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Abstract
Speaker change detection is an important step in a speaker di-
arization system. It aims at finding speaker change points in the
audio stream. In this paper, it is treated as a sequence label-
ing task and addressed by Bidirectional long short term mem-
ory networks (Bi-LSTM). The system is trained and evaluated
on the Broadcast TV subset from ETAPE database. The result
shows that the proposed model brings good improvement over
conventional methods based on BIC and Gaussian Divergence.
For instance, in comparison to Gaussian divergence, it produces
speech turns that are 19.5% longer on average, with the same
level of purity.
Index Terms: speaker diarization, speaker change detection,
sequence labeling, recurrent neural network, LSTM

1. Introduction
Speaker diarization is the task of determining “who spoke
when” in an audio stream that usually contains an unknown
amount of speech from an unknown number of speakers [1, 2].
Speaker change detection is an important part of speaker di-
arization systems. It aims at finding the boundaries between
speech turns of two different speakers.

In recent years, the performance of state-of-the-art speech
and speaker recognition systems has improved enormously
thanks to the neural network (especially deep learning) ap-
proaches. The proposed system in [3] has achieved human par-
ity in conversational speech recognition. The key to this sys-
tem’s performance is the systematic use of convolutional and
Long Short-Term Memory (LSTM) neural networks. In speech
recognition and natural language processing, LSTM has been
used successfully for sequence labeling [4], language model-
ing [5] and machine translation [6]. However, existing speaker
diarization systems do not take full advantages of these new
techniques. [7] proposes an artificial neural network architec-
ture to learn a feature transformation from MFCCs that is op-
timized for speaker diarization. However, the proposed system
does not improve the initial change detection step, and rely on
conventional methods presented in Section 2.

Our main contribution is introduced in Section 3 where we
address speaker change detection as a binary sequence label-
ing task using Bidirectional Long Short-Term Memory recur-
rent neural networks (Bi-LSTM). Experiments on the ETAPE
dataset are summarized in Section 4 and results are discussed in
Section 5.

2. Related work
In conventional speaker change detection methods, one will use
two adjacent sliding windows on the audio data, compute a dis-
tance between them, then decide (usually by thresholding the
distance) whether the two windows originate from the same

speaker. Gaussian divergence [8] and Bayesian Information
Criterion (BIC) [9] have been used extensively in the literature
to compute such a distance: they have both advantages of lead-
ing to good segmentation results and not requiring any training
step (other than for tuning the threshold).

There were some recent attempts at improving over these
strong baselines with supervised approaches. Desplanques et
al. [10] investigate factor analysis and i-vector for speaker seg-
mentation. We recently proposed in [11] to train a recurrent
neural network called TristouNet to project any speech seg-
ment into a large-dimensional space where speech turns from
the same (resp. different) speaker are close to (resp. far from)
each other according to the euclidean distance. Replacing BIC
or Gaussian divergence by the euclidean distance between Tris-
touNet embeddings brings significant speaker change detection
improvement. However, because they rely on relatively long ad-
jacent sliding windows (2 seconds or more), all these methods
tend to miss boundaries in fast speaker interactions.

Instead, we propose to address speaker change detection as
a sequence labeling task, using LSTMs in the same way they
have been successfully used for speech activity detection. In
particular, our proposed approach is the direct translation of the
work by Gelly et al. where they applied Bi-LSTMs on over-
lapping audio sequences to predict whether each frame corre-
sponds to a speech region or a non-speech one [12].

3. Speaker change detection as
a sequence labeling problem

Given an audio recording, speaker change detection aims at
finding the boundaries between speech turns of different speak-
ers. In Figure 1, the expected output of such a system would be
the list of timestamps between spk1 & spk2, spk2 & spk1, and
spk1 & spk4.

3.1. Sequence labeling

Let x ∈ X be the sequence of features extracted from the audio
recording: x = (x1, x2...xT ) where T is the total number of
features extracted from the sequence. Typically, x would be a
sequence of MFCC features extracted on a short (a few millisec-
onds) overlapping sliding window (aka. frame). The speaker
change detection task is then turned into a binary sequence la-
beling task by defining y = (y1, y2...yT ) ∈ {0, 1}T such that
yi = 1 if there is a speaker change during the ith frame, and
yi = 0 otherwise (see part B of Figure 1). The objective is then
to find a function f : X → Y that matches a feature sequence
to a label sequence. We propose to model this function f as a
recurrent neural network trained using the binary cross-entropy
loss function:

L = − 1

T

T∑
i=1

yi log(f(x)i) + (1− yi) log(1− f(x)i)
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Figure 1: Training process (left) and prediction process (right) for speaker change detection. Details can be found in Section 3.
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Figure 2: Model architecture

The actual architecture of the network f is depicted in Fig-
ure 2. It is composed of two Bi-LSTM (Bi-LSTM 1 and 2) and a
multi-layer perceptron (MLP) whose weights are shared across
the sequence. Bi-LSTMs [13] allow to process sequences in for-
ward and backward directions, making use of both past and fu-
ture contexts. The output of both forward and backward LSTMs
are concatenated and fed forward to the next layer. The shared
MLP is made of three fully connected feedforward layers, using
tanh activation function for the first two layers, and a sigmoid
activation function for the last layer, in order to output a score
between 0 and 1.

3.3. Class imbalance

Since there are relatively few change points in the audio files,
very little frames are in fact labeled as positive (1). For in-
stance, in the training of the ETAPE dataset used in the exper-
imental section, this represents only 0.4% of all frames. This
class imbalance issue could be problematic when training the
neural network. Moreover, one cannot assume that human an-
notation are precise at the frame level. It is likely that the actual
location of speech turn boundaries is a few frames away from
the one selected by the human annotators. This observation
led most speaker diarization evaluation benchmarks [14, 15, 16]
to remove from evaluation a short collar (up to half a second)
around each manually annotated boundary. Therefore, as de-

picted in part C of Figure 1, the number of positive labels is
increased artificially by labeling as positive every frame in the
direct neighborhood of the manually annotated change point.
We will further evaluate the impact of the size of this neighbor-
hood in Section 5.

3.4. Subsequences

One well-publicized property of LSTMs is that they are able
to avoid the vanishing gradients problem encountered by tradi-
tional recurrent neural networks [17, 4]. Therefore, the initial
idea was to train them on whole audio sequences at once but
we found out that this has several limitations, including the lim-
ited number of training sequences, and the computational cost
and complexity of processing such long sequences with vari-
able lengths. Consequently, as depicted in part D of Figure 1,
the long audio sequences are split into short fixed-length over-
lapping sequences. This has the additional benefit of increasing
the variability and number of sequences seen during training,
as is usually done with data augmentation for computer vision
tasks. We will further discuss the advantages of this approach
in Section 5.

3.5. Prediction

Once the network is trained, it can be used to perform speaker
change detection as depicted in the right part of Figure 1. First,
similarly to what is done during training, test files are split into
overlapping feature sequences (part E of Figure 1). The net-
work processes each subsequence to give a sequence of scores
between 0 and 1 (part F of Figure 1). Because input sequences
are overlapping, each frame can have multiple candidate scores;
they are averaged to obtain the final frame-level score. Finally,
local score maxima exceeding a pre-determined threshold θ are
marked as speaker change points, as shown in part G of Fig-
ure 1. Parts H and I respectively represent the hypothesized and
groundtruth speaker change points.

4. Experiments
4.1. Dataset

The ETAPE TV subset [18] contains 29 hours of TV broadcast
(18h for training, 5.5h for development and 5.5h for test) from
three French TV channels with news, debates, and entertain-
ment. Fine “who speaks when” annotations were provided on a
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subset of the training and development set using the following
two-steps process: automatic forced alignment of the manual
speech transcription followed by manual boundaries adjustment
by trained phoneticians. Overall, this leads to a training set of
13h50 containing N = 184 different speakers, and a develop-
ment set of 4h10 containing 61 speakers (out of which 18 are
also in the training set). Due to a coarser segmentation, the offi-
cial test set is not used in this paper and the reported results are
computed on the development set.

4.2. Implementation details

Feature extraction. 35-dimensional acoustic features are ex-
tracted every 16ms on a 32ms window using Yaafe toolkit [19]:
11 Mel-Frequency Cepstral Coefficients (MFCC), their first
and second derivatives, and the first and second derivatives of
the energy.

Network architecture. The model stacks two Bi-LSTMs and a
multi-layer perceptron. Bi-LSTM1 has 64 outputs (32 forward
and 32 backward). Bi-LSTM2 has 40 (20 each). The fully
connected layers are 40-, 10- and 1-dimensional respectively.

Training. As introduced in Section 3, and unless otherwise
stated, a positive neighborhood of 100ms (50ms on both sides)
is used around each change point, to partially solve the class
imbalance problem. Subsequences for training are 3.2s long
with a step of 800ms (i.e. two adjacent sequences overlap by
75%). The actual training is implemented in Python using the
Keras toolkit [20], and we use the SMORMS3 [21] optimizer.

Baseline. Both BIC [9] and Gaussian divergence [8] baselines
rely on the same set of features (without derivatives, because it
leads to better performance), using two 2s adjacent windows.
We also report the result obtained by the TristouNet approach,
that used the very same experimental protocol [11].

4.3. Evaluation metrics

Conventional evaluation metrics for the speaker change detec-
tion task are recall and precision. A hypothesized change point
is counted as correct if it is within the temporal neighborhood
of a reference change point. Both values are very sensitive to
the actual size of this temporal neighborhood (aka. tolerance) –
quickly reaching zero as the tolerance decreases. It also means
that it is very sensitive to the actual temporal precision of human
annotators.

Following what was done in [11], we propose to use
purity and coverage evaluation metrics (as defined in pyan-
note.metrics [22]) because they do not depend on a tolerance
parameter and are more relevant in the perspective of a speaker
diarization application. Purity [23] and coverage [24] were in-
troduced to measure cluster quality but can also be adapted to
the speaker change points detection task. Given R the set of
reference speech turns, andH the set of hypothesized segments,
coverage is defined as follows

coverage(R,H) =
∑

r∈Rmaxh∈H |r ∩ h|∑
r∈R |r|

(1)

where |s| is the duration of segment s and r ∩ h is the intersec-
tion of segments r and h. Purity is the dual metric where the
role of R and H are interchanged. Over-segmentation (i.e. de-
tecting too many speaker changes) would result in high purity
but low coverage, while missing lots of speaker changes would

decrease purity – which is critical for subsequent speech turn
agglomerative clustering.

5. Results
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Figure 3: Speaker change detection on ETAPE development set

All tested approaches (including the one we propose) rely
on a peak detection step (keeping only those whose value is
higher than a given threshold θ). Curves in Figure 3 were
obtained by varying this very threshold θ. Our proposed so-
lution clearly outperforms BIC-, divergence-, and TristouNet-
based approaches, whatever the operating point. Notice how it
reaches a maximum purity of 95.8%, while all others are stuck
at 95.1%. This is explained by the structural limitations of ap-
proaches based on the comparison of two adjacent windows: it
is not possible for them to detect two changes if they belong to
the same window. Our proposed approach is not affected by this
issue.
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Figure 4: Left: coverage at 91.0% purity. Right: purity at
70.6% coverage.

Figure 4 summarizes the same set of experiments in a dif-
ferent way, showing purity at 70.6% coverage, and coverage at
91.0% purity. Those two values are marked by the horizontal
and vertical lines in Figure 3 and were selected because they
correspond to the operating point of the divergence-based seg-
mentation module of our in-house multi-stage speaker diariza-
tion system [25]. Our approach improves both purity and cov-
erage. For instance, in comparison to Gaussian divergence, it
produces speech turns that are 19.5% longer on average, with
the same level of purity.

We did try to integrate our contribution into our in-house
speaker diarization system. Unfortunately, the overall impact
on the complete system in terms of diarization error rate is very
limited. This may be because the subsequent clustering module
was optimized jointly with the divergence-based segmentation
step, expecting a normal distribution of features in each segment
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– which has no reason to be true for the ones obtained through
the use of LSTMs.

5.1. Fixing class imbalance
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Figure 5: Purity at 70.6% coverage for different balancing
neighborhood size

As discussed in Section 3, to deal with the class imbalance
problem, we artificially increased the number of positive labels
during training by labeling as positive every frame in the di-
rect neighborhood of each change point. Figure 5 illustrates the
influence of the duration of this neighborhood on the segmen-
tation purity, given that coverage is fixed at 70.6%. It shows
a maximum value for a neighborhood of around 140ms. One
should also notice that, even without any class balancing ef-
fort, the proposed approach is still able to reach 93.6% purity,
outperforming the other three tested approaches: the class im-
balance issue is not as problematic as we initially expected.

5.2. “The Unreasonable Effectiveness of LSTMs”

As Karpathy would put it1, the proposed approach seems un-
reasonably effective. Even though LSTMs do rely on an inter-
nal memory, it is still surprising that they perform that well for
speaker change detection, given that, at a particular time step
i, all they see is the current feature vector xi. We first thought
that concatenating features from adjacent frames would be ben-
eficial, but this did not bring any significant improvement. The
internal memory mechanism is powerful enough to collect and
keep track of contextual information.

This is further highlighted in Figure 6 that plots the ex-
pected absolute difference between predicted scores f(x)i ∈
[0, 1] and reference labels yi ∈ {0, 1}, as a function of the po-
sition i in the sequence: δ(i) = Ex,y (|f(x)i − yi|). It clearly
shows that the proposed approach performs better in the mid-
dle than at the beginning or the end of the sequence, quickly
reaching a plateau as enough contextual information has been
collected. This anticipated behavior justifies after the fact the
use of strongly overlapping subsequences – making sure that
each time step falls within the best performing region at least
once.

1karpathy.github.io/2015/05/21/rnn-effectiveness

0s 1.6s 3.2s
5.0

5.5

6.0

6.5

7.0 100× δ(i)

Figure 6: Expected absolute difference between prediction score
and reference label, as a function of the position in the 3.2s
subsequence.

6. Conclusion and future work
We have developed a speaker change detection approach using
bidirectional long short-term memory networks. Experimental
results on the ETAPE dataset led to significant improvements
over conventional methods (e.g., based on Gaussian divergence)
and recent state-of-the-art results based on TristouNet embed-
dings ( [11] also using LSTMs).

While neural networks are often considered as “magic”
black boxes, we tried in Section 5.2 to better understand why
these approaches are so powerful, despite their apparent sim-
plicity. Yet, a lot remains to be done to really fully under-
stand how the internal memory cells are actually used to gather
and use the contextual information needed for detecting speaker
changes.

Finally, despite major improvements of the speaker change
detection module, its impact on the overall speaker diarization
system is minor, possibly because segments obtained by LSTMs
are not adapted to standard BIC- or CLR-based speaker diariza-
tion approach. We plan to investigate LSTM-based speech turn
embeddings like TristouNet to fully benefit from this improved
segmentation.

7. Reproducible research
Code to reproduce the results of this paper is available here:
github.com/yinruiqing/change_detection
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