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Limits of Trilateration-Based Sensor Placement
Algorithms

Lionel Génevé
ICube Laboratory
University of Strasbourg-CNRS
Strasbourg, France
Email: 1.geneve @unistra.fr

Abstract—To localize a mobile vehicle in a predefined area, it
is possible to resort to a positioning system using beacons. The
questions arising then are: what is the right number of beacons to
deploy, and where should they be positioned to accurately localize
the target. With a sensor placement algorithm, it is possible
to generate a configuration of the beacons that optimize some
quality criteria. However, designing the objectives to optimize is
not simple, and the solution of the sensor placement algorithm
may not always ensures a good localization in practice. This work
evaluates the impact of the objectives of a sensor placement
algorithm on different localization techniques. We show that
criteria based on trilateration are not sufficient anymore when
the localization is done with other techniques than trilateration.
Indeed, data fusion-based localization algorithms use additional
information such as odometry, and are less sensitive to poor
coverage or poor beacon configurations than trilateration. Thus,
designing new criteria taking into account the dynamics of the
vehicle would probably improve further the placements and use
less beacons for the same performance.

I. INTRODUCTION

In mobile robotics, it is very common to localize a robot
using a set of static sensors in the environment. These sensors
or beacons generally provide two kinds of information: bearing
and range. In this work, we consider the case of range-only
beacons. These past few years, there has been some major
improvements in ranging devices by trying to find an alterna-
tive to the Global Positioning System (GPS) which is limited
for open-sky outdoor situations. A promising and emerging
technology is the use of Ultra Wide Band radio-frequencies
[1], that allows accurate time-of-flight range measurements.
This type of ranging sensor gathers some interesting char-
acteristics for the localization of mobile devices: a precision
around ten centimeters, a maximum range of several tens of
meters, and the ability of uniquely identify each beacon, thus
avoiding the data association problem. In this context, we
consider the localization of a mobile vehicle with a set of
static sensors providing range measurements. This could be for
instance the case of a mobile robot deployed in a warehouse
for surveillance or to perform some automic tasks. One aim is
to use the least possible number of sensors for cost and setup
reasons. With a sensor placement algorithm, it is possible to
obtain the number of sensors necessary to cover the area of
interest, along with their positions. The algorithm is composed
of two main components: the optimization framework and
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the objectives or criteria to optimize. In this work, a genetic
algorithm (GA) will be used to solve the optimization problem.
As it is commonly done, the fitness function, which is com-
posed from a single or multiple criteria, will be designed using
a trilateration-based localization method. However, we will
show that trilateration-based criteria are not well adapted when
the mobile vehicle is localized by an extended Kalman filter
(EKF), which is a standard localization technique. Indeed,
generally the mobile vehicle is equiped with different sensors
and their information are fused to obtain an estimate of the
robot state. The main advantage over trilateration is that the
robot can rely on proprioceptive sensors and perform dead-
reckoning for a short period when there is no or few external
measurements. A downside of the trilateration is indeed that it
can only be performed when at least three range measurements
are available.

The rest of this paper is organized as follows. In the next
section, previous works on sensor placement algorithms which
mostly rely on a trilateration-based criterion are presented. In
section III, our GA-based optimization framework is presented
with the fitness functions. Section IV presents the performance
of the sensor placement algorithm on different localization
algorithms. Finally, section V concludes and proposes an
outline of how the dynamics of the vehicle being localized
can be integrated in the fitness function.

II. RELATED WORKS

In order to solve the sensor placement problem, it is
necessary to define what are the objectives to optimize. Laguna
et al. identified three characteristics [2]:

¢ Minimize the number of beacons,

o Maximize the coverage of the robot’s workspace,

o Maximize the percentage of the area that is covered with

admissible dilution of precision (DOP) values.
The last point can be reformulated more generally as: maxi-
mize the localization accuracy on the entire workspace. Most
of the time, the last two objectives are based on the static
trilateration method. Allen et al. [3] proposed a localization
utility function, based on the number of range measurements
available at a given position. The more range measurements,
the better the localization is, and ideally we seek to have at
least three range measurements at each positions to be able



to perform trilateration. In Burke et al. [4], the range mea-
surement uncertainties are propagated through the trilateration
equations to get the estimated position uncertainty. The cost
function is defined as the mean over the environment of an
error metric, which is defined as the square root of the sum of
the eigenvalues of the position uncertainty. A Nelder-Mead
downhill simplex method is used to solve the non-convex
optimization problem. Other localization accuracy metrics
have been used as objectives in the fitness function. Among
them, the geometric dilution of precision (GDOP) [5], and the
Fisher Information Matrix (FIM) [6]. These metrics provide
an information on the effects of the geometric configuration
of the beacons on the location estimate. Kirchhof [7] used
the GDOP with binary and mixed integer programming, and
nonlinear programming to solve the optimization. Roa et al.
[8] combined the DOP with a non-availability term to create
a weighted fitness function of two terms. The first one is the
mean of the DOP values over the workspace, and the second
one is the percentage of area where no range measurement
is available. The problem is solved using a meta-heuristic
optimization strategy called diversified local search. The FIM
has also been extensively used with different formulations.
Jourdan et al. [9] used a cost function based on the square
root of the trace of the FIM inverse and a coordinate-descent
algorithm. Most of the other works uses the FIM determinant
as a basis for the cost function [6], [10], [11], [12]. The FIM
determinant expression was derived in 2D and 3D and for
different range measurement modelizations.

Most of the cited works are based on a fitness function
with objectives related to the trilateration algorithm. Indeed,
the computation of the FIM determinant requires at least three
range measurements as for trilateration, which makes it impos-
sible to compute when this condition is not met. Thus, when
there are only one or two range measurements, this may results
in a loss of information during the optimization procedure.
Althought it is commonly used to localize mobile devices with
only range measurements, the trilateration algorithm comes
with several drawbacks. The first one, is that at least three
measurements are necessary to perform the computation and
thus imposes a high density of beacons in the workspace
to avoid non-covered areas. Moreover, it only relies on one
source of information. In practice, a mobile robot is often
equiped with multiple sensors providing different informations
(wheel encoders, IMU, laser, camera, etc). For this reason,
the mobile robot is generally localized with an algorithm
able to fuse all these information such as the EKF [13] or
the particle filter [14]. In this work, it will be shown that
indeed the benefit of the beacon placement is not the same in
practice when localizing the mobile device by a trilateration or
a filtering technique. This raises the question of the design of
new objectives to minimize that take into account the dynamics
of the mobile robot and the additionnal sensor information.
The next section presents the algorithm developed to compute
the best positions for the beacons.

ITII. SENSOR PLACEMENT ALGORITHM

In this section, the framework used to find the optimal
sensor placement is described. First, some notation and im-
plementation details are given. Then, the genetic algorithm
employed is briefely described, and finally the fitness functions
being optimized are presented.

A. Problem formulation

We consider the problem of positioning a set of N static
beacons in order to localize a mobile robot operating in an
outdoor and closed environment. The problem is expressed in
2D by considering that the beacons and the robot transmitters
are at the same height, or that the heights are known. We
assume that the beacons can only be positioned at the border of
the workspace, or on the borders of any forbidden region lying
inside the workspace (for example a building in a parking lot).
A beacon position is given by p; = (x;,9;)%,i = 1,..., N, but
in the optimization it is parameterized by a curvilinear abscissa
s; € [0, 1] along the boundaries. This reduces the search space
from two to one, but introduces spatial discontinuities when
passing from the workspace boundaries to the first obstacle
and from one obstacle to another. To evaluate the fitness
functions, the workspace is discretized into a squared 2D
grid of K cells. The size of the cells depends on the range
measurement accuracy. A position in the workspace is given
by px = (2, yx)”, k =1, ..., K. The beacons provide range
measurements, modeled by:

ik = di + €k

where d; = +/(x; — xx)2 + (y; — yx)? is the true distance,
and €, ~ N(0,02) is a white Gaussian noise, with o the
distance-dependent variance. Using the formulation given in
[11] the expression of o7 is given by: o7 = (1 + )07,
with 7 the distance-dependent parameter. As only one type of
technology is used for the beacons, we assume that O’Z 0= 02
is the same for all beacons. The beacons also have a max-
imal operational range 7,,,,. We made the hypothesis that
only clear line-of-sight (LOS) range measurements can be
used to compute a location estimate. In practice, non-LOS
measurements are possible with RF beacons, but the effects
of the obstacle on the measurement are not simple to model
and we choose to simply discard them. Moreover, when the
localization is done with an EKF, outliers can be automatically
discarded using a Mahalanobis distance test.

B. Genetic algorithm

The optimization is solved using a genetic algorithm [15].
The number of individuals in the population is fixed to 100.
The first population is initialized with random placements
except for one that is uniform. The algorithm is decomposed in
three steps: the selection, the crossing and the mutation. The
selection implementation follows an elitism and tournament
principle. The crossing operation randomly selects two parents
to create a new child. Finally, mutations are randomly affecting
some individuals slightly modifying the curvilinear abscissa
of one of the beacons. The algorithm is stopped if one of the



two conditions is met: the number of iteration reaches 200, or
the best cost has not changed during 10 consecutive iterations.
Before the selection step, the individuals are evaluated through
a fitness function, indicating how well adapted they are with
respect to the objectives. The next section presents the fitness
functions used in this work in more details.

C. Fitness functions

Once the optimization framework has been defined, the next
step is to find a suitable fitness function to score and rank the
individuals. Three fitness functions are considered, all based
on existing works but with a slighlty different formulation.
The first one (termed nbRanges) is related to the coverage
[3], and computes the mean number of range measurements
available at each position of the workspace. The second
(termed detFimThresh), is related to the localization accuracy,
and uses the FIM determinant (| F'1 M) as in [11]. Precisely, it
computes the percentage of the workspace where: |FIM| > t,
with ¢ a threshold controlling the desired localization accuracy.
Indeed the higher is |F'IM]|, the better the localization accu-
racy. The third fitness function (termed mixedCosts) follows
the idea of [8] and combines the coverage term and the lo-
calization accuracy term that have been introduced previously.
The first term is weighted by 0.7, and the second by 0.3. The
coverage term has a higher weight because it is prerequisite
for the computation of the localization accuracy. Now that the
optimization framework and the fitness functions have been
defined, we present the simulation results that compare the
localization performances depending on the placement of the
beacons and on three localization methods.

IV. SIMULATION RESULTS

As the purpose of the beacons is to localize a mobile
robot, the performances of the configurations given by the GA
are tested on the localization accuracy of a differential-drive
mobile robot following a reference trajecory. Three algorithms
are considered to localize the mobile robot: trilateration [4]
(termed Trilat.) and two versions of an EKF. The first EKF
version (termed T-EKF) uses the trilateration solution for the
correction step, whereas the second (termed R-EKF) directly
fuses the range measurements. Both EKF use the odometry
given by the robot wheel encoders for the prediction step.
We also compare the placements and localization results given
by the GA with a uniform placement (UNIF) of the beacons
to validate the interest of the optimization. The metric used
to evaluate the accuracy of a localization algorithm and its
corresponding beacon configuration is the root mean square er-
ror between the reference and estimated trajectories. For each
beacon placement, 200 runs with different Gaussian noises on
the odometry and range measurements are generated and the
estimated trajectory computed by the localization algorithms.
The average trajectory errors, standard deviations, minimum
and maximum errors are then computed. The different param-
eters used for the simulations are 02 = 1.1e~% m? the initial
variance of the range measurements, 7 = 0.05 the distance-
dependent parameter, 7,,,, = 10 m the maximal range, and

t = 1296 the threshold on the |FIM]| corresponding to a
desired localization accuracy of 0.5 m. For the odometry
measurements, both wheel velocities are affected by a white
Gaussian noise with a variance of 1.0e=% m?s~2 and we also
introduce a small bias by setting one wheel bigger than the
other by 0.5 mm. In the rest of this section, we first compare
the performances of the sensor placement algorithm to the
uniform placement. Then, using the beacon configurations
given by the GA with the different fitness functions, we

compare the performances of the three localization algorithms.
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Fig. 1. Cost map for the uniform placement for 6 beacons, evaluated with
the DetFimThresh fitness function (the colors correspond to the localization
accuracy: a value d from the scale corresponds to a localization accuracy
within +d, thus areas with good localization are in blue). With the uniform
placement, most of the workspace is filled in white which corresponds to
positions where no position information is available (there is less than three
range measurements). The blue line corresponds to the robot’s trajectory
estimated by the trilateration algorithm, whereas the black one corresponds
to the robot’s trajectory estimated by the R-EKF algorithm, the red line is the
ground truth trajectory.

A. Sensor placement evaluation

The workspace used for the simulations is shown in Fig. 1
and Fig. 2. The figures display the estimated localization
accuracy obtained after a uniform placement (Fig. 1) and
a GA placement with the DetFimThresh fitness function
(Fig. 2). The color filling the workspace corresponds to the
localization accuracy (+d). As the objective is to cover the
entire workspace with a given localization accuracy (here
d = 0.5 m), we want to fill as much as possible the workspace
in blue or cyan (which correspond to a localization better
than +d = 0.5 m). The white areas correspond to positions
where there are less than three range measurements available
(and thus no position estimate can be computed from the
trilateration algorithm). By comparing both figures, we see that
the sensor placement is actually increasing the coverage of the
area and that with the GA-DetFimThresh placement, most of



GA costmap: configDetFimThresh2, scene3, B6
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Fig. 2. Cost map for the GA placement for 6 beacons, evaluated with

the DetFimThresh fitness function (the colors correspond to the localization
accuracy: a value d from the scale corresponds to a localization accuracy
within +d, thus areas with good localization are in blue). With the GA-
DetFimThresh placement, most of the workspace is filled in cyan which
corresponds to a localization precision below the desired threshold of +0.5
m. Notice also that the white areas (with no positions information) are
smaller. The blue line corresponds to the robot’s trajectory estimated by
the trilateration algorithm, whereas the black one corresponds to the robot’s
trajectory estimated by the R-EKF algorithm, the red line is the ground truth
trajectory.

the workspace is filled with blue or cyan. On the contrary, for
the uniform placement, most of the top left side is not covered
by at least three range measurements (white regions) and thus
no position information will be available from the trilateration
localization algorithm. The same statement can be done for
the NbRanges fitness function by comparing Fig. 3 and Fig. 4.
In these two figures, the colors correspond to the number of
range measurements available. We can see that after the GA
optimization most of the workspace is covered by at least three
range measurements (red) except for two small regions (yellow
and cyan). Whereas for the uniform placement, almost half
of the workspace is still covered by only one (cyan) or two
(yellow) range measurements.

Fig. 1 shows that in the areas with poor localization
accuracy (yellow and red areas in the middle and top right
corner) the trajectory estimated by trilateration (blue line) is
oscillating. The reason is that in these areas the trilateration
is done using beacon configurations where the beacons are
nearly aligned, which is far from perfect and known to perform
poorly. The same effect can be observed in Fig. 4.

In Fig. 5 we see that the uniform placement, whatever
the localization method, gives most of the time the largest
mean trajectory errors compared to the optimal placements
obtained with the different fitness functions. This is especially
true when the number of beacons is small, as it can be seen
from Fig. 6 where the performances of the uniform and GA-
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Fig. 3. Cost map for the uniform placement for 6 beacons, evaluated with
the NbRanges fitness function (the colors correspond to the number of range
measurements available: cyan=1, yellow=2, red=3 or more). The blue line
corresponds to the robot’s trajectory estimated by the trilateration algorithm,
whereas the black one corresponds to the robot’s trajectory estimated by the
R-EKF algorithm, the red line is the ground truth trajectory.

DetFimThresh placements are compared. When the number of
beacons increases, the gap between the uniform and the GA
placements decreases, thus limiting the interest of the beacon
placement algorithm. Finally, among the fitness functions
used for the GA placements, DetFimThresh seems to give
better results than MixedCosts and NbRanges, respectively.
This tendency, can be observed in Fig. 5, where the errors
are decreasing from left to right when comparing the four
placements.

B. Localization performances
TABLE I

LOCALIZATION ERRORS FOR THE 3 LOCALIZATION ALGORITHMS WITH A
UNIFORM PLACEMENT AND 6 BEACONS

Localization | Mean error | Std error | Max error | Min error
method [m] [m] [m] [m]
Trilat. 0.549 0.210 1.603 0.271
T-EKF 0.194 0.056 0.465 0.118
R-EKF 0.081 0.014 0.112 0.040
TABLE 11

LOCALIZATION ERRORS FOR THE 3 LOCALIZATION ALGORITHMS WITH
THE FITNESS FUNCTION NBRANGES AND 6 BEACONS

Localization | Mean error | Std error | Max error | Min error
method [m] [m] [m] [m]
Trilat. 0.766 0.028 0.858 0.704
T-EKE 0.219 0.050 0.391 0.147
R-EKF 0.046 0.007 0.064 0.029




GA costmap: configNbOfRanges, scene3, B6
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Fig. 4. Cost map for the GA placement for 6 beacons, evaluated with the
nbRanges fitness function (the colors correspond to the number of range
measurements available: cyan=1, yellow=2, red=3 or more). The blue line
corresponds to the robot’s trajectory estimated by the trilateration algorithm,
whereas the black one corresponds to the robot’s trajectory estimated by the
R-EKF algorithm, the red line is the ground truth trajectory.

TABLE III
LOCALIZATION ERRORS FOR THE 3 LOCALIZATION ALGORITHMS WITH
THE FITNESS FUNCTION MIXEDCOSTS AND 6 BEACONS

Localization | Mean error | Std error | Max error | Min error
method [m] [m] [m] [m]
Trilat. 0.47 0.017 0.515 0.437
T-EKF 0.154 0.050 0.410 0.091
R-EKF 0.041 0.006 0.061 0.028

Tables I to IV summarize the trajectory errors obtained
from the three localization algorithms, for six beacons and
for the uniform, GA-NbRanges, GA-MixedCosts, and GA-
DetFimThresh placements respectively. By comparing the ta-
bles, we can notice that the mean trajectory errors are always
lower for the R-EKF localization. Also, most of the time, the
T-EKF algorithm gives better results than the pure trilateration
method. As this is quite obvious, knowing that the EKFs use
additionnal information from the odometer sensors, it also
reveals that the trilateration-based objectives used in the fitness
functions are not optimal for other localization algorithms.
Using a fitness function based on trilateration for the sensor
placement optimization improves mostly the localization by
trilateration, but has little or less impact on EKF based
localization algorithms. This can also be seen in Fig. 5, where
the localization errors obtained with the trilateration algorithm
(red bars) are reduced a lot compared to the uniform placement
and the GA-MixedCosts and GA-DetFimThresh placements.
However, for the EKF algorithms (green and blue bars), the
errors are still lower with the optimized placement compared
to the uniform one, but the gap is smaller.

Mean trajectory errors for 6 beacons

I Trilat.
[ T-EKF
I R-EKF

Error [m]

Unif NbRanges MixedCosts DetFimThresh

Fig. 5. Comparison of the mean trajectory errors for the 4 placements and
3 localization algorithms for 6 beacons. The Trilat. localization errors are
greatly reduced between the uniform placement and the GA-MixedCosts and
GA-DetFimThresh (the height of the red bars is divided by two and five).
However for the EKFs (green and blue bars), the reduction of the errors
between the uniform and optimized placement is not as important. Thus, the
Trilat. localization benefits from the sensor placement algorithm, but the EKFs
less.

Mean trajectory errors vs number of beacons
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Fig. 6. Evolution of the mean trajectory errors for the uniform and Det-
FimThresh placements and for the Trilat. and R-EKF localization algorithms

From Fig. 6, which shows the evolution of the mean trajec-
tory errors when the number of beacons increases, we can see
that with the GA-DetFimThresh placement, the trilateration
errors (blue line) are higher than the R-EKF errors (black line),
except with three beacons. Thus, for a given mean trajectory
error, it is often necessary to use one or two additionnal
beacons with the trilateration algorithm to obtain the same
results as with the R-EKF algorithm. This suggests, that
when employing more appropriate fitness functions during



TABLE IV
LOCALIZATION ERRORS FOR THE 3 LOCALIZATION ALGORITHMS WITH
THE FITNESS FUNCTION DETFIMTHRESH AND 6 BEACONS

Localization | Mean error | Std error | Max error | Min error
method [m] [m] [m] [m]
Trilat. 0.071 0.004 0.087 0.063
T-EKF 0.094 0.009 0.117 0.074
R-EKF 0.030 0.004 0.042 0.022

the beacon placement optimization, we could use even less
beacons for the localization.

The trilateration algorithm has two main drawbacks com-
pared to the EKF. The first one is that when there are less than
three range measurement available, no estimated positions can
be computed, which leaves the robot completely blind during
some period. The second is that the algorithm is sensitive
to areas of poor localization accuracy due to degenerate
beacon configurations. The positions estimated by trilateration
can then present large errors. Regarding the EKF, these two
situations have less impact. Firs, the EKF algorithm can rely
for short periods on the odometry to localize the robot when
there is no range measurement available. Second, the R-EKF
does not require three measurements to make a correction,
this step can be performed with one or more measurements.
These situations are illustrated in Fig. 1 and Fig. 2, where
the trajectories estimated by trilateration are represented with
a blue line, whereas the R-EKF estimated trajectories are in
black (the ground truth trajectory is in red). As can be seen,
the trajectory estimated by the R-EKF is always very close to
the ground truth trajectory, whereas the trajectory estimated by
trilateration is sometimes oscillating and drifting. This clearly
shows the limitations of the current fitness functions which
are designed based on a static trilateration algorithm. Indeed,
in these formulations, the dynamic (odometry) of the robot,
and the ability to localize and fuse the range measurements
even with less than three at each timestep are not taken into
account.

V. CONCLUSION

We presented a sensor placement algorithm using differ-
ent trilateration-based fitness functions and optimized with a
genetic algorithm. We highlighted the fact that these fitness
functions were not well adapted when the mobile vehicle
localizes itself with an algorithm using additional information
such as odometers. The trilateration and trilateration-based
extended Kalman filter (EKF) algorithms are more affected
by non-covered areas and poor sensor configurations than a
standard EKF fusing the range measurements directly. This
motivates the fact of designing a novel fitness function taking
into account the benefits of more sophisticated localization
methods to optimize further the placement of the sensors.

Especially, the number of sensors used for localization could
be reduced. Knowing that a Kalman filter can rely for short
time periods on the odometry without any external range
measurements, it would be possible to relax the full workspace
coverage condition and obtain a better distribution of the
beacons. One lead for the design of the novel fitness function
would be to, similarly on what is done with the Fisher
information matrix, derive a criterion on the innovation or
covariance matrix of the EKF. Future works will be carried on
the design of a fitness function suited for the EKF localization.
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