E. Brun, L. Sanche, and C. Sicard-roselli, Butterworth KT, McMahon SJ, Currell FJ, Prise KM. Physical Basis and Biological 525 Mechanisms of Gold Nanoparticle Radiosensitization, Colloids Surfaces B Biointerfaces, vol.72, issue.1, pp.128-134, 2009.

J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, The use of gold nanoparticles to enhance 527 radiotherapy in mice, Phys Med Biol, vol.49, issue.18, pp.309-309, 2004.

J. F. Hainfeld, H. M. Smilowitz, M. J. O'connor, F. A. Dilmanian, and D. N. Slatkin, Gold nanoparticle 529 imaging and radiotherapy of brain tumors in mice, Nanomedicine, vol.8, issue.10, pp.1601-1609, 2013.

S. Jain, J. A. Coulter, and K. T. Butterworth, Gold nanoparticle cellular uptake, toxicity and 531 radiosensitisation in hypoxic conditions, Radiother Oncol, vol.110, pp.342-347, 2014.

L. Sancey, F. Lux, and S. Kotb, The use of theranostic gadolinium-based nanoprobes to improve 533 radiotherapy efficacy, Br J Radiol, vol.87, p.20140134, 1041.

F. Taupin, M. Flaender, and R. Delorme, Gadolinium nanoparticles and contrast agent as 535 radiation sensitizers, Phys Med Biol, vol.60, pp.4449-4464, 2015.

S. Kotb, A. Detappe, and F. Lux, Gadolinium-Based Nanoparticles and Radiation Therapy for 537

, Multiple Brain Melanoma Metastases: Proof of Concept before Phase I Trial, Theranostics, vol.538, issue.3, pp.418-427, 2016.

L. ?tefan?íková, S. Lacombe, and D. Salado, Effect of gadolinium-based nanoparticles on 540 nuclear DNA damage and repair in glioblastoma tumor cells, J Nanobiotechnology, vol.541, issue.1, p.63, 2016.

L. E. Taggart, S. J. Mcmahon, F. J. Currell, K. M. Prise, and K. T. Butterworth, The role of mitochondrial 543 function in gold nanoparticle mediated radiosensitisation, Cancer Nanotechnol, vol.5, issue.1, 2014.

M. Edouard, D. Broggio, Y. Prezado, F. Esteve, H. Elleaume et al., Treatment plans 546 optimization for contrast-enhanced synchrotron stereotactic radiotherapy, Med Phys, vol.547, issue.6, pp.2445-2456, 2010.

B. L. Jones, S. Krishnan, and S. H. Cho, Estimation of microscopic dose enhancement factor around 549 gold nanoparticles by Monte Carlo calculations, Med Phys, vol.37, issue.7, pp.3809-3816, 2010.

J. D. Carter, N. N. Cheng, Y. Qu, G. D. Suarez, and T. Guo, Nanoscale energy deposition by X-ray 551 absorbing nanostructures, J Phys Chem B, vol.111, issue.40, pp.11622-11625, 2007.

M. Leung, J. Chow, B. D. Chithrani, M. Lee, and B. Oms, Jaffray D a. Irradiation of gold 554 nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial 555 properties of the secondary electrons production, Med Phys, vol.38, issue.2, pp.624-631, 2011.

M. Douglass, E. Bezak, and S. Penfold, Monte Carlo investigation of the increased radiation 558 deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D 559 randomized cell model, Med Phys, vol.40, issue.7, p.71710, 2013.

E. Lechtman, N. Chattopadhyay, Z. Cai, S. Mashouf, R. Reilly et al., Implications on clinical 561 scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, 562 concentration and location, Phys Med Biol, vol.56, issue.15, p.4631, 2011.

E. Lechtman, S. Mashouf, and N. Chattopadhyay, A Monte Carlo-based model of gold 564 nanoparticle radiosensitization accounting for increased radiobiological effectiveness, Phys, vol.565

, Med Biol, vol.58, issue.10, p.3075, 2013.

S. J. Mcmahon, A. L. Mcnamara, J. Schuemann, K. M. Prise, and H. Paganetti, Mitochondria as a target 567 for radiosensitisation by gold nanoparticles, J Phys Conf Ser, vol.777, issue.1, 2017.

S. J. Mcmahon, W. B. Hyland, and M. F. Muir, Biological consequences of nanoscale energy 570 deposition near irradiated heavy atom nanoparticles, Sci Rep, vol.1, pp.1-9, 2011.

P. Tsiamas, B. Liu, and F. Cifter, Impact of beam quality on megavoltage radiotherapy 573 treatment techniques utilizing gold nanoparticles for dose enhancement, Phys Med Biol, vol.574, issue.3, p.451, 2013.

Y. Lin, S. J. Mcmahon, H. Paganetti, and J. Schuemann, Biological modeling of gold nanoparticle 576 enhanced radiotherapy for proton therapy, Phys Med Biol, vol.60, issue.10, p.4149, 2015.

H. Nikjoo and L. Lindborg, RBE of low energy electrons and photons, Phys Med Biol. 578, vol.27, issue.10, pp.65-109, 2010.

S. J. Mcmahon, W. B. Hyland, and M. F. Muir, Nanodosimetric effects of gold nanoparticles in 580 megavoltage radiation therapy, Radiother Oncol, vol.100, issue.3, pp.412-416, 2011.

I. Miladi, M. Aloy, and E. Armandy, Combining ultrasmall gadolinium-based nanoparticles 583 with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma

, Nanomedicine Nanotechnology, vol.11, issue.1, pp.247-257, 2015.

W. Rima, L. Sancey, and M. Aloy, Internalization pathways into cancer cells of gadolinium-586 based radiosensitizing nanoparticles, Biomaterials, vol.34, issue.1, pp.181-195, 2013.

A. L. Mcnamara, W. Kam, and N. Scales, Dose enhancement effects to the nucleus and 588 mitochondria from gold nanoparticles in the cytosol, Phys Med Biol, vol.61, issue.16, 2016.

E. Porcel, O. Tillement, and F. Lux, Gadolinium-based nanoparticles to improve the 591 hadrontherapy performances, Nanomedicine Nanotechnology, vol.10, issue.8, pp.1601-592, 2014.

I. Miladi, L. Duc, G. Kryza, and D. , Biodistribution of ultra small gadolinium-based 594 nanoparticles as theranostic agent: Application to brain tumors, J Biomater Appl, vol.595, issue.3, pp.385-394, 2013.

C. Verry, S. Dufort, and E. L. Barbier, MRI-guided clinical 6-MV radiosensitization of glioma 597 using a unique gadolinium-based nanoparticles injection, Nanomedicine, vol.11, issue.18, pp.2405-598, 2016.

D. Corato, R. Gazeau, F. , L. Visage, and C. , High-resolution cellular MRI: gadolinium and iron 600 oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs, ACS Nano, vol.601, issue.9, pp.7500-7512, 2013.

. Stasio-g-de, D. Rajesh, and P. Casalbore, Are gadolinium contrast agents suitable for 603 gadolinium neutron capture therapy ?, vol.27, pp.387-398, 2005.

F. Salvat, The penelope code system. Specific features and recent improvements, Ann Nucl, p.605

. Energy, , vol.82, pp.98-109, 2015.

F. Salvat, J. M. Fernández-varea, J. Sempau, and . Penelope-, NEA Workshop Proceedings, p.607, 2008.

S. Barcelona, , 2008.

W. Sung, S. Ye, and A. L. Mcnamara, Dependence of gold nanoparticle radiosensitization on 609 cell geometry, 2017.

L. Bobyk, M. Edouard, and P. Deman, Photoactivation of gold nanoparticles for glioma 611 treatment, Nanomedicine Nanotechnology, vol.9, issue.7, pp.1089-1097, 2013.

L. M. Buja, M. L. Eigenbrodt, and E. H. Eigenbrodt, Apoptosis and necrosis. Basic types and 613 mechanisms of cell death, Arch Pathol &amp, vol.117, issue.12, pp.1208-1214, 1993.

L. Stefancikova, E. Porcel, and P. Eustache, Cell localisation of gadolinium-based nanoparticles 615 and related radiosensitising efficacy in glioblastoma cells, Cancer Nanotechnol, vol.5, issue.1, pp.1-616, 2014.

B. Turk and V. Turk, Lysosomes as "Suicide Bags" in Cell Death: Myth or Reality?, J Biol Chem, vol.618, issue.33, pp.21783-21787, 2009.

J. Chow and M. Leung, Jaffray D a. Monte Carlo simulation on a gold nanoparticle irradiated 620 by electron beams, Phys Med Biol, vol.57, issue.11, pp.3323-3331, 2012.

S. Jain, J. A. Coulter, and A. R. Hounsell, Cell-specific radiosensitization by gold nanoparticles 623 at megavoltage radiation energies, Int J Radiat Oncol Biol Phys, vol.79, issue.2, pp.531-539, 2011.

S. J. Mcmahon, W. B. Hyland, and M. F. Muir, Nanodosimetric effects of gold nanoparticles in 625 megavoltage radiation therapy, Radiother Oncol, vol.100, issue.3, pp.412-416, 2011.