Spectral Element Method and Discontinuous Galerkin approximation for elasto-acoustic problems
Hélène Barucq, Henri Calandra, Aurélien Citraine, Julien Diaz, Christian Gout

To cite this version:

HAL Id: hal-01690670
https://hal.archives-ouvertes.fr/hal-01690670
Submitted on 23 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Hélène Barucq\(^1\), Henri Calandra\(^2\), Aurélien Citrain\(^{1,3}\), Julien Diaz\(^1\) and Christian Gout\(^3\)

\(^1\) Team project Magique.3D, INRIA.UPPA.CNRS, Pau, France.
\(^2\) TOTAL SA, CSTJS, Pau, France.
\(^3\) INSA Rouen-Normandie Université, LMI EA 3226, 76000, Rouen.

MATHIAS 2017 October 25-27
Why using hybrid meshes?

- Useful when the use of unstructured grid is non-sense (e.g. medium with a layer of water)
- Allows the coupling of numerical methods in order to reduce the computational cost
Elastodynamic system

\[x \in \Omega \subset \mathbb{R}^d, \ t \in [0, T], \ T > 0 : \]

\[
\begin{aligned}
\rho(x) \frac{\partial v}{\partial t}(x, t) &= \nabla \cdot \sigma(x, t) \\
\frac{\partial \sigma}{\partial t}(x, t) &= C(x)\varepsilon(v(x, t))
\end{aligned}
\]

With :

- \(\rho(x) \) the density
- \(C(x) \) the elasticity tensor
- \(\varepsilon(x, t) \) the deformation tensor
- \(v(x, t) \), the wavespeed
- \(\sigma(x, t) \) the strain tensor
Elasticus software

Software written in Fortran 90 for wave propagation simulation in the time domain

Features

Simulation:
- on various types of meshes (unstructured triangle, structured quadrangle, hybrid)
- on heterogeneous media (acoustic, elastic and elasto-acoustic)

- Discontinuous Galerkin (DG) on quadrangle, triangle and hybrid mesh
- Spectral Element Method (SEM) only on quadrangle mesh
- with various time-schemes: Runge-Kutta (2 or 4), Leap-Frog
- with p-adaptivity, multi-order computation...
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Comparison DG/SEM on structured quadrangle mesh</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DG/SEM coupling</td>
<td></td>
</tr>
</tbody>
</table>
Numerical Methods
- Discontinuous Galerkin Method (DG)
- Spectral Element Method (SEM)
- Advantages of each method
Use discontinuous functions:

- mesh
- continuous
- discontinuous

Degrees of freedom necessary on each cell:

- h adaptivity:
- p adaptivity:

$P1$, $P2$, $P3$
Spectral Element Method

General principle

- Finite Element Method (FEM) discretization + Gauss-Lobatto quadrature
- Gauss-Lobatto points as degrees of freedom (gives us exponential convergence on L^2-norm)

\[\int f(x) \, dx \approx \sum_{j=1}^{N+1} \omega_j f(\xi_j) \]

\[\varphi_i(\xi_j) = \delta_{ij} \]
Main change with DG

- DG discontinuous, SEM continuous
- Need to define local to global numbering
- Global matrices needed for SEM
- Basis functions computed differently
Advantages of each method

DG
- Element per element computation (hp-adaptivity)
- Time discretization quasi explicit (block diagonal mass matrix)
- Simple to parallelize

SEM
- Couples the flexibility of FEM with the accuracy of the pseudo-spectral method
- Reduces the computational cost when you use structured meshes in comparison with DG
- Simplifies the mass and stiff matrices (mass matrix diagonal)
Comparison DG/SEM on structured quadrangle mesh

- Description of the test cases
- Comparative tables
Description of the test cases

Physical parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P wavespeed</td>
<td>1000 m.s⁻¹</td>
</tr>
<tr>
<td>Density</td>
<td>1 kg.m⁻³</td>
</tr>
</tbody>
</table>

Second order **Ricker Source** in Pwave ($f_{peak} = 10$Hz)

General context

- **Acoustic homogeneous** medium
- Four different meshes: 10000 cells, 22500 cells, 90000 cells, 250000 cells
- CFL computed using **power iteration** method
- **Leap-Frog** time scheme
- **Four threads** parallel execution with **OpenMP**
Comparative tables

Comparison between numerical solution and analytical solution obtained using the software Gar6more

Quadrangle mesh 10000 elements:

<table>
<thead>
<tr>
<th></th>
<th>CFL</th>
<th>L2-error</th>
<th>CPU-time</th>
<th>Nb of time steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG</td>
<td>1.99e-3</td>
<td>2.5e-2</td>
<td>61.96</td>
<td>500</td>
</tr>
<tr>
<td>SEM</td>
<td>4.9e-3</td>
<td>1.3e-1</td>
<td>0.73</td>
<td>204</td>
</tr>
<tr>
<td>SEM(DG CFL)</td>
<td>1.99e-3</td>
<td>4.8e-2</td>
<td>1.48</td>
<td>502</td>
</tr>
</tbody>
</table>

Quadrangle mesh 22500 elements:

<table>
<thead>
<tr>
<th></th>
<th>CFL</th>
<th>L2-error</th>
<th>CPU-time</th>
<th>Nb of time steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG</td>
<td>1.33e-3</td>
<td>1.8e-2</td>
<td>252.20</td>
<td>750</td>
</tr>
<tr>
<td>SEM</td>
<td>3.26e-3</td>
<td>7e-2</td>
<td>2.42</td>
<td>306</td>
</tr>
<tr>
<td>SEM(DG CFL)</td>
<td>1.33e-3</td>
<td>1.2e-2</td>
<td>4.70</td>
<td>751</td>
</tr>
</tbody>
</table>

SEM fifty time much faster on a mesh with 22500 cells than DG
DG/SEM coupling

- Hybrid meshes structures
- Variationnal formulation
- Space discretization
Hybrid meshes structures

- Need to couple P_k and Q_k structures.
- Need to extend or split some of the structures (e.g. neighbour indexes)
- Necessity to define new face matrices

\[
M_{ij}^{K,L} = \int_{K \cap L} \phi_i^K \phi_j^L, \quad M_{ij}^{K,L} = \int_{K \cap L} \psi_i^K \psi_j^L, \quad M_{ij}^{K,L} = \int_{K \cap L} \phi_i^K \psi_j^L
\]
Variational formulation

Global context

- Domain in two parts: $\Omega_{h,1}$ (structured quadrangle + SEM), $\Omega_{h,2}$ (unstructured triangle + DG)
- w_1, w_2 the tests-function and ξ_1, ξ_2 the tests-tensors
Variational formulation

SEM variational formulation:

\[
\begin{align*}
\int_{\Omega_{h,1}} \rho \partial_t v_1 \cdot w_1 &= -\int_{\Omega_{h,1}} \sigma_1 \cdot \nabla w_1 + \int_{\Gamma_{out}} (\sigma_1 n_1) \cdot w_1 \\
\int_{\Omega_{h,1}} \partial_t \sigma_1 : \xi_1 &= -\int_{\Omega_{h,1}} (\nabla (C\xi_1)) \cdot v_1 + \int_{\Gamma_{out}} (C\xi_1 n_1) \cdot v_1
\end{align*}
\]

DG variational formulation:

\[
\begin{align*}
\int_{\Omega_{h,2}} \rho \partial_t v_2 \cdot w_2 &= -\int_{\Omega_{h,2}} \sigma_2 \cdot \nabla w_2 + \int_{\Gamma_{out}} (\sigma_2 n_2) \cdot w_2 + \int_{\Gamma_{int}} \{\sigma_2\}[[w_2]] \cdot n_2 \\
\int_{\Omega_{h,2}} \partial_t \sigma_2 : \xi_2 &= -\int_{\Omega_{h,2}} (\nabla (C\xi_2)) \cdot v_2 + \int_{\Gamma_{out}} (C\xi_2 n_2) \cdot v_2 + \int_{\Gamma_{int}} \{v_2\}[[C\xi_2]] \cdot n_2
\end{align*}
\]
Variational formulation

SEM variational formulation:

\[
\begin{align*}
\int_{\Omega_{h,1}} \rho \partial_t v_1 \cdot w_1 &= -\int_{\Omega_{h,1}} \sigma_1 \cdot \nabla w_1 + \int_{\Gamma_{out}} (\sigma_1 n_1) \cdot w_1 + \int_{\Gamma_{DG/SEM}} (\sigma_1 n_1) \cdot w_1 \\
\int_{\Omega_{h,1}} \partial_t \sigma_1 : \xi_1 &= -\int_{\Omega_{h,1}} (\nabla (C \xi_1)) \cdot v_1 + \int_{\Gamma_{out}} (C \xi_1 n_1) \cdot v_1 + \int_{\Gamma_{DG/SEM}} (C \xi_1 n_1) \cdot v_1
\end{align*}
\]

DG variational formulation:

\[
\begin{align*}
\int_{\Omega_{h,2}} \rho \partial_t v_2 \cdot w_2 &= -\int_{\Omega_{h,2}} \sigma_2 \cdot \nabla w_2 + \int_{\Gamma_{out}} (\sigma_2 n_2) \cdot w_2 + \int_{\Gamma_{int}} \{\sigma_2\} [[w_2]] \cdot n_2 + \int_{\Gamma_{DG/SEM}} (\sigma_2 n_2) \cdot w_2 \\
\int_{\Omega_{h,2}} \partial_t \sigma_2 : \xi_2 &= -\int_{\Omega_{h,2}} (\nabla (C \xi_2)) \cdot v_2 + \int_{\Gamma_{out}} (C \xi_2 n_2) \cdot v_2 + \int_{\Gamma_{int}} \{v_2\} [[C \xi_2]] \cdot n_2 + \int_{\Gamma_{DG/SEM}} (C \xi_2 n_2) \cdot v_2
\end{align*}
\]
Variational formulation

Computation steps

1. Simplify the coupling terms and separates the two parts + put $\sigma \cdot n = 0$

\[
\begin{align*}
\int_{\Omega_{h,1}} \rho \partial_t v_1 \cdot w_1 &= -\int_{\Omega_{h,1}} \sigma_1 \cdot \nabla w_1 + \frac{1}{2} \int_{\Gamma_{DG/SEM}} (\sigma_1 + \sigma_2) n_1 \cdot w_1 \\
\int_{\Omega_{h,1}} \partial_t \sigma_1 : \xi_1 &= -\int_{\Omega_{h,1}} (\nabla (C \xi_1)) \cdot v_1 + \frac{1}{2} \int_{\Gamma_{DG/SEM}} (C \xi_1 n_1) \cdot (v_1 + v_2) \\
\int_{\Omega_{h,2}} \rho \partial_t v_2 \cdot w_2 &= -\int_{\Omega_{h,2}} \sigma_2 \cdot \nabla w_2 + \int_{\Gamma_{int}} \{\sigma_2\}[[w_2]] \cdot n_2 - \frac{1}{2} \int_{\Gamma_{DG/SEM}} (\sigma_1 + \sigma_2) n_1 \cdot w_2 \\
\int_{\Omega_{h,2}} \partial_t \sigma_2 : \xi_2 &= -\int_{\Omega_{h,2}} (\nabla (C \xi_2)) \cdot v_2 + \int_{\Gamma_{int}} \{\sigma_2\}[[C \xi_2]] \cdot n_2 - \frac{1}{2} \int_{\Gamma_{DG/SEM}} (C \xi_2 n_1) \cdot (v_1 + v_2)
\end{align*}
\]
Space discretization : SEM part

- φ_i : SEM basis functions
- ψ_i : DG basis functions

\[
\begin{aligned}
M_{v_1} \partial_t v_{h,1} + R_{\sigma_1} \sigma_{h,1} + R^{2,1}_{\sigma_2} \sigma_{h,2} &= 0 \\
M_{\sigma_1} \partial_t \sigma_{h,1} + R_{v_1} v_{h,1} + R^{2,1}_{v_2} v_{h,2} &= 0
\end{aligned}
\]

- $M_{ij} = \int_{\Omega} \varphi_i \varphi_j \approx \sum_{e \in \text{supp}(\varphi_i) \cap \text{supp}(\varphi_j)} \sum_{k=1}^{(r+1)^d} \omega_k \varphi_i(\xi_k) \varphi_j(\xi_k) = \sum_{e \in \text{supp}(\varphi_i) \cap \text{supp}(\varphi_j)} \omega_i \delta_{i,j}$ the mass matrix

- $R_{p_{ij}} = \int_{\Omega} \varphi_i \frac{\partial \varphi_j}{\partial p}$ stiffness matrix

Matrix of DG/SEM coupling :

\[
R^{2,1}_{\sigma_2,ij} = \int_{\partial \Omega_1 \cap \partial \Omega_2} \psi_i \psi_j
\]
Space discretization: DG part

\[
\begin{aligned}
\rho M_v v_{h,2} + R_\sigma \sigma_{h,2} - R_{\sigma_1^2} \sigma_{h,1} &= 0 \\
M_\sigma v_{h,2} + R_v v_{h,2} - R_{v_1^2} v_{h,1} &= 0
\end{aligned}
\]

- \(M^K_{ij} = \int_K \psi^K_i \psi^K_j \) mass matrix,
- \(R^K_{p_{ij}} = \int_K \psi^K_i \frac{\partial \psi^K_j}{\partial p} \) stiffness matrix,
- \(R^K_{p_{ij}} = \int_{\partial K \cap \partial L} \psi^K_i \psi^L_j n_K \cdot e_p \) the mass-face matrices

Two new matrices which come from the DG/SEM hybridation \(R^{1,2}_* \). Block composed:

\[
R^{1,2}_v = R^{1,2}_{\sigma_1} = -\frac{1}{2} \int_{\partial \Omega_2 \cap \partial K_1} \psi^K_2 \varphi_i \forall i, j = 1..N_m \quad (1)
\]
Conclusion and perspectives

Conclusion

1. As expected, SEM is more efficient on structured quadrangle mesh than DG
2. Show the utility on the use of hybrid meshes and method coupling (reduce computational cost, ...)
3. Build a variational formulation for DG/SEM coupling and find a CFL condition that ensures stability

Perspectives

- Implement DG/SEM coupling on the code (2D)
- Develop h-adaptivity for the structured part
- Develop DG/SEM coupling in 3D
Thank you for your attention!

Questions?