. Registration is one of the most important
general problems of image processing [13]. Therefore, there exists a wide
offer of commercial or free, manual or automated, 2D or 3D, software
platforms that address this issue. Application specific solutions, however,
that are relevant for common types of samples and acquisition protocols,
are often difficult to access for life scientist. Such a perspective could be
judged as relatively narrow in a general computer vision context. How-
ever, as recently illustrated in this journal [14–17], it is actually specif-
ically meaningful in biomedical imaging where important communities
of life scientists work on the same types of samples.

In this study, we have developed an optimized automatic registration
and stitching algorithm, 2D-SIFT-in-3D-Space, specifically adapted for
thick high-resolution laser-scanning microscopy image stacks. A visual
flow chart of the proposed algorithm is given in Fig. 1. We applied our
method to stitch large 3D image stacks of Drosophila melanogaster brain
samples that can be mutually tilted by up to 20�. Our algorithm, made
available under the open source Fiji software that is widely used through
the international bioimaging community, combines several existing ap-
proaches into a new strategy based on reliably detecting features in im-
ages using scale invariant feature transform (SIFT). In addition, to
validate quantitatively the registration quality, we developed an original
simulator that generates artificial 3D image stacks that mimic the prop-
erties of noise in laser scanning microscopy. We have used 2D-SIFT-in-
3D-Space algorithm to assemble 3D image stacks of neurons of the
Drosophila brain at a voxel resolution of 0.2 � 0.2 � 0.2 μm
(1600 � 1600 voxels and 800 sections). The stitched dataset serves as a
starting point for characterizing fine architecture of such large entire
brain at unprecedented resolution but the 2D-SIFT-in-3D-Space is also
shown to be useful to other types of datasets and other fluorescent mi-
croscopy systems (see supplementary data).

2. Related work

The primary purpose of the proposed registration method, 2D-SIFT-
in-3D-Space, is to stitch two image substacks. The registration is achieved
by comparing the signals of two overlapping image stacks. In this context,
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it shares some similarities with existing registration algorithms known to
be adapted to the bioimaging community interested in the registration of
3D images. A possible classification for image registration approaches is
whether the registration is based on intensity or on features [18].

Intensity-based approaches confront, with a correlation metric, the
intensity patterns in images to be registered. This includes for instance
software solutions such as CMTK (Computational Morphometry Toolkit),
elastiX, ANTS, AMIRA. Intensity-based approaches are specifically suited
when the homologous structures to be registered in the 3D stacks are well
represented by the intensities through the spatial statistics of the gray
levels seen as a random variable (see for instance in spatial intensity [19],
or with Fourier transform of the intensities [20], or also as recently used
in Ref. [21]).

Feature-based approaches, as chosen and developed in this article,
realize a correspondence between homologous landmarks in the images
to be registered. Feature-based approaches are specifically suited when
the images are characterized by spurious small structures (e.g., vessels
and blobs) such as the one highlighted in the samples of neuronal fiber
images considered in this article. Feature-based approaches works in two
steps: First the detection of landmarks and second the match of the ho-
mologous landmarks in the images. In some software solutions the
landmarks have to be detected with another software or selected
manually. Manual positioning of such landmarks can be very time
consuming and can also be perturbed by human errors. To circumvent
this difficulty automatic detection of homologous landmarks is preferred.
This can be achieved by detecting fiducial structures of known shape and
size such as fluorescence beads that are purposely added to the sample
[22] or endogenous granules in the tissue [23]. Registration error,
however, would occur if samples and added beads were put in fluid
mounting medium such as glycerol used in our study. Whereas [23]
utilized endogenous aging-related pigment granules that are distributed
across the mouse neural tissue, similar approach was not applicable to
our samples because such granules do not seem to be distributed ubiq-
uitously in young fly brains. Automatic detection of homologous land-
marks can also be done purely numerically based on the extraction of
local image features (See Ref. [24] for a review). The great advantage of
feature-based registration is that instead of using all image intensities, it
is possible to register two stacks using only corresponding salient points
as a statistic of the image content. Reducing the problem from full res-
olution image content to a relatively small number of corresponding



Fig. 2. Spatial arborization of dopaminergic neurons (a) and octopaminergic neurons (b) of the adult Drosophila melanogaster brain. 3D reconstruction of the entire stack after front and
back substacks are registered and merged. 1600 � 1600 x 800 voxels, voxel resolution ¼ 0.2 � 0.2 � 0.2 μm. Scale bar ¼ 50 μm.
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homologous points simplifies the estimation of the transformation model
and is a major computing time saver.

Feature-based and intensity-based techniques have been shown to be
useful for registering image stacks of different tissue samples as well as
for stitching sections and image substacks of a single tissue. Software
designed for the stitching purpose tends to assume that all the sections
are parallel without tilting (e.g., [20]) and do not correct rotation mis-
matches around all axes (see Supplementary data for a comparison with
our solution). Software designed for the registration purpose can
generally correct rotation and translation in all 3D axes, but many of
them are designed for registering image stacks that cover the same part of
the specimen in different samples. To operate on the type of data
considered in this article, one would require two image processing steps:
first the manual crop of the overlapping part and second the stitching of
the entire registered stacks. Effective manual crop may appear trivial for
the samples with small tilting angles, but is actually a difficult task for
large angles when dealing with self-similar samples such as the neurons
in the brain. The existing techniques are, to the best of our knowledge,
not natively capable of joint automatic detection of the overlap and
registration and stitching of 3D image substacks that overlap only
partially as found with the thick samples imaged with high-resolution
laser-scanning microscopy.

To stitch image substacks with tilting errors, we propose a solution
with an original use of a popular local feature SIFT introduced by
Ref. [25]. Whereas we achieved 3D registration with the repeated use of
2D SIFT in three orthogonal planes, SIFT in true 3D space has also been
proposed for motion recognition of video images [26], object recognition
for X-ray computer tomography images [27], or in biomedical applica-
tions [28–31]. Although the same approach can in principle be applied to
develop an image registration software, the choice of 2D-SIFT-in-3D--
Space is well adapted in our case, because the specific image acquisition
sequence considered in this article stitching of microscope image sub-
stacks obtained from the same sample induces more important rotations
around z-axis than the tilting around other axes; the first iteration of
registration in x-y plane is thus very likely to bring a strong improvement.
This prior would not be used with 3D SIFT registration, which would
blindly look for solutions in any direction of the 3D space.

3. Materials and methods

3.1. Definition of the biological task

As a model system, we used the brain of the adult fruit fly Drosophila
melanogaster. It contains about 100,000 neurons in the volume that is
approximately 600-μm wide, 300-μm tall, and 160-μm thick. The fly
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brain has been an intense focus for brain-wide analysis of neural net-
works and their functions [3,32,33]. Projection patterns of neuronal fi-
bers and distribution of synaptic connection sites can be visualized by
expressing proteins that are spread along cytoplasm and those that are
transported to presynaptic sites [32]. A wide variety of neuron types can
be visualized using cell-specific expression driver strains [1]. Among
them the dopaminergic and octopaminergic neurons – which are known
to be involved in diverse brain functions – form extensive projections in
almost all the brain regions [34,35]. Because those neurons feature
complex arborizations that are much denser and finer than most other
neuron types (Fig. 2), high-resolution microscopy images are required.
To this aim, images of the fluorescent antibody-labeled samples were
recorded using confocal laser-scanning microscopes (Olympus FV1000
and FV1200) with a 40x silicon immersion objective (NA ¼ 1.25) at an
image resolution of 0.2 � 0.2 � 0.2 μm each, in total 1600 � 1600 pixels
and approximately 800 serial sections.

Image quality degrades as the plane of the scanning optical section
goes deeper into the specimen (Fig. 3) even with high-resolution objec-
tive lenses that are designed to match the refraction index of the
mounting medium. Thus, although the total thickness of the samples (Ca.
160 μm) is well within the working distance of the objective lens (Ca.
280 μm), deeper half of the samples cannot be recorded with optimum
resolution if they are imaged only from one side. To address this issue, we
mounted the specimen between thin cover slips on both sides with a
space of 200-μm thickness, and the deeper half of the sample is recorded
from the other side by flipping the preparation (Fig. 4). The two sub-
stacks, taken from the front and back sides of the brain, were thenmerged
after flipping the volume data of the back substack.

This approach works well if the samples are mounted in rigid medium
and if the sample after flipping can be placed exactly at 180� from the
original direction. However, fluorescent samples are often mounted in a
fluid substrate such as 80% glycerol, in which the specimen are not
completely fixed but stay afloat. Slight rotation may therefore occur
when the samples are flipped. In addition, because of the instrumental
error, the two cover slips may not completely be in parallel, causing the
flip not to be exactly at 180�. Such error would not cause severe problems
if the images were taken at relatively low resolution. However, to
reconstruct fine neuronal fibers which are often thinner than 0.5 μm,
even subtle misalignment results in discontinuity such as gaps, if the
substacks are concatenated without fine three-dimensional registra-
tion (Fig. 5).
3.2. 2D-SIFT-in-3D-space algorithm

Our registration and stitching algorithm consists of several steps



Fig. 3. Difference in image quality along z-axis for the labeled fibers located in the area close to the sample surface (a: depth 30–40 μm) and rather deep in the specimen (b: 80–90 μm).
Note that not only brightness but also sharpness is decreased. Scale bar ¼ 10 μm.

Fig. 4. Image stacks acquisition. (a) A schematic view of the fly brain seen anterior-obliquely. (b) Optical sections of the front substack are acquired from the frontal surface of the brain
toward its mid-level. (c) After flipping the sample on the microscope stage, images of the back substack are acquired from the back surface of the brain toward mid-level. (d) Image
registration: the back substack is flipped and fused with the front one. (e–g) The sample is mounted between two thin cover slips. (e) Support plate for image acquisition. Glass spacers are
put on both sides of the slide glass. (f) Front substack acquisition. The sample sandwiched between coverslips is put on the spacers. The space between the back coverslip and the slide glass
avoids the occurrence of Newton ring that occurs when two glass material contact each other. (g) The sample is flipped for back substack acquisition.
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(Fig. 6): (1) the overlap detection in the two data substacks, (2) partial
maximum intensity projection (MIP), (3) filter selection, (4) SIFT features
extraction and correspondence detection, (5) affine transformation pa-
rameters estimation and (6) registered overlapping portions fusion. The
details of all the steps will be described in the following sections.
25
Overlap detection. This step aims to find the portions of the two image
substacks containing overlapping image data. To do so, we compare the
image content across sections of the two substacks using SIFT features
(see Fig. 7a1-2). For each section comparison, the number of corre-
sponding SIFT features is stored which allows the computation of the



Fig. 5. Importance of registration to avoid discontinuity in the final 3D image stack. Oblique view of the 3D reconstruction after concatenation of substacks. (a) Concatenation without fine
registration. Gaps and seems (dotted circle) are observed in the neural fibers that should be continuous at the boundary between the front and back substacks (dotted line). (b)
Concatenation after fine registration. Fibers appear continuous.

Fig. 6. Control panel of the 2D-SIFT-in-3D-space Volume Stitching plugin, implemented for ImageJ/Fiji. See main text for detail.

C. Murtin et al. Computers in Biology and Medicine 92 (2018) 22–41
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Fig. 7. Overlap detection. (a) Slice-by-slice method: (a1) the last section of the front substack is compared to each section of the back substack along the z-axis using (a2) SIFT comparison
until (a3) the best match is found. (a4) Overlap correspondence curve, which shows the number of corresponding SIFT features identified between the last section of the front substack and
each slice of the back substack. The highest peak of the curve corresponds to the position of overlap (red section in a3). (b) Block-by-block detection: (b1) the back substack is split into
several (here 2) blocks, and a MIP image is computed for each block. Each MIP of the blocks of the back substack is compared using SIFT with the MIP of the block of similar size (yellow) of

C. Murtin et al. Computers in Biology and Medicine 92 (2018) 22–41
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correspondence curve where the overlap positions are detected with the
highest peak of the correspondence curve (see Fig. 7a3-4). To detect the
overlap, we proposed two alternative approaches. The first approach
performs a slice-by-slice comparison: the last section of the front substack
is compared to each section of the back substack along the z-axis
(Fig. 7a). The overlap positions are detected with the highest peak of the
correspondence curve, in other words the section of the back substack
with most common information with the last section of the front sub-
stack. This approach is based on the assumption that tilting between the
planes of the two substacks is usually small enough to find important
similarities between substack sections of the corresponding depths
within the overlap. However, slice-by-slice comparison requires long
computation time on substacks made of numerous sections. Moreover,
when the tilting between the two substacks is big, similarity between
sections is often not sufficient for identifying corresponding sections. For
those reasons, we developed an alternative approach, block-by-block
comparison (Fig. 7b) using partial MIP presented in the following section.

Partial MIP. In this approach, we split the two entire substacks into
several blocks and make the maximum intensity projection of the sec-
tions within each block (partial MIP). SIFT comparison is then performed
between the partial MIP of the last block of the front substack with the
partial MIP of each block in the back substack (Fig. 7b1). The number of
blocks is determined by the parameter Split set in the control panel
(Fig. 6). For example, if the splitting parameter is set at 2, the substacks
will be divided into two blocks. The partial MIP of the last block of the
front substack will then be compared with the MIPs of the two back-
substack blocks and the best match is selected. The selected back-
substack block is further split in two incrementally and compared with
the equally split last block of the front substack (Fig. 7b2-3), until the
successively split blocks contain only one section (Fig. 7b4). The splitting
parameter can be set by the user, and the effect of its choice will be
discussed in the results section.

Filter selection. This step allows using preprocessed (filtered) images
instead of original stack images to calculate registration parameters. The
transformationmodel will be computed by comparing the SIFT features of
the filtered images, but the resulting model will be applied to the original
data. Applying various filters to enhance biological structures to be
registered may boost feature extraction and thus improve the final
stitching on real images. For example, for our specific application, one can
use a vesselness filter to enhance tubular structures of neuronal fiber im-
ages. For more generic applications, one can choose local contrast filter to
enhance faint signals or denoising filter to eliminate misleading signals.
Suchfilters are available in ImageJ/Fiji software. Another effectiveway of
using preprocessed images is to perform registration in 8-bit images
instead of original images with larger bit depth (e.g., 12-bit or 16-bit),
which will significantly reduce computation time. However, stitching of
such preprocessed images may not be scientifically pertinent, because it
may affect signal intensity and distribution as well as bit-depth resolution.
To provide users full flexibility, final concatenation can be performed
either with the preprocessed data or unprocessed raw image stacks.

SIFT features extraction and correspondence detection. Comparison
of sections of the two substacks is performed using SIFT [25]. SIFT is a
local descriptor that allow both automatic identification of salient points
in a section – by detecting blobs within a specified size range using the
Difference of Gaussian detector [36] – and extraction of features for these
points. A feature consists in an invariant descriptor to scaling, orienta-
tion, and partially invariant to affine distortion and illumination changes.
For this step, we use the version of 2D SIFT algorithm developed by
Stephan Saalfeld (http://fiji.sc/Feature_Extraction). Following this imple-
mentation, we provide two key parameters: (i) minimum and (ii)
maximum size of biological structures (in pixels) to be detected, as
the front substack. The best matching block (orange) is selected. (a2) The selected block is s
corresponding thickness from the front substack to select the best-matching block (orange). (b
section (b4). The position of overlap is identified as the best matching section of the back sub
pretation of the references to colour in this figure legend, the reader is referred to the web ve
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depicted in Fig. 6. SIFT features are extracted at all scales between
maximum and minimum size. Correspondence between SIFT features is
identified by nearest neighbor matching in the local descriptor space.
However, it results in a significant number of false correspondences. In
our registration context, the set of SIFT correspondences are related by an
unknown 2-d affine transformation T. The tool we used to separate true
and false correspondences is the random sample consensus (RANSAC)
implementation proposed by Refs. [37,38]. In short, it works as follows:
for a fixed number of iterations, it randomly selects a set of correspon-
dence candidates and estimates T for them. The residual error of all
candidates in terms of T is calculated and candidates with a residual error
lower than some maximum displacement are collected as true corre-
spondences. The largest set of true correspondences found is used to
estimate the optimal T. Number of iterations and maximal displacement
error are parameters of the implementation and were left to default
values proposed in the implementation of [37,38].

Affine transformation parameters estimation in three planes. Registration
is performed using only the data of the overlapping portions (Fig. 8a).
Three successive rounds of registration are performed in three orthog-
onal planes (Fig. 8b–d), where SIFT comparison is performed between
spatially corresponding pairs of slices. First, the overlapping data por-
tions of the front and back substacks are re-sliced along the z-axis to
obtain cross-section slices in the x-y plane (Fig. 8b). Slices of similar
depth are compared using SIFT features between front and back over-
lapping portions to calculate translation parameter in the x-y plane and
rotation parameter around z-axis. Second, the re-slicing step is performed
along x-axis to obtain cross sections in the y-z plane, and the generated
slices are compared to calculate translation in the y-z plane and rotation
around x-axis (Fig. 8c). Finally, the re-slicing step is performed along y-
axis to calculate in the same way translation in the x-z plane and rotation
around y-axis (Fig. 8d). This combination of steps allows for a 3D
registration starting with the plane containing the most information and
the potentially more displacement (which is linked to the acquisition
protocol which rotates the sample according to the x-y plane). In theory,
iterative uses of 2D SIFT might increase the chance that the whole
registration would fail. It is not the case in our approach, because we
initiate the iterative process in the direction of the most likely important
transformation.

In this processing step, comparison of single sections within the
overlapping portion often do not contain enough amount of corre-
sponding signals, so that extracted SIFT features in the section of the front
substack may match with only a tiny number of features in a section of
the back substack. To overcome this problem, instead of comparing
single sections, we again proposed the use of partial MIP (Fig. 9). Besides
its advantage of increasing the number of SIFT correspondences due to
denser signals in each partial-MIP slice compared to single slices of the
original stack, it also reduces the impact of rotation in the directions
other than the one studied. The thickness of the partial MIP is determined
by the parameter MIP size (in slices) in Fig. 6. This parameter is taken
into account by performing the re-slicing step slice by slice and then
computing partial MIP on all the blocks of the specified size parameter
from resliced front and back overlapping data portions. The effect of
using partial MIP in this specific step will be discussed in the re-
sults section.

The set of three registration rounds can be repeated as many times as
necessary to further improve the precision of registration. Multiple
application of translation and rotation would result in the accumulation
of image degradation caused by recalculation and interpolation of voxels
at each registration step. To avoid this we combined the translation and
rotation parameters calculated by all the previous steps and applied them
plit again into several blocks, whose MIPs are compared using SIFT with the MIP of the
3) This process is repeated with decreasing thickness until each block contains only one
stack (red section) compared to the last section of the front substack (yellow). (For inter-
rsion of this article.)

http://fiji.sc/Feature_Extraction


Fig. 8. 3D registration by three consecutive 2D comparisons: (a) Overlapping volume between substacks is identified as shown in Fig. 7(b–d) SIFT comparison is then performed between
spatially corresponding pairs of partial-MIP slices, first in the x-y plane (b) and then y-z plane (c) and finally x-z plane (d).

Fig. 9. Creation of partial-MIP slices along z, x and y. The image stack volume is re-sliced
into three directions, and MIP is calculated from subsets of slices. (a) Partial MIP parallel
to x-y plane. (b) Partial MIP parallel to y-z plane. (c) Partial MIP parallel to x-z plane. Each
partial-MIP slice contains more signals for feature extraction compared to thin single
sections. Reduction of the total number of slices for comparison also reduces computa-
tion time.
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Registered overlapping portions fusion. Finally a fusion step enables to
combine information from the two registered overlapping portions into a
single image stack. It allows fixing the difference of brightness within the
overlap due to light attenuation by tissue and photobleaching of signals
during image acquisition. For this step, we use the stitching plugin
developed by Stephan Preibisch (http://imagej.net/ImageStitching).
Following this implementation, different fusion methods such as
Average, Maximum, Minimum and Linear blending of the two substacks
can be selected.
29
3.3. In silico simulation of laser-scanning microscopy image stacks

To quantitatively evaluate our registration algorithm, we need a set of
sample image substacks for which degrees of rotation and tilting are
precisely known. Such quantitative comparison is difficult on real sam-
ples, because image stacks contain uncontrollable factors such as noise,
signal attenuation and photobleaching, making them difficult to register
precisely with human eyes. An alternative approach is to use in silico
simulation to generate images for the evaluation of our registration al-
gorithm. This approach starts by analyzing the noise in laser scanning-
microscope images.

Noise analysis. The noise in 3D image stacks acquired by confocal
laser-scanning fluorescence microscopy is known to follow a Gamma law
of shape k and scale θ [39]:

f ðx; k; θÞ ¼ xk�1expðx=θÞ
θkΓðkÞ ; (1)

for x> θ and k>0 and θ>0. It must be emphasized that the parameters k
and θ of the gamma law are not the same in the signal and in the back-
ground and are depth-dependent. Thus, we estimated those parameters
for two different parts of the image: the signal (in our case neuronal fi-
bers) and the background. For this purpose, we made a binary mask of
neuronal fibers by thresholding each section of our real image stacks
(Fig. 10a). The threshold was set automatically (Fig. 10b) using Li en-
tropy method [40]. The fiber signal is then extracted by multiplying the
corresponding binary mask with the original stacks (Fig. 10c); whereas
the background signal is obtained by multiplying the inverse of the bi-
nary mask with the original stacks (Fig. 10d).

To evaluate the nature of the noise observed in our datasets, the
resulting fiber signal and background images were fitted to a gamma
distribution to estimate the parameters k and θ throughout the sections of
the front and back substacks in five different brain samples (Figs. 11 and
12). Noise in the fiber signal of the front substacks shows a symmetric
evolution for k and θ (Fig. 11a): while k is increasing, θ is decreasing with
the depth. In short, the increase of the shape parameter k with the depth
traduces the convergence of the shape of the Gamma distribution to-
wards a Gaussian distribution and the decrease of scale parameter θ with
the depth is coherent with the global decrease of the signal intensity
observed in deep layers of the image stacks. Noise in the background
shows similar tendency as in the signal part (Fig. 11b). However, the k
parameter is much greater in the background, thus the background noise
tends to be more Gaussian. On the contrary, the θ parameter is more than

http://imagej.net/ImageStitching
http://imagej.net/ImageStitching


Fig. 10. Noise estimation for a real image stacks of Drosophila brain. Image intensity in (a) and (d) is enhanced to make dark noises more visible. (a) Original image. (b) Binary image
(threshold selected automatically using Li method). (c) Signal segmentation (original image within the binary image mask of b). (d) Background segmentation (original image outside the
binary image mask of b).
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10 times smaller in the background compared to the signal, which means
that the signal distribution is much less spread out.

Noise in the signal and background parts of the back substacks shows
similar evolution (Fig. 12): while k is increasing, θ is decreasing with the
depth in the same order of magnitude. However in the overlap (part of
the sample that was already imaged from the frontal surface) θ is reduced
due to photobleaching. Using these data we estimated the noise param-
eters k and θ as the average of the fitting curves of the five different brain
samples in the signal and background parts for the front and back sub-
stacks (Figs. 11 and 12). These averaged k and θ parameters estimated
through the depth can then be used as empirical laws for the evolution of
noise in laser-scanning microscope modeled as a depth dependent
gamma distribution.

Simulation. Based on the previous noise model, we created an in silico
simulator of laser-scanning microscopy image stacks (Fig. 13). We first
took the binarymasks of the signal (i.e. fibers) and background structures
(Fig. 13 left) generated for the study of the noise (Fig. 10). We then added
two different types of simulated noise on the signal and background
structures, respectively, depending on the depth from the surface of the
virtual sample (Fig. 13 middle). Finally, signal and background images
with added noises were merged to produce simulated laser-scanning
microscopy images (Fig. 13 right).

In this study, we simulated a brain sample with a thickness of 120 μm
(Fig. 14 top, 800 � 800 x 300 voxels). We divided the sample into two
overlapping substacks (Fig. 14a top) and added depth-dependent noise to
the sample regarding the structure parts and the nature of the substack
(i.e., front or back). In these simulated substacks, the red-colored section
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in (Fig. 14a bottom) is respectively 30 μm and 90 μm away from the
surface of the sample in the front and back substacks. Therefore it ap-
pears relatively clear in the front substack (Fig. 14d), but more blurred in
the back substack (Fig. 14e). These observations are consistent with real
laser-scanning images of neuronal fibers. Finally, by rotating and trans-
lating these virtual substacks, we are able to create tilted substacks with
known transformation parameters to evaluate the performance and the
accuracy of our registration algorithm.

Providing synthetic ground truth for binary structures (such as for the
fly brain neurons in Fig. 14) is relatively straightforward. Much more
effort would be required for textured samples, and, in practice this is not
done (i.e. one rather resort to the sole visual inspection on real images to
qualitatively assess the registration performance). We provide an illus-
tration on such a textured sample with images of real fly leg in Supple-
mentary data. However for some biological structures, it is possible to
generate ground truth numerically from scratch. This is for instance
possible for spheroid i.e. cellular spherical aggregates of cells which
constitute 3D in vitro models for life sciences (see Supplementary data for
images of real spheroid). Synthetic models of spheroid exist in the
literature [41] and to further illustrate the genericity of our simulator we
provided additional quantitative analysis with experiments on synthetic
spheroids as illustrated in Supplementary material section 4.

4. Results

Detailed illustrations are given on the results of the experiments
carried on simulated or real fruit fly brains in this section. Supplementary



Fig. 11. Evolution of the parameters k (top panel) and θ (bottom panel) of the gamma law of the microscope noise within the signal portion (a) and background portion (b) of the front
substack. Results of five different brain samples and their average (red). The first 20 μm, which contains mostly the image of round cell bodies, are excluded from evaluation. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Evolution of the parameters k (top panel) and θ (bottom panel) of the gamma law of the microscope noise within the signal portion (a) and background portion (b) of the back
substack. Results of five different brain samples and their average (red), after removing the first 20 μm (cell bodies). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 13. Overview of the in silico simulation of confocal microscopy image stacks. First, binary mask of the signal portion is generated from a real dataset of laser scanning microscopy. The
mask appears sharp and bright regardless of the depth of the section in the sample. Next, simulated noise in the signal (fibers) and background according to the depth is convoluted to the
binary masks. Finally, the signal and background images are merged.

Fig. 14. Generation of virtual substacks from a single image stack. (a) A single image stack (in this example the thickness of 300 sections ¼ 120 mum) is divided into two overlapping
substacks (with the thickness of e.g., 250 sections ¼ 100 mum). Noise simulation is then applied to the front substack from front to back to simulate the imaging from the frontal side, and
from back to front to the back substack to simulate the imaging from the back side. (b) Real image. (c) Binary mask of the signal structure. (d) In silico simulation of the image section if it is
placed at 30 μm from the surface. (e) The same section if it is placed at 90 μm from the surface. Note that the signal appears darker and more blurred and background noise appears higher
in (e) compared to (d), which is consistent with the image degradation in real confocal microscopy image stacks.
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experiments successfully carried on real and simulated spheroids and real
fly legs are given in the supplementary data so as to illustrate the generic
value of the proposed method.
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4.1. Validation of registration accuracy

Using the simulator, we tested the quality of our registration algo-
rithm (Figs. 15 and 16). We rotated the virtual back substack by 1�



Fig. 15. Superposition of the front (magenta) and back (green) substacks at each step of registration. (a) Before registration. (b) After registration in x-y plane (around z). (c) After
registration in y-z plane (around x). (d) After registration in x-z plane (around y). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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around x-, 2� around y-, and 5� around z-axes, applied the noise simu-
lator, and subjected the data to 2D-SIFT-in-3D-Space registration. The
performance of our algorithm can be qualitatively assessed in Fig. 15.
The front substack in green is superposed to the back substack in
magenta. The superposed image should appear white where the two
substacks are perfectly registered. The two images do not match just after
the overlap detection step (Fig. 15a). Subsequent registration in the x-y
plane (Fig. 15b) and then x-z plane (Fig. 15c) and y-z plane (Fig. 15d)
gradually improves matching and the overlapping images appear almost
completely white with only a slight green or magenta blurred halo,
attesting a good quality of registration. The final rotation matrix
computed for this dataset is shown in Table 1a. When we convert this
rotation matrix into Euler angles Rx, Ry and Rz (respectively rotations
around x-, y- and z-axes), we obtain Rx ¼ �1.2757�, Ry ¼ �2.0232�,
Rz ¼ �5.0010�, which are very similar to the opposite of the angles
introduced artificially in our simulated data. Registration was very pre-
cise for z (registration error 0.019%) and y (1.160%) but worse for
x (27.566%).

Registration can be improved by a second loop through the regis-
tration process. Indeed, after two iterations of registration, the rotation
error around x is greatly improved (Table 1b, i.e., 0.428%). Higher
number of iterations further decreases the rotation errors as well as
translation errors, which are lower than 1% of the original rotation an-
gles and less than 1.3 voxels (0.26 μm) of translation. In practice, 2 it-
erations seem to be a good compromise between accuracy and
computation time, because further registrations do not greatly improve
the errors. It can be noted however from Table 1b that rotation error after
multiple iterations becomes very small around z-axis, but remain a bit
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larger around x- and y-axes. The better registration accuracy around z-
axis compared to x and y can be explained by the size of the image slices.
Indeed, the x-y slices are much larger (800� 800 pixels) than the x-z and
y-z slices (800 � 200 pixels), leading to a greater number of matching
features. Registration performance can also be examined using the
overlap correspondence curve, which shows the number of matching
features between the last section of the front substack and each section of
the back substack (Fig. 16a). After the overlap detection (zero iteration),
the corresponding curve appears very broad with a small number of
matching features (blue line in Fig. 16a). Indeed, the front and back
substacks are not registered yet and thus the similarity between them is
still rather low. On the contrary, the correspondence curve after the first
round of registration is much thinner and sharper, and the number of
features is three times larger, traducing a higher similarity between the
front and back substacks (see Fig. 16b) and thus the efficiency of the
registration. The correspondence curves after the second iteration on-
wards are essentially superposition of the image stacks, without showing
further improvement (Fig. 16c–d). Finally, because image size is likely to
affect registration quality, and because image sizes in x-z and y-z slices
are determined by the overlap size, we also investigated its effect. When
we reduced the overlap by taking fewer sections from the front and back
substacks, registration error increased (Table 1c). If the overlap size was
too small (e.g., 50 voxels), the algorithm struggled to find rotation
around x and y with the default parameters. However, modification of
those parameters (here reducing the minimum size of structures to 1)
fixed the problem (Table 1c, bottom). These results show that multiple
iterations and large enough overlap size are both important for precise
registration.



Fig. 16. Registration of simulated data with small tilting (Rx ¼ 1�, Ry ¼ 2�, Rz ¼ 5�). (a) Overlap correspondence curve for zero to five iterations. Inset shows the expanded view of the
graph around the peak to better show the overlapping lines. (b–d) Superposition of the corresponding sections of the front substack (green) and registered back substack (magenta) after (b)
one, (c) two and (d) three iterations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.2. Performance comparison between block-by-block and slice-by-slice
overlap detection

We evaluated the accuracy of the block-by-block and slice-by-slice
overlap detection approaches. Block-by-block approach is meant to
allow registration of substacks with large tilting angles. To determine the
tilting limit of this approach, we fixed the tilting angles of Rz ¼ 5�,
Ry ¼ 2� and gradually increased the value of Rx by 5� steps and sub-
mitted the data to slice-by-slice (Table 2a) and block-by-block (Table 2b)
approaches. The splitting parameter was set at 5 for block-by-block
approach. Please note that both approaches used partial MIP in the
registration step and that its size was set to 20 slices for both versions.
Both overlap detection approaches performed similarly for small tilting
angles (< 15∘) leading to good results. However, stitching with block-by-
block approach produced smaller error rates and was two times faster
than slice-by-slice approach. The difficulty of overlap detection increases
with tilting because the similarity of sections perpendicular to z-axis
decreases. Overlap detection with slice-by-slice approach becomes
difficult as Rx reaches 20�, where the correspondence curve does not
present the typical bell-shape but is extremely noisy with very few
matching features (Fig. 17a). Thanks to the registration step around the
three axes, overlap detection was drastically improved after a few
registration iterations in terms of matching features (orange curve in
Fig. 17b). However, the computed rotation parameters were not as ac-
curate as expected, with high rotation error rate around x- and y-axes
35
(6.35% and 19.1% respectively, Table 2a bottom).
Stitching with block-by-block approach at Rx ¼ 20� also caused

erroneous computed rotation angle, with an error rate as high as 741%
and 79.9% around x- and y-axes (Table 2b, 4th row). Because the
thickness of the detected initial overlap was small (77-section thick), the
matching features were concentrated only in a small portion of the data
(Fig. 18a, green circle). To address this we then decreased the splitting
parameter to two, but the detected overlap thickness was again as low as
76 sections (Fig. 18b, green circle), causing similarly high error rates
(Table 2b, 5th row). In our algorithm, we first detect the overlapping
portion of the substacks and then perform subsequent registration only
using this portion of the data. With high tilting angle between substacks,
only a small part of the overlapping volume might be detected. However,
we can effectively skip overlap detection by setting the splitting param-
eter to one (i.e., no splitting) so that the program uses the data of the
entire substacks to compute registration (Fig. 18c, green circle). This
strategy resulted in much improved rotation error as low as 0.32%
(Table 2b, last row).

4.3. Influence of the splitting parameter in block-by-block approach

We next analyzed the effect of the splitting parameter for block-by-
block overlap detection for a moderate tilting angle of Rz ¼ 5�,
Ry ¼ 2� and Rx ¼ 5� (Table 3). We performed registration for splitting
parameter ranging from 1 (no split) to the number of the sections in the



Table 1
Rotation parameters after registration of the simulated data. Initial substack tilt corresponds to Rx¼ 1�, Ry¼ 2�, and Rz¼ 5�. 1 voxel¼ 0.2 μm. Total rotation error¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔRx2 þ ΔRy2 þ ΔRz2

p

and Total translation error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2 þ Δz2

p
.

a: Conversion matrix (Substack size 800 � 800 x 250, i.e., overlap: 200, after single iteration)

0.9955825655501388 0.08765056866153828 �0.03262316976298832
�0.08711895143914962 0.9957863605004061 0.023091300973873324
0.03532588980227439 �0.02226238860907968 0.9997414741550107
Rx ¼ �1.2757 Ry ¼ �2.0232 Rz ¼ �5.0010

b: Registration results after different number of iterations (Substack/overlap size are the same as above)

Iter # Euler angles: Rotation error: Total rot. error (%) Total trans. error (voxels)

Rx (�) Ry (�) Rz (�) ΔRx (%) ΔRy (%) ΔRz (%)

1 �1.2757 �2.0232 �5.0010 27.566 1.160 0.019 27.590 1.898
2 �0.9957 �1.9853 �4.9998 0.428 0.734 0.004 0.850 1.292
3 �0.9914 �1.9908 �5.0043 0.855 0.461 0.085 0.975 1.243
4 �0.9902 �1.9865 �5.0015 0.976 0.674 0.030 1.186 1.221
5 �0.9927 �1.9888 �5.0004 0.733 0.560 �0.009 0.922 0.928

c: Registration results for different amount of overlap (Results after 2 iterations)

Overlap (voxels) Euler angles: Rotation error: Total rot. error (%) Total trans. error (voxels)

Rx (�) Ry (�) Rz (�) ΔRx (%) ΔRy (%) ΔRz (%)

200 �0.9957 �1.9853 �4.9998 0.428 0.734 0.004 0.850 1.292
150 �1.0029 �1.9854 �4.9982 0.292 0.730 0.036 0.787 1.867
100 �1.0259 �1.9925 �5.0006 2.594 0.377 0.012 2.621 2.895
50 �1.0122 �2.0001 �5.0106 1.218 0.007 0.213 1.237 3.884

Table 2
Comparison of registration errors between block-by-block and slide-by-slide overlap detection for increasing tilting angles. (Rx¼ 5–20�, with Ry¼�2� and Rz¼ 5�, substack size: 800� 800
x 250. Partial MIP size is set at 20 slices. Computation time was measured on a computer with an Intel Core i7-4930 k processor (6-core) running at 3.4 GHz).

a: Slice-by slice overlap detection

Tilt (�) Euler angles: Rotation error: Total rot. error (%) Total trans. error (voxels) Comput. Time (min)

Rx (�) Ry (�) Rz (�) ΔRx (%) ΔRy (%) ΔRz (%)

5 �4.99 2.00 �4.99 0.036 0.180 0.007 0.18 2.38 71
10 �9.99 2.01 �5.00 0.084 0.566 0.017 0.57 4.50 53
15 �14.98 2.00 �5.00 0.081 0.086 0.046 0.12 6.54 45
20 �18.72 �1.61 �4.96 6.352 19.05 0.616 20.09 12.13 37

b: Block-by-block overlap detection

Tilt (�) Split Euler angles: Rotation error: Total rot. error (%) Total trans. error (voxels) Comput. Time (min)

Rx (�) Ry (�) Rz (�) ΔRx (%) ΔRy (%) ΔRz (%)

5 5 �4.99 2.00 �4.99 0.012 0.126 0.049 0.13 2.38 40
10 5 �9.99 2.00 �4.99 0.090 0.356 0.095 0.48 4.46 26
15 5 �14.97 2.00 �5.00 0.162 0.125 0.079 0.22 6.65 23
20 5 �168.2 �1.24 �5.44 741.2 37.8 8.8 742.3 16124 10
20 2 88.93 58.6 �88.4 544.6 2832.8 1669.8 3333.1 368420 11
20 1 �19.93 2.00 �5.01 0.319 0.126 0.242 0.42 8.78 33
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substack (corresponding to the slice-by-slice approach). After 5 itera-
tions, registration accuracy was essentially the same for all splitting pa-
rameters (Table 3), but it should be noted that computation time was
long when the split value ¼ 1 (58 min) because the entire substack data
are subjected to subsequent registration. Because the overlap does not
cover all slices in case of moderate tilting angles, many SIFT features will
not match and their consideration does not bring any improvement to the
registration result. Because of this, a split value of 1 must be used only in
case of high tilting between the two stacks as discussed in the previous
subsection.

When splitting was activated (split value¿1), computation time
depended on the total number of SIFT comparisons for overlap detection
(Table 3, second column). This comparison number is linked to the split
value. For our simulated substacks (250 sections thick) and a split value
of 5, the program first splits the substacks into 5 blocks of 50 sections and
does 5 SIFT comparisons (between the last block of the front substack and
the 5 blocks of the back substack) to find the best match. The selected
block is then split into 5 blocks of 10 sections and compared with a block
of the same size from the front substack (5 comparisons). The best-
36
matching block is further split into 5 blocks of 2 sections and once
again compared five times. Because the new selected block contains only
2 sections, it cannot be further split and a slice-by-slice comparison is
used to determine the exact position of overlap (two comparisons). Thus,
we need in total 17 comparisons to detect the overlap size. This number
of comparisons is much smaller than that of the slice-by-slice comparison
(250). However, the computation time was only about two times faster
(40 min versus 71 min, Table 3). This is likely because thick partial MIP
images present more SIFT candidates. The number of comparison in-
creases as we set higher splitting parameter, which results in longer
computation time (Table 3). Thus, for practical purposes splitting
parameter between 2 and 5 should be preferred. However, if the sections
contain very dense signals, setting a too small split value may cause
saturation or too many unmatching features. The running time then in-
creases a lot but not the quality of registration.
4.4. Impact of image filtering on registration accuracy

As previously discussed in introduction, signal quality tends to



Fig. 17. Registration of simulated data with big tilting (Rx ¼ 20�, Ry ¼ 2�, Rz ¼ 5�) with the slice-by-slice overlap detection. (a) Overlap correspondence curve before registration. Highest
peak was at the 131st section. (b) Comparison of the curves before and after registration. Actual matching peak after registration was at the 49th section.

Fig. 18. Repartition of matching features (green) of artificial data with big tilting (Rx ¼ 20�, Ry ¼ 2�, Rz ¼ 5�) using the block-by-block overlap detection algorithm with the splitting
parameter of 5 (a), 2 (b), and no splitting (c). Detected overlap was 77, 76 voxels for (a) and (b). In (c), the algorithm uses the data of the entire substacks (250 voxels). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Registration errors and computation time of the block-by-block algorithm for different splitting parameters with Rx ¼ 5� , Ry ¼ �2� and Rz ¼ 5�. Partial MIP size is set at 20 slices.

Split Compa-rison # Euler angles: Rotation error: Total rot. error (%) Total trans. error (voxels) Comput. Time (min)

Rx (�) Ry (�) Rz (�) ΔRx (%) ΔRy (%) ΔRz (%)

1a 1 �4.99 2.003 �4.9977 0.061 0.162 0.046 0.180 2.38 58
2 15 �4.997 2.000 �5.001 0.061 0.031 0.034 0.076 2.44 32
5 17 �4.999 2.002 �4.997 0.012 0.126 0.049 0.136 2.38 40
10 22 �4.998 2.000 �4.998 0.028 0.023 0.024 0.042 2.40 44
15 31 �4.991 1.999 �5.001 0.164 0.028 0.030 0.169 2.38 46
20 32 �4.999 2.005 �5.001 0.013 0.271 0.033 0.273 2.49 48
50 55 �4.998 2.003 �4.998 0.032 0.160 0.035 0.167 2.37 60
125 76 �4.998 2.004 �4.998 0.040 0.199 0.029 0.205 2.42 125
250b 71 �4.998 2.003 �4.999 0.036 0.180 0.007 0.184 2.38 250

a No split.
b Effectively the same as slice-by-slice comparison.
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Fig. 19. Improved registration after intensity and gamma correction. (a) Original data. (b)
Corrected data (Intensity 100%–300% linear, gamma 1 to 1.4 linear). (c) Number of SIFT
features in the overlap detection for original data (green) and intensity/gamma corrected
data (blue). Rectangle shows the plateau of the matching peak without intensity and
gamma correction. (d, e) The x-z cross-sections of the stack, showing superposition of the
front (green, left side of the panels) and back substack images (magenta, right side of the
panels). Registration on original data (d) and corrected data (e). Brightness is enhanced for
better visualization. Arrows in (d) indicate green and magenta fringe caused by the
mismatch between the front and back substacks, which are hardly seen in (e). Scale
bars ¼ 50 μm (a, b), 10 μm (d, e). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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decrease with the depth in the samples. Unless adequately compensated,
images of the sections that are deep in the specimen tend to appear
darker than those that are close to the sample surface because of the
attenuation of light passing through the specimen and photobleaching of
fluorophores during image acquisition [5]. Despite the relative robust-
ness of SIFT matches toward brightness difference between the two im-
ages to be registered, it can be helpful to perform a filtering step of the
image substacks to compensate the brightness mismatch of comparable
sections before registration. To address this problem we developed a
Fiji/ImageJ plugin Progressive Intensity and Gamma Correction (see
Figs. S4 and S5 of the Supplementary data). Using this plugin we tested
the effect of intensity/gamma correction on the precision of registration.
Fig. 19 compares the results of overlap extraction for the same pair of
substacks with or without intensity/gamma correction. Compared to the
original substack (Fig. 19a), intensity was corrected between 100% and
300% linearly and gamma between 1.0 and 1.4 linearly from the first
(shallowest) to the last (deepest) sections of substacks (Fig. 19b). After
the overlap detection (before registration), the overlap correspondence
curve appears much thinner and sharper, and the number of features is
five times larger (Fig. 19c) after intensity/gamma correction (blue line)
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than with the original data (green line). Indeed, corresponding curve of
the original data presents a plateau, making the overlap size determi-
nation confusing, whereas the curve of the corrected data shows a sharp
peak from which we can precisely deduce the overlap size. This differ-
ence can be noticed as a slight shift along the z-axis when the front and
back substacks are merged. In the cross section view of the stack (Fig. 19d
and e), we can see that the superposition works better (white color
without green or magenta fringes) for the intensity-corrected data
(Fig. 19e) than for the original data (arrows in Fig. 19d).

4.5. Performance on real data

Our plugin can efficiently perform very fine adjustments and pre-
cisely register small objects such as neuronal fibers and presynaptic sites.
Fig. 20 shows the performance of our registration algorithm for the real
image stacks of the Drosophila brain at a voxel resolution of
0.2 � 0.2 � 0.2 μm (1600 � 1600 voxels and 800 sections). The front
substack (Fig. 20a, shown in magenta in Fig. 20c) was registered and
superposed to the back substack (Fig. 20b, shown in green in Fig. 20c). In
the overlaid image (Fig. 20c), green and magenta cast should appear on
the opposite sides of the objects if two stacks are out of alignment. The
lack of such cast attests perfect registration. (Note: green or magenta cast
that appears on the entire object is caused by the voxel intensity differ-
ences between front and back substacks.) The stitched dataset serves as a
starting point for characterizing the fine architecture of the visualized
neurons at very high resolution.

4.6. Effect of optical aberrations

2D-SIFT-in-3D-Space Volume Stitching performs only affine trans-
formation. This is because the section images of the same sample ob-
tained from different sides should have same morphology. However, we
found that this assumption may not always be true. In a few cases, we
noticed that peripheral areas of the image could not be registered
completely even when complete match was achieved in the central parts
of the image. There is apparently a slight non-linear distortion between
the section images of the same part of the sample obtained from the
different substacks (Fig. 21). This is most likely because of the optical
aberrations caused by the microscope objectives and scan optics. Among
Seidels five aberrations, spherical aberration, coma, and astigmatism
mainly affect the sharpness of the image without affecting the location of
the signal. Those aberrations may cause uneven sharpness in the image
field. Then sharper parts of the image with the highest feature corre-
spondences concentration will have a stronger influence on the model
computation, leading to perfect registration in those parts but a shift
between the front and back substacks in other parts of the image.
Moreover, the other two aberrations field curvature and distortion cause
distorted projection from the signal distribution in the sample to the
obtained 3D image space, making straight lines in the sample appear
curved along z-axis (field curvature) or in the x-y plane (distortion). An
objective lens tuned for the best performance at certain focal depth in the
sample may not perform optimally at shallower or deeper levels. Thus,
the optical sections of the same part of the specimen but obtained from
different sides (i.e., at different depth) may not be identical. Adaptive
optics and post-imaging distortion correction should be helpful to reduce
the effect of optical aberrations [42–44].

5. Conclusion

Although confocal laser-scanning fluorescent microscopy is used
extensively in many biological laboratories to visualize a large variety of
cells and specimens, its depth limitation problem makes it difficult to
study thick samples. Even though microscope manufacturers try to pro-
vide objective lenses with longer working distances, diffraction and
scattering of lights within the optically uneven specimen still causes
practical limitations. Two-photon microscopy does not solve this



Fig. 20. Registration and superposition of the substacks. Example of a real image stacks of the Drosophila brain (a) A section from the front substack, and (b) its corresponding section from
the back substack after registration. (c) Close-up view of the superposition of the two sections (rectangles in upper panels). Magenta (section of the front substack) and green (section of the
back substack) images are superposed. Scale bars ¼ 30 μm (a, b), 20 μm (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 21. Illustration of registration errors caused by optical aberration. Superposition of the front substack (green) and back substack (magenta). (a) The two substacks are registered nicely
in the central part of the image. (b) In the peripheral areas of the image, however, small mismatch tends to remain regardless of the registration around any axes (arrows). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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problem; although long-wavelength infrared light of the excitation laser
is less prone to diffraction and scattering, emission light of short-
wavelength from the labeled signals suffers from the same optical
problem as in single-photon confocal microscopy. A promising alterna-
tive solution to obtain a thick high-resolution image stack is to stitch
multiple substacks that are taken either from both sides of the specimen
39
by sample flipping or from the same side by cutting off the sample surface
progressively with microtomes. This alternative solution raises the
problem of registration and stitching of partially overlapping 3D stacks.
In this article, we proposed 2D-SIFT-in-3D-Space as an efficient method
to address the registration and stitching of a variety of 3D image stacks. It
specially allows tight adjustment of stacks of thin structures such as
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neurons to avoid seams between stitched substacks, or tiles, reducing
errors in further 3D image processing and analyses. The registration is
realized with an iterative combination of existing 2D local features in the
3D space. 2D-SIFT-in-3D-Space algorithm is not limited to neuron images
of front and back substacks; it can be used on a variety of different
datasets that require precise registration (See Figs. S2 and S3 and section
4 of the Supplementary data for additional examples). Also to help
advanced analyses of 3D image stack in laser-scanning microscopy and to
improve SIFT registration of dark samples, we provide a tool that im-
proves intensity and contrast of serial section image stacks to compensate
the loss induced by photobleaching and attenuation of the fluorescence
(see Figs. S4 and S5 of the Supplementary data). Quantitative validation
of 2D-SIFT-in-3D-Space is realized with the help of an in silico virtual test
data specially created for this study to simulate the noise in fluorescent
laser-scanning microscopy. Given the huge literature and software li-
braries dedicated to image registration, other programs, as discussed in
the related work section, would in principle have the potential to also
perform the registration problem illustrated here on Drosophila brain.
Different image datasets possess diverse characteristic features that affect
registration, and each registration method has to be tuned properly for
each purpose for a fair comparison. A quantitative comparison with all
registration solutions and exhaustive investigation of the whole param-
eter spaces of each of all these solutions would be an important mile-
stone. Such an exhaustive work has recently been proposed for instance
for particle tracking [45]. To target a similar milestone for 3D image
registration of fluorescent microscopy, annotated image datasets with
ground-truth registration solution would be required. Manual annotation
and registration of such datasets would be very difficult and time
consuming. The simulator proposed in our manuscript therefore opens
the way to the quantitative benchmark of various registration methods of
3D images acquired with fluorescent microscopy.

Other interesting perspectives include evolution of our algorithm. We
considered situations where it was possible to assume that the samples
were not deforming during two imaging steps. In this framework, we
logically considered rigid registration. In case where this assumption
would not hold it would then be necessary to realize non rigid trans-
formation. Also, the proposed algorithm allow to register multiple
channels in fluorescence stack of images. However, the registration is
based on one single channel (the best contrasted one), and the computed
transformation is then applied to the other channels. SIFT can be applied
to multiple component 3D images in principle and a joint registration of
the channel could be considered as a further improvement.
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