B. Lemaitre, E. Nicolas, L. Michaut, J. M. Reichhart, and J. A. Hoffmann, The Dorsoventral Regulatory Gene Cassette sp??tzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults, Cell, vol.86, issue.6, pp.973-983, 1996.
DOI : 10.1016/S0092-8674(00)80172-5

A. Achek, D. Yesudhas, and S. Choi, Toll-like receptors: promising therapeutic targets for inflammatory diseases, Archives of Pharmacal Research, vol.6, issue.119, pp.1032-1049, 2016.
DOI : 10.4049/jimmunol.168.2.554

S. Ntoufa, M. G. Vilia, K. Stamatopoulos, P. Ghia, and M. Muzio, Toll-like receptors signaling: A complex network for NF-??B activation in B-cell lymphoid malignancies, Seminars in Cancer Biology, vol.39, 2016.
DOI : 10.1016/j.semcancer.2016.07.001

D. R. Dixon and R. P. Darveau, Lipopolysaccharide Heterogeneity: Innate Host Responses to Bacterial Modification of Lipid A Structure, Journal of Dental Research, vol.84, issue.7, pp.584-595, 2005.
DOI : 10.1074/jbc.273.20.12466

K. Miyake, Innate recognition of lipopolysaccharide by CD14 and toll-like receptor 4-MD-2: unique roles for MD-2, International Immunopharmacology, vol.3, issue.1, pp.119-128, 2003.
DOI : 10.1016/S1567-5769(02)00258-8

S. Saitoh, Ligand-dependent Toll-like receptor 4 (TLR4)-oligomerization is directly linked with TLR4-signaling, Journal of Endotoxin Research, vol.16, issue.4, pp.257-260, 2004.
DOI : 10.1093/intimm/dxh097

J. C. Chow, D. W. Young, D. T. Golenbock, W. J. Christ, and F. Gusovsky, Toll-like Receptor-4 Mediates Lipopolysaccharide-induced Signal Transduction, Journal of Biological Chemistry, vol.392, issue.16, pp.10689-10692, 1999.
DOI : 10.1038/sj.bjp.0702596

URL : http://www.jbc.org/content/274/16/10689.full.pdf

K. Ito, A. Ishihara, K. Tomita, S. Kato, T. Yamada et al., Investigation of subgingival profile of periodontopathic bacteria using polymerase chain reaction, Bull. Tokyo Dent. Coll, vol.51, pp.139-144, 2010.

J. Bartova, Periodontitis as a Risk Factor of Atherosclerosis, Journal of Immunology Research, vol.72, issue.5, p.636893, 2014.
DOI : 10.1177/0003319713494753

D. A. Chistiakov, A. N. Orekhov, and Y. V. Bobryshev, Links between atherosclerotic and periodontal disease, Experimental and Molecular Pathology, vol.100, issue.1, pp.220-235, 2016.
DOI : 10.1016/j.yexmp.2016.01.006

C. Huang, The GroEL protein of Porphyromonas gingivalis regulates atherogenic phenomena in endothelial cells mediated by upregulating toll-like receptor 4 expression, Am. J. Transl. Res, vol.8, pp.384-404, 2016.

L. Li, Human ??-defensin-3 alleviates the progression of atherosclerosis accelerated by Porphyromonas gingivalis lipopolysaccharide, International Immunopharmacology, vol.38, pp.204-213, 2016.
DOI : 10.1016/j.intimp.2016.06.003

P. Wang and K. Ohura, Critical Reviews in Oral Biology & Medicine, vol.13, issue.2, pp.132-142, 2002.
DOI : 10.1016/0167-5699(93)90212-4

T. Bian, Human ??-defensin 3 suppresses Porphyromonas gingivalis lipopolysaccharide-induced inflammation in RAW 264.7 cells and aortas of ApoE-deficient mice, Peptides, vol.82, pp.92-100, 2016.
DOI : 10.1016/j.peptides.2016.06.002

G. A. Roth, Infection with a periodontal pathogen increases mononuclear cell adhesion to human aortic endothelial cells, Atherosclerosis, vol.190, issue.2, pp.271-281, 2007.
DOI : 10.1016/j.atherosclerosis.2006.03.018

F. C. Gibson, H. Yumoto, Y. Takahashi, H. Chou, and C. A. Genco, -accelerated Atherosclerosis, Journal of Dental Research, vol.85, issue.2, pp.106-121, 2006.
DOI : 10.1161/01.CIR.100.14.1569

G. Hajishengallis, P. Ratti, and E. Harokopakis, Peptide Mapping of Bacterial Fimbrial Epitopes Interacting with Pattern Recognition Receptors, Journal of Biological Chemistry, vol.66, issue.47, pp.38902-38913, 2005.
DOI : 10.1038/nri1001

, 15789 | DOI:10.1038/s41598-017-16190-y 18. Kirikae, T. et al. Lipopolysaccharides (LPS) of oral black-pigmented bacteria induce tumor necrosis factor production by LPSrefractory C3H/HeJ macrophages in a way different from that of Salmonella LPS, SCientifiC REPORtS | Infect. Immun, vol.7, issue.67, pp.1736-1742, 1999.

M. Hirschfeld, Signaling by Toll-Like Receptor 2 and 4 Agonists Results in Differential Gene Expression in Murine Macrophages, Infection and Immunity, vol.69, issue.3, pp.1477-1482, 2001.
DOI : 10.1128/IAI.69.3.1477-1482.2001

T. Ogawa, Y. Asai, Y. Makimura, and R. Tamai, Chemical structure and immunobiological activity of Porphyromonas gingivalis lipid A, Frontiers in Bioscience, vol.12, issue.8-12, pp.3795-3812, 2007.
DOI : 10.2741/2353

M. Hirschfeld, Y. Ma, J. H. Weis, S. N. Vogel, and J. J. Weis, Cutting Edge: Repurification of Lipopolysaccharide Eliminates Signaling Through Both Human and Murine Toll-Like Receptor 2, The Journal of Immunology, vol.165, issue.2, pp.165-618, 1950.
DOI : 10.4049/jimmunol.165.2.618

R. P. Darveau, Porphyromonas gingivalis Lipopolysaccharide Contains Multiple Lipid A Species That Functionally Interact with Both Toll-Like Receptors 2 and 4, Infection and Immunity, vol.72, issue.9, pp.5041-5051, 2004.
DOI : 10.1128/IAI.72.9.5041-5051.2004

O. Westphal, O. Lüderitz, and F. Bister, Über die Extraktion von Bakterien mit Phenol/Wasser, Z. Für Naturforschung B, vol.7, pp.148-155, 1952.

H. Lee, J. Lee, and P. S. Tobias, Two Lipoproteins Extracted from Escherichia coli K-12 LCD25 Lipopolysaccharide Are the Major Components Responsible for Toll-Like Receptor 2-Mediated Signaling, The Journal of Immunology, vol.168, issue.8, pp.4012-4017, 2002.
DOI : 10.4049/jimmunol.168.8.4012

L. Sage, F. Meilhac, O. Gonthier, and M. , Porphyromonas gingivalis lipopolysaccharide induces pro-inflammatory adipokine secretion and oxidative stress by regulating Toll-like receptor-mediated signaling pathways and redox enzymes in adipocytes, Molecular and Cellular Endocrinology, vol.446, pp.102-110, 2017.
DOI : 10.1016/j.mce.2017.02.022

H. Kanzaki, Phosphoglycerol dihydroceramide, a distinctive ceramide produced by Porphyromonas gingivalis, promotes RANKL-induced osteoclastogenesis by acting on non-muscle myosin II-A (Myh9), an osteoclast cell fusion regulatory factor, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1862, issue.5, pp.452-462, 2017.
DOI : 10.1016/j.bbalip.2017.01.008

P. Ding, R. P. Darveau, C. Wang, and L. Jin, 3LPS-binding protein and its interactions with P. gingivalis LPS modulate proinflammatory response and Toll-like receptor signaling in human oral keratinocytes, PloS One, vol.12, p.173223, 2017.

X. Yu, Lipopolysaccharides-Induced Suppression of Innate-Like B Cell Apoptosis Is Enhanced by CpG Oligodeoxynucleotide and Requires Toll-Like Receptors 2 and 4, PLOS ONE, vol.24, issue.7, p.165862, 2016.
DOI : 10.1371/journal.pone.0165862.s001

O. Andrukhov, Soluble CD14 Enhances the Response of Periodontal Ligament Stem Cells to P. gingivalis Lipopolysaccharide, PLOS ONE, vol.43, issue.8, p.160848, 2016.
DOI : 10.1371/journal.pone.0160848.g005

A. Kassem, Stimulates Bone Resorption by Enhancing RANKL (Receptor Activator of NF-??B Ligand) through Activation of Toll-like Receptor 2 in Osteoblasts, Journal of Biological Chemistry, vol.2, issue.33, pp.20147-20158, 2015.
DOI : 10.1136/annrheumdis-2011-200899

H. Taguchi, Intragingival injection of Porphyromonas gingivalis-derived lipopolysaccharide induces a transient??increase in gingival tumour necrosis factor-??, but not interleukin-6, in anaesthetised rats, International Journal of Oral Science, vol.22, issue.3, pp.155-160, 2015.
DOI : 10.1016/S0099-2399(99)80299-4

T. Køllgaard, Cholesterol crystals enhance TLR2- and TLR4-mediated pro-inflammatory cytokine responses of monocytes to the proatherogenic oral bacterium Porphyromonas gingivalis, PLOS ONE, vol.82, issue.2, p.172773, 2017.
DOI : 10.1371/journal.pone.0172773.s003

H. S. Warren, Resilience to Bacterial Infection: Difference between Species Could Be Due to Proteins in Serum, The Journal of Infectious Diseases, vol.201, issue.2, pp.223-232, 2010.
DOI : 10.1086/649557

M. Nahori, Differential TLR Recognition of Leptospiral Lipid A and Lipopolysaccharide in Murine and Human Cells, The Journal of Immunology, vol.175, issue.9, pp.6022-6031, 1950.
DOI : 10.4049/jimmunol.175.9.6022

R. Awada, Autotaxin Downregulates LPS-Induced Microglia Activation and Pro-Inflammatory Cytokines Production, Journal of Cellular Biochemistry, vol.1831, issue.12, pp.2123-2132, 2014.
DOI : 10.1016/j.bbalip.2012.06.014

URL : http://europepmc.org/articles/pmc4275303?pdf=render

E. C. Yi and M. Hackett, Rapid isolation method for lipopolysaccharide and lipid A from Gram-negative bacteria, The Analyst, vol.125, issue.4, pp.651-656, 2000.
DOI : 10.1039/b000368i

J. Richmond, Refinement, Reduction, and Replacement of Animal Use for Regulatory Testing: Future Improvements and Implementation Within the Regulatory Framework, ILAR Journal, vol.73, issue.3, pp.63-68, 2002.
DOI : 10.1258/002367797780600198

O. Dehus, T. Hartung, and C. Hermann, Endotoxin evaluation of eleven lipopolysaccharides by whole blood assay does not always correlate with Limulus amebocyte lysate assay, Journal of Endotoxin Research, vol.2, issue.3, pp.171-180, 2006.
DOI : 10.1016/1043-4666(90)90025-O

B. W. Bainbridge and R. P. Darveau, lipopolysaccharide: an unusual pattern recognition receptor ligand for the innate host defense system, Acta Odontologica Scandinavica, vol.63, issue.14, pp.131-138, 2001.
DOI : 10.4049/jimmunol.164.6.3255

Y. Zhang, J. Gaekwad, M. A. Wolfert, and G. Boons, Synthetic tetra-acylated derivatives of lipid A from Porphyromonas gingivalis are antagonists of human TLR4, Organic & Biomolecular Chemistry, vol.274, issue.18, pp.3371-3381, 2008.
DOI : 10.1016/S0171-2985(11)80545-0

N. Sawada, T. Ogawa, Y. Asai, Y. Makimura, and A. Sugiyama, Toll-like receptor 4-dependent recognition of structurally different forms of chemically synthesized lipid As of Porphyromonas gingivalis, Clinical & Experimental Immunology, vol.3, issue.3, pp.529-536, 2007.
DOI : 10.1016/S0171-2985(96)80062-3

T. D. Herath, Tetra- and Penta-Acylated Lipid A Structures of Porphyromonas gingivalis LPS Differentially Activate TLR4-Mediated NF-??B Signal Transduction Cascade and Immuno-Inflammatory Response in Human Gingival Fibroblasts, PLoS ONE, vol.96, issue.3, p.58496, 2013.
DOI : 10.1371/journal.pone.0058496.s007

F. C. Nichols, B. Bajrami, R. B. Clark, W. Housley, and X. Yao, ABSTRACT, Infection and Immunity, vol.80, issue.2, pp.860-874, 2012.
DOI : 10.1128/IAI.06180-11

S. Bès-houtmann, Presence of functional TLR2 and TLR4 on human adipocytes, Histochemistry and Cell Biology, vol.59, issue.Supp l1, pp.131-137, 2007.
DOI : 10.4049/jimmunol.166.1.249

B. Nativel, Soluble HMGB1 Is a Novel Adipokine Stimulating IL-6 Secretion through RAGE Receptor in SW872 Preadipocyte Cell Line: Contribution to Chronic Inflammation in Fat Tissue, PLoS ONE, vol.201, issue.9, p.76039, 2013.
DOI : 10.1371/journal.pone.0076039.s006

URL : https://hal.archives-ouvertes.fr/hal-01196053

J. E. Davis, N. K. Gabler, J. Walker-daniels, and M. E. Spurlock, The c-Jun N-Terminal Kinase Mediates the Induction of Oxidative Stress and Insulin Resistance by Palmitate and Toll-like Receptor 2 and 4 Ligands in 3T3-L1 Adipocytes, Hormone and Metabolic Research, vol.41, issue.07, pp.523-530, 2009.
DOI : 10.1055/s-0029-1202852

M. Marimoutou, Antioxidant polyphenol-rich extracts from the medicinal plants Antirhea borbonica, Doratoxylon apetalum and Gouania mauritiana protect 3T3-L1 preadipocytes against H2O2, TNF?? and LPS inflammatory mediators by regulating the expression of superoxide dismutase and NF-??B genes, Journal of Inflammation, vol.12, issue.1, p.10, 2015.
DOI : 10.1210/en.2003-1336

S. M. Dauphinee and A. Karsan, Lipopolysaccharide signaling in endothelial cells, Laboratory Investigation, vol.86, issue.1, pp.9-22, 2006.
DOI : 10.1038/labinvest.3700366

URL : http://www.nature.com/labinvest/journal/v86/n1/pdf/3700366a.pdf

E. Andreakos, Distinct pathways of LPS-induced NF-??B activation and cytokine production in human myeloid and nonmyeloid cells defined by selective utilization of MyD88 and Mal/TIRAP, Blood, vol.103, issue.6, pp.2229-2237, 2004.
DOI : 10.1182/blood-2003-04-1356

F. Condorelli, Isolation of Porphyromonas gingivalis and detection of immunoglobulin A specific to fimbrial antigen in gingival crevicular fluid, J. Clin. Microbiol, vol.36, pp.2322-2325, 1998.

S. Yusuf, Obesity and the risk of myocardial infarction in 27???000 participants from 52 countries: a case-control study, The Lancet, vol.366, issue.9497, pp.1640-1649, 2005.
DOI : 10.1016/S0140-6736(05)67663-5

Y. Huang, Periodontitis contributes to adipose tissue inflammation through the NF-<kappa>B, JNK and ERK pathways to promote insulin resistance in??a??rat model, Microbes and Infection, vol.18, issue.12, 2016.
DOI : 10.1016/j.micinf.2016.08.002

Z. Wu and H. Nakanishi, Connection Between Periodontitis and Alzheimer???s Disease: Possible Roles of Microglia and Leptomeningeal Cells, Journal of Pharmacological Sciences, vol.126, issue.1, pp.8-13, 2014.
DOI : 10.1254/jphs.14R11CP

Y. Liu, Leptomeningeal cells transduce peripheral macrophages inflammatory signal to microglia in reponse to Porphyromonas gingivalis LPS, Mediators Inflamm, vol.2013, p.407562, 2013.
DOI : 10.1155/2013/407562

URL : http://doi.org/10.1155/2013/407562

S. Poole, S. K. Singhrao, L. Kesavalu, M. A. Curtis, and S. Crean, Determining the Presence of Periodontopathic Virulence Factors in Short-Term Postmortem Alzheimer's Disease Brain Tissue, Journal of Alzheimer's Disease, vol.36, issue.4, pp.665-677, 2013.
DOI : 10.3233/JAD-121918

F. C. Gibson and C. A. Genco, 15789 | DOI:10.1038/s41598-017-16190-y 56 Porphyromonas gingivalis mediated periodontal disease and atherosclerosis: disparate diseases with commonalities in pathogenesis through TLRs, SCientifiC REPORtS | Curr. Pharm. Des, vol.7, issue.13, pp.3665-3675, 2007.

Y. Asai, Lipopolysaccharide Preparation Extracted from Porphyromonas gingivalis Lipoprotein-Deficient Mutant Shows a Marked Decrease in Toll-Like Receptor 2-Mediated Signaling, Infection and Immunity, vol.73, issue.4, pp.2157-2163, 2005.
DOI : 10.1128/IAI.73.4.2157-2163.2005

S. Jain, S. R. Coats, A. M. Chang, and R. P. Darveau, ABSTRACT, Infection and Immunity, vol.81, issue.4, pp.1277-1286, 2013.
DOI : 10.1128/IAI.01036-12

R. A. Reife, Porphyromonas gingivalis lipopolysaccharide lipid A heterogeneity: differential activities of tetra- and penta-acylated lipid A structures on E-selectin expression and TLR4 recognition, Cellular Microbiology, vol.13, issue.5, pp.857-868, 2006.
DOI : 10.1074/jbc.274.12.7611

T. Ogawa, lipopolysaccharide, FEBS Letters, vol.12, issue.1-2, pp.197-201, 1993.
DOI : 10.1111/j.1600-0765.1977.tb01525.x

URL : https://hal.archives-ouvertes.fr/hal-00562909

F. Bäckhed, S. Normark, E. K. Schweda, S. Oscarson, and A. Richter-dahlfors, Structural requirements for TLR4-mediated LPS signalling: a biological role for LPS modifications, Microbes and Infection, vol.5, issue.12, pp.1057-1063, 2003.
DOI : 10.1016/S1286-4579(03)00207-7

U. K. Gursoy, Q. He, P. Pussinen, S. Huumonen, and E. Könönen, Alveolar bone loss in relation to toll-like receptor 4 and 9 genotypes and Porphyromonas gingivalis carriage, European Journal of Clinical Microbiology & Infectious Diseases, vol.37, issue.11, pp.1871-1876, 2016.
DOI : 10.1111/j.1600-051X.2009.01523.x