C. Wicker, Differential vitamin and choline requirements of symbiotic and aposymbiotic s. oryzae (coleoptera: curculionidae), Comparative Biochemistry and Physiology Part A: Physiology, vol.76, issue.1, pp.177-82, 1983.
DOI : 10.1016/0300-9629(83)90311-0

A. Heddi, F. Lefebvre, and P. Nardon, Effect of endocytobiotic bacteria on mitochondrial enzymatic activities in the weevil Sitophilus oryzae (Coleoptera : Curculionidae), Insect Biochemistry and Molecular Biology, vol.23, issue.3, pp.403-414, 1993.
DOI : 10.1016/0965-1748(93)90024-M

R. Pais, C. Lohs, Y. Wu, J. Wang, and S. Aksoy, The Obligate Mutualist Wigglesworthia glossinidia Influences Reproduction, Digestion, and Immunity Processes of Its Host, the Tsetse Fly, Applied and Environmental Microbiology, vol.74, issue.19, pp.5965-74, 2008.
DOI : 10.1128/AEM.00741-08

Z. Sabree, S. Kambhampati, and N. Moran, Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont, Proceedings of the National Academy of Sciences, vol.52, issue.5, pp.19521-19527, 2009.
DOI : 10.1080/10635150390235520

B. Weiss, J. Wang, and S. Aksoy, Tsetse Immune System Maturation Requires the Presence of Obligate Symbionts in Larvae, PLoS Biology, vol.36, issue.5, p.1000619, 2011.
DOI : 10.1371/journal.pbio.1000619.s001

V. Michalkova, J. Benoit, B. Weiss, G. Attardo, and S. Aksoy, ABSTRACT, Applied and Environmental Microbiology, vol.80, issue.18, pp.5844-53, 2014.
DOI : 10.1128/AEM.01150-14

G. Bennett and N. Moran, Small, Smaller, Smallest: The Origins and Evolution of Ancient Dual Symbioses in a Phloem-Feeding Insect, Genome Biology and Evolution, vol.17, issue.9, pp.1675-88, 2013.
DOI : 10.1111/j.1365-3040.1994.tb02015.x

A. Latorre and A. Manzano-marín, Dissecting genome reduction and trait loss in insect endosymbionts, Annals of the New York Academy of Sciences, vol.13, issue.Suppl. 1, pp.52-75, 2017.
DOI : 10.1101/gr.1224503

P. Baumann, BIOLOGY OF BACTERIOCYTE-ASSOCIATED ENDOSYMBIONTS OF PLANT SAP-SUCKING INSECTS, Annual Review of Microbiology, vol.59, issue.1, pp.155-89, 2005.
DOI : 10.1146/annurev.micro.59.030804.121041

N. Moran and G. Bennett, The Tiniest Tiny Genomes, Annual Review of Microbiology, vol.68, issue.1, pp.195-215, 2014.
DOI : 10.1146/annurev-micro-091213-112901

S. Shigenobu, H. Watanabe, M. Hattori, Y. Sakaki, and H. Ishikawa, Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp, APS Nature, vol.407, issue.6800, pp.81-87, 2000.

A. Heddi, A. Grenier, C. Khatchadourian, H. Charles, and P. Nardon, Four intracellular genomes direct weevil biology: Nuclear, mitochondrial, principal endosymbiont, and Wolbachia, Proceedings of the National Academy of Sciences, vol.35, issue.5, pp.6814-6823, 1999.
DOI : 10.1007/BF00171817

URL : http://www.pnas.org/content/96/12/6814.full.pdf

C. Von-dohlen, S. Kohler, S. Alsop, and W. Mcmanus, Mealybug ??-proteobacterial endosymbionts contain ??-proteobacterial symbionts, Nature, vol.13, issue.6845, pp.433-439, 2001.
DOI : 10.1093/oxfordjournals.molbev.a025612

S. Balmand, C. Lohs, S. Aksoy, and H. A. , Tissue distribution and transmission routes for the tsetse fly endosymbionts, Journal of Invertebrate Pathology, vol.112, pp.116-138, 2013.
DOI : 10.1016/j.jip.2012.04.002

S. Stoll, H. Feldhaar, M. Fraunholz, and R. Gross, Bacteriocyte dynamics during development of a holometabolous insect, the carpenter ant Camponotus floridanus, BMC Microbiology, vol.10, issue.1, p.308, 2010.
DOI : 10.1186/1471-2180-10-308

A. Heddi, A. Vallier, C. Anselme, H. Xin, Y. Rahbe et al., Molecular and cellular profiles of insect bacteriocytes: mutualism and harm at the initial evolutionary step of symbiogenesis, Cellular Microbiology, vol.304, issue.2, pp.293-305, 2005.
DOI : 10.1007/978-3-642-73154-9_6

URL : https://hal.archives-ouvertes.fr/hal-00391340

A. Nakabachi, S. Shigenobu, N. Sakazume, T. Shiraki, Y. Hayashizaki et al., Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera, Proceedings of the National Academy of Sciences, vol.33, issue.8, pp.5477-82, 2005.
DOI : 10.1016/S0965-1748(03)00084-5

A. Vigneron, F. Masson, A. Vallier, S. Balmand, M. Rey et al., Insects Recycle Endosymbionts when the Benefit Is Over, Current Biology, vol.24, issue.19, pp.2267-73, 2014.
DOI : 10.1016/j.cub.2014.07.065

URL : https://hal.archives-ouvertes.fr/hal-01449142

F. Login, S. Balmand, A. Vallier, C. Vincent-monégat, A. Vigneron et al., Antimicrobial Peptides Keep Insect Endosymbionts Under Control, Science, vol.16, issue.22, pp.362-367, 2011.
DOI : 10.1093/nar/16.22.10881

URL : https://hal.archives-ouvertes.fr/hal-01018984

M. Kono, R. Koga, M. Shimada, and T. Fukatsu, Infection Dynamics of Coexisting Beta- and Gammaproteobacteria in the Nested Endosymbiotic System of Mealybugs, Applied and Environmental Microbiology, vol.74, issue.13, pp.4175-84, 2008.
DOI : 10.1128/AEM.00250-08

R. Rio, Y. Wu, G. Filardo, and S. Aksoy, Dynamics of multiple symbiont density regulation during host development: tsetse fly and its microbial flora, Proceedings of the Royal Society B: Biological Sciences, vol.32, issue.9, pp.805-819, 1588.
DOI : 10.1016/S0965-1748(02)00034-6

P. Simonet, G. Duport, K. Gaget, M. Weiss-gayet, S. Colella et al., Direct flow cytometry measurements reveal a fine-tuning of symbiotic cell dynamics according to the host developmental needs in aphid symbiosis, Scientific Reports, vol.51, issue.1, 2016.
DOI : 10.1016/j.ibmb.2014.05.005

URL : https://hal.archives-ouvertes.fr/hal-01352561

F. Masson, A. Vallier, A. Vigneron, S. Balmand, C. Vincent-monégat et al., Systemic Infection Generates a Local-Like Immune Response of the Bacteriome Organ in Insect Symbiosis, Journal of Innate Immunity, vol.7, issue.3, pp.290-301, 2015.
DOI : 10.1159/000368928

URL : https://hal.archives-ouvertes.fr/hal-01181294

R. Kerney, E. Kim, R. Hangarter, A. Heiss, C. Bishop et al., Intracellular invasion of green algae in a salamander host, Proceedings of the National Academy of Sciences, vol.66, issue.8, pp.6497-502, 2011.
DOI : 10.1128/AEM.66.8.3603-3607.2000

A. Haag, M. Arnold, K. Myka, B. Kerscher, S. Dall-'angelo et al., legume symbiosis, FEMS Microbiology Reviews, vol.480, issue.3, pp.364-83, 2013.
DOI : 10.1073/pnas.0808048105

URL : https://hal.archives-ouvertes.fr/hal-00856980

K. Pawlowski and K. Demchenko, The diversity of actinorhizal symbiosis, Protoplasma, vol.106, issue.4, pp.967-79, 2012.
DOI : 10.1073/pnas.0813376106

S. Davy, D. Allemand, and V. Weis, Cell Biology of Cnidarian-Dinoflagellate Symbiosis, Microbiology and Molecular Biology Reviews, vol.76, issue.2, pp.229-61, 2012.
DOI : 10.1128/MMBR.05014-11

D. Distel, H. Lee, and C. Cavanaugh, Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel., Proceedings of the National Academy of Sciences, vol.92, issue.21, pp.9598-602, 1995.
DOI : 10.1073/pnas.92.21.9598

M. Mcfall-ngai, Divining the essence of symbiosis: insights from the squidvibrio model, PLoS Biol, vol.12, issue.2, pp.1-6, 2014.

A. Wier, S. Nyholm, M. Mandel, R. Massengo-tiassé, A. Schaefer et al., Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis, Proceedings of the National Academy of Sciences, vol.34, issue.2, pp.2259-64, 2010.
DOI : 10.1038/nrmicro1023

E. Heath-heckman, S. Peyer, C. Whistler, M. Apicella, W. Goldman et al., Bacterial Bioluminescence Regulates Expression of a Host Cryptochrome Gene in the Squid-Vibrio Symbiosis, mBio, vol.4, issue.2, pp.1-10, 2013.
DOI : 10.1128/mBio.00167-13

J. Schwartzman, E. Koch, E. Zhou, L. Kremer, N. et al., The chemistry of negotiation: Rhythmic, glycan-driven acidification in a symbiotic conversation, Proceedings of the National Academy of Sciences, vol.69, issue.4, pp.566-71, 2015.
DOI : 10.1046/j.1365-2958.1999.01650.x

K. Oakeson, R. Gil, A. Clayton, D. Dunn, A. Von-niederhausern et al., Genome Degeneration and Adaptation in a Nascent Stage of Symbiosis, Genome Biology and Evolution, vol.81, issue.9, pp.76-93, 2014.
DOI : 10.1073/pnas.81.21.6803

URL : https://hal.archives-ouvertes.fr/hal-01449146

A. Heddi, H. Charles, C. Khatchadourian, G. Bonnot, and P. Nardon, Molecular Characterization of the Principal Symbiotic Bacteria of the Weevil Sitophilus oryzae: A Peculiar G + C Content of an Endocytobiotic DNA, Journal of Molecular Evolution, vol.47, issue.1, pp.52-61, 1998.
DOI : 10.1007/PL00006362

A. Clayton, K. Oakeson, M. Gutin, A. Pontes, D. Dunn et al., A Novel Human-Infection-Derived Bacterium Provides Insights into the Evolutionary Origins of Mutualistic Insect???Bacterial Symbioses, PLoS Genetics, vol.19, issue.11, p.1002990, 2012.
DOI : 10.1371/journal.pgen.1002990.s003

C. Lefèvre, H. Charles, A. Vallier, B. Delobel, B. Farrell et al., Endosymbiont Phylogenesis in the Dryophthoridae Weevils: Evidence for Bacterial Replacement, Molecular Biology and Evolution, vol.21, issue.6, pp.965-73, 2004.
DOI : 10.1007/BF02515729

C. Conord, L. Despres, A. Vallier, S. Balmand, C. Miquel et al., Long-Term Evolutionary Stability of Bacterial Endosymbiosis in Curculionoidea: Additional Evidence of Symbiont Replacement in the Dryophthoridae Family, Molecular Biology and Evolution, vol.34, issue.5, pp.859-68, 2008.
DOI : 10.1590/S0085-56262005000200007

URL : https://hal.archives-ouvertes.fr/halsde-00281673

C. Anselme, V. Pérez-brocal, A. Vallier, C. Vincent-monegat, D. Charif et al., Identification of the Weevil immune genes and their expression in the bacteriome tissue, BMC Biology, vol.6, issue.1, p.43, 2008.
DOI : 10.1186/1741-7007-6-43

URL : https://hal.archives-ouvertes.fr/hal-00391128

F. Masson, A. Zaidman-rémy, and A. Heddi, Antimicrobial peptides and cell processes tracking endosymbiont dynamics, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.20, issue.1695, pp.403-414, 1695.
DOI : 10.1016/j.ibmb.2009.10.007

URL : https://hal.archives-ouvertes.fr/hal-01449135

C. Anselme, A. Vallier, S. Balmand, M. Fauvarque, and H. A. , Host PGRP Gene Expression and Bacterial Release in Endosymbiosis of the Weevil Sitophilus zeamais, Applied and Environmental Microbiology, vol.72, issue.10, pp.6766-72, 2006.
DOI : 10.1128/AEM.00942-06

URL : https://hal.archives-ouvertes.fr/hal-00391129

A. Vigneron, D. Charif, C. Vincent-monégat, A. Vallier, F. Gavory et al., Host gene response to endosymbiont and pathogen in the cereal weevil Sitophilus oryzae, BMC Microbiology, vol.12, issue.Suppl 1, p.14, 2012.
DOI : 10.1098/rspb.2005.3383

F. Login and H. A. , Insect immune system maintains long-term resident bacteria through a local response, Journal of Insect Physiology, vol.59, issue.2, pp.232-241, 2013.
DOI : 10.1016/j.jinsphys.2012.06.015

C. Stenbak, J. Ryu, F. Leulier, S. Pili-floury, C. Parquet et al., Peptidoglycan Molecular Requirements Allowing Detection by the Drosophila Immune Deficiency Pathway, The Journal of Immunology, vol.173, issue.12, pp.7339-7387, 2004.
DOI : 10.4049/jimmunol.173.12.7339

F. Leulier, C. Parquet, S. Pili-floury, J. Ryu, M. Caroff et al., The Drosophila immune system detects bacteria through specific peptidoglycan recognition, Nature Immunology, vol.4, issue.5, pp.478-84, 2003.
DOI : 10.1038/ni922

Z. Zou, J. Evans, Z. Lu, P. Zhao, M. Williams et al., Comparative genomic analysis of the Tribolium immune system, Genome Biology, vol.8, issue.8, p.177, 2007.
DOI : 10.1186/gb-2007-8-8-r177

G. Attardo, P. Abila, J. Auma, A. Baumann, J. Benoit et al., Genome sequence of the tsetse fly (Glossina morsitans): vector of African Trypanosomiasis, Science, vol.344, issue.6182, pp.380-386, 2014.

X. Cao, Y. He, Y. Hu, Y. Wang, Y. Chen et al., The immune signaling pathways of Manduca sexta, Insect Biochemistry and Molecular Biology, vol.62, pp.64-74, 2015.
DOI : 10.1016/j.ibmb.2015.03.006

R. Waterhouse, E. Kriventseva, S. Meister, Z. Xi, K. Alvarez et al., Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes, Science, vol.360, issue.2, pp.1738-1781, 2007.
DOI : 10.1016/j.gene.2005.07.001

S. López-madrigal, M. J. Balmand, S. Zaidman-rémy, A. Heddi, and A. , Effects of symbiotic status on cellular immunity dynamics in Sitophilus oryzae, Developmental & Comparative Immunology, vol.77, pp.259-69, 2017.
DOI : 10.1016/j.dci.2017.08.003

B. Lemaitre, E. Kromer-metzger, L. Michaut, E. Nicolas, M. Meister et al., A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense., Proceedings of the National Academy of Sciences, vol.92, issue.21, pp.9465-9474, 1995.
DOI : 10.1073/pnas.92.21.9465

I. Aphid-genomics and T. Consortium, Genome sequence of the pea aphid Acyrthosiphon pisum, PLoS Biol, vol.8, issue.2, p.1000313, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00459970

N. Gerardo, B. Altincicek, C. Anselme, H. Atamian, S. Barribeau et al., Immunity and other defenses in pea aphids, Acyrthosiphon pisum, Genome Biology, vol.11, issue.2, p.21, 2010.
DOI : 10.1186/gb-2010-11-2-r21

URL : https://hal.archives-ouvertes.fr/hal-00459961

A. Vallier, C. Vincent-monégat, A. Laurençon, and A. Heddi, RNAi in the cereal weevil Sitophilus spp: Systemic gene knockdown in the bacteriome tissue, BMC Biotechnology, vol.9, issue.1, p.44, 2009.
DOI : 10.1186/1472-6750-9-44

URL : https://hal.archives-ouvertes.fr/hal-00407954

F. Hou, S. He, Y. Liu, X. Zhu, C. Sun et al., RNAi knock-down of shrimp Litopenaeus vannamei Toll gene and immune deficiency gene reveals their difference in regulating antimicrobial peptides transcription, Developmental & Comparative Immunology, vol.44, issue.2, pp.255-60, 2014.
DOI : 10.1016/j.dci.2014.01.004

K. Yokoi, H. Koyama, C. Minakuchi, T. Tanaka, and K. Miura, Antimicrobial peptide gene induction, involvement of Toll and IMD pathways and defense against bacteria in the red flour beetle, Tribolium castaneum, Results in Immunology, vol.2, pp.72-82, 2012.
DOI : 10.1016/j.rinim.2012.03.002

B. Lemaitre, E. Nicolas, L. Michaut, J. Reichhart, J. Hoffmann et al., The Dorsoventral Regulatory Gene Cassette sp??tzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults, Cell, vol.86, issue.6, pp.973-83, 1996.
DOI : 10.1016/S0092-8674(00)80172-5

P. Tzou, S. Ohresser, D. Ferrandon, M. Capovilla, J. Reichhart et al., Tissue-Specific Inducible Expression of Antimicrobial Peptide Genes in Drosophila Surface Epithelia, Immunity, vol.13, issue.5, pp.737-785, 2000.
DOI : 10.1016/S1074-7613(00)00072-8

J. Ryu, K. Nam, C. Oh, H. Nam, S. Kim et al., The Homeobox Gene Caudal Regulates Constitutive Local Expression of Antimicrobial Peptide Genes in Drosophila Epithelia, Molecular and Cellular Biology, vol.24, issue.1, pp.172-85, 2004.
DOI : 10.1128/MCB.24.1.172-185.2004

J. Ryu, S. Kim, H. Lee, J. Bai, Y. Nam et al., Innate Immune Homeostasis by the Homeobox Gene Caudal and Commensal-Gut Mutualism in Drosophila, Science, vol.308, issue.5728, pp.777-82, 2008.
DOI : 10.1126/science.1110591

O. Morris, X. Liu, C. Domingues, C. Runchel, A. Chai et al., Signal Integration by the I??B Protein Pickle Shapes Drosophila Innate Host Defense, Cell Host & Microbe, vol.20, issue.3, pp.283-95, 2016.
DOI : 10.1016/j.chom.2016.08.003

C. Ratzka, R. Gross, and H. Feldhaar, Gene expression analysis of the endosymbiont-bearing midgut tissue during ontogeny of the carpenter ant Camponotus floridanus, Journal of Insect Physiology, vol.59, issue.6, pp.611-634, 2013.
DOI : 10.1016/j.jinsphys.2013.03.011

J. Wang, Y. Wu, G. Yang, and S. Aksoy, Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein
DOI : 10.1073/pnas.0901226106

URL : http://www.pnas.org/content/106/29/12133.full.pdf

J. Wang and S. Aksoy, PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse's offspring, Proceedings of the National Academy of Sciences, vol.3, issue.2, pp.10552-10559, 2012.
DOI : 10.1371/journal.pntd.0000373

F. Masson, Y. Moné, A. Vigneron, A. Vallier, N. Parisot et al., Weevil endosymbiont dynamics is associated with a clamping of immunity, BMC Genomics, vol.8, issue.1, p.819, 2015.
DOI : 10.1186/1741-7007-8-152

URL : https://hal.archives-ouvertes.fr/hal-01449139

T. Kaneko, T. Yano, K. Aggarwal, J. Lim, K. Ueda et al., PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan, Nature Immunology, vol.14, issue.7, pp.715-738, 2006.
DOI : 10.1093/nar/16.3.1043

K. Choe, T. Werner, S. Stöven, D. Hultmark, and K. Anderson, Requirement for a Peptidoglycan Recognition Protein (PGRP) in Relish Activation and Antibacterial Immune Responses in Drosophila, Science, vol.296, issue.5566, pp.359-62, 2002.
DOI : 10.1126/science.1070216

M. Gottar, V. Gobert, T. Michel, M. Belvin, G. Duyk et al., The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein, Nature, vol.416, issue.6881, pp.640-644, 2002.
DOI : 10.1038/nature734

URL : https://hal.archives-ouvertes.fr/hal-00311260

D. Kim, M. Thairu, and A. Hansen, Novel insights into insect-microbe interactionsrole of epigenomics and small RNAs, Front Plant Sci, vol.7, p.1164, 2016.

X. Zhang, Y. Zheng, G. Jagadeeswaran, R. Ren, R. Sunkar et al., Identification of conserved and novel microRNAs in Manduca sexta and their possible roles in the expression regulation of immunity-related genes, Insect Biochemistry and Molecular Biology, vol.47, pp.12-22, 2014.
DOI : 10.1016/j.ibmb.2014.01.008

I. Choi and S. Hyun, Conserved microRNA miR-8 in fat body regulates innate immune homeostasis in Drosophila, Developmental & Comparative Immunology, vol.37, issue.1, pp.50-54, 2012.
DOI : 10.1016/j.dci.2011.12.008

M. Hussain, F. Frentiu, L. Moreira, O. Neill, S. Asgari et al., Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti, Proceedings of the National Academy of Sciences, vol.180, issue.9, pp.9250-9255, 2011.
DOI : 10.1093/bioinformatics/19.2.185

P. Nardon, Obtention d'une souche aposymbiotique chez le charançon Sitophilus sasakii Tak: différentes méthodes d'obtention et comparaison avec la souche symbiotique d'origine, C R Acad Sci Paris, vol.227, pp.981-985, 1973.

R. Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2014.