Sequence Covering Similarity for Symbolic Sequence Comparison

Pierre-Francois Marteau
IRISA, Universite Bretagne Sud

March 8, 2018

Index terms—Sequence Covering Similarity, Symbolic Sequence Matching, Similarity, Sequence Mining, String Matching.

Abstract

This paper introduces the sequence covering similarity, that we formally define for evaluating the similarity between a symbolic sequence (string) and a set of symbolic sequences (strings). From this covering similarity we derive a pair-wise distance to compare two symbolic sequences. We show that this covering distance is a semimetric. Few examples are given to show how this string semimetric in $O(n \cdot \log n)$ compares with the Levenshtein’s distance that is in $O(n^2)$. A final example presents its application to plagiarism detection.

1 Introduction

Estimating efficiently the similarity between symbolic sequences is a recurrent task in various application domains, in particular in bio-informatics, text processing or computer or network security. Numerous similarity measures have been defined to cope with symbolic sequences such the edit distance and its implementation proposed by Wagner and Fisher [1], BLAST [2], the Smith and Waterman or Levenshtein [3, 4] and the Needleman Wunch [5] distances or the local sequence kernels [6].

We present in this paper a new approach to characterize similarity between sequences by introducing the notion of sequence covering. Basically,
this similarity is based on a set of reference sequences which defines a dictionary of subsequences that are used to 'optimally' cover any sequence. Originally this sequence covering principle has been introduced in the context of Host Intrusion Detection [7]. We derive hereinafter a pairwise similarity measure and show that this measure is a semimetric on the set of strings. We finally highlights through some examples the utility of this measure.

2 The Sequence Covering Similarity

The notion of sequence covering is simple and depicted in Fig. 1. The sequence s is covered by subsequences of the sequences that belong to set S. On this example, the covering is optimal in the sense that it is composed with a minimal number of subsequences. It is total in the sense that all the elements of s are covered.

The sequence covering similarity between s and set S relates the size (in number of subsequences) of the optimal covering of s using sequences of S, to the size of s (in number of elements) itself, $|s|$, such that it is maximum equal to one if the covering is of size 1, and minimal equal to $1/|s|$ if the covering is composed with subsequences of size 1.

We define precisely these notions in the following subsection.

2.1 Definitions and notation

Let Σ be a finite alphabet and let Σ^* be the set of all sequences (or strings) define over Σ. We note ϵ the empty sequence.

![Figure 1: Example of the covering of a sequence (s) using subsequences of sequences in a set (S).](image)

The sequence covering similarity between s and set S relates the size (in number of subsequences) of the optimal covering of s using sequences of S, to the size of s (in number of elements) itself, $|s|$, such that it is maximum equal to one if the covering is of size 1, and minimal equal to $1/|s|$ if the covering is composed with subsequences of size 1.

We define precisely these notions in the following subsection.
Let $S \subset \Sigma^*$ be any set of sequences, and let S_{sub} be the set of all subsequences that can be extracted from any element of $S \cup \Sigma$. We denote by $\mathcal{M}(S_{\text{sub}})$ the set of all the multisets1 that we can compose from the elements of S_{sub}.

$c \in \mathcal{M}(S_{\text{sub}})$ is called a partial covering of sequence $s \in \Sigma^*$ iff

1. all the subsequences of c are also subsequences of s,
2. indistinguishable copies of a particular element in c correspond to distinct occurrences of the same subsequence in s.

If $c \in \mathcal{M}(S_{\text{sub}})$ entirely covers s, meaning that we can find an arrangement of the elements of c that covers entirely s, then we will call it a full covering for s.

Finally, we call a S-optimal covering of s any full covering of s which is composed with a minimal number of subsequences in S_{sub}.

Let $c^*_S(s)$ be a S-optimal covering of s.

We define the covering similarity measure between any non empty sequence s and any set $S \subset \Sigma^*$ as

$$ \mathcal{I}(s, S) = \frac{|s| - |c^*_S(s)| + 1}{|s|} $$

(1)

where $|c^*_S(s)|$ is the number of subsequences composing a S-optimal covering of s, and $|s|$ is the length of sequence s.

Note that in general $c^*_S(s)$ is not unique, but since all such coverings have the same cardinality, $|c^*_S(s)|$, $\mathcal{I}(s, S)$ is well defined.

Properties of $\mathcal{I}(s, S)$:

1. If s is a non empty subsequence in S_{sub}, then $\mathcal{I}(s, S) = 1$ is maximal.
2. In the worse case, the S-optimal covering of s has a cardinality equal to $|s|$, meaning that it is composed only with subsequences of length 1. In that case, $\mathcal{I}(s, S) = \frac{1}{|s|}$ is minimal.
3. If s is non empty, $\mathcal{I}(s, \emptyset) = \frac{1}{|s|}$ (notice that if $S = \emptyset$, $S_{\text{sub}} = \Sigma$).

1A multiset is a collection of elements in which elements are allowed to repeat; it may contain a finite number of indistinguishable copies of a particular element.
Furthermore, as ϵ is a subsequence of any sequence in Σ^*, we define, for any set $S \subset \Sigma^*$, $\mathcal{J}(\epsilon, S) = 1.0$

As an example, let us consider the following case:

$$
\begin{align*}
s_1 &= [0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1] \\
s_2 &= [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1] \\
S &= \{s_1, s_2\} \\
s_3 &= [0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1] \\
s_4 &= [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1]
\end{align*}
$$

The S-optimal covering of s_3 \(^2\) is of size 4, hence $\mathcal{J}(s_3, S) = \frac{16-4+1}{16} = 13/16$, and the S-optimal covering of s_4 \(^3\) is of size 8, leading to $\mathcal{J}(s_4, S) = \frac{16-8+1}{16} = 9/16$.

2.2 Finding a S-optimal covering for any tuple (s, S)

The brute-force approach to find a S-optimal covering for a sequence s is presented in algorithm 1. It is an incremental algorithm that, first, finds the longest subsequence of s that is contained in S_{sub} and that starts at the beginning of s. This first subsequence is the first element of the S-optimal covering. Then, it searches for the following longest subsequence that is in S_{sub} and that starts at the end of the first element of the covering, adds it to the covering in construction, and iterate until reaching the end of sequence s.

Proposition 2.1. Algorithm 1 outputs a S-optimal covering for sequence s.

Proof. i) First we notice that since all the subsequences of length 1 constructed on Σ are included into S_{sub}, algorithm 1, by construction, necessarily outputs a full covering of s (meaning that s is entirely covered by the subsequences of the covering provided the algorithm).

ii) Second we notice that, for all s_1 and s_2 in Σ^* such that s_1 is a subsequence of s_2, and any $S \subset \Sigma^*$, $|c^*_S(s_1)| \leq |c^*_S(s_2)|$.

\(^2\)([0,0,1,1],[0,0,1,1],[0,0,1,1],[0,0,1,1],[0,0,1,1],[0,0,1,1],[0,0,1,1],[0,0,1,1],[0,0,1,1]) is a S-optimal covering of s_3
\(^3\)([0,1],[0,1],[0,1],[0,1],[0,1],[0,1],[0,1],[0,1],[0,1]) is a S-optimal covering for s_4
Algorithm 1: Find a S-optimal covering for s

input : $S \subset \Sigma^*$, a set of sequences
\hspace{1cm} input : $s \in \Sigma^*$, a test sequence
output: c, a (S-optimal) covering for s

1. $continue \leftarrow True;$
2. $start \leftarrow 0;$
3. $c^* \leftarrow \emptyset;$
4. while $continue$ do
5. \hspace{1cm} $end \leftarrow \text{start} + 1;$
6. \hspace{1cm} while $end < |s|$ and $s[start : end] \in S_{\text{sub}}$ do
7. \hspace{2cm} $end \leftarrow \text{end} + 1;$
8. \hspace{2cm} $c \leftarrow c^* \cup \{s[start : end - 1]\};$
9. if $end = |s|$ then $continue \leftarrow False;$
10. $start \leftarrow end;$
11. return $c;$

We finalize the proof by induction on n, the cardinality (the size) of the coverings.

The proposition is obviously true for $n = 1$: for all sequence s for which a covering of size 1 exists (meaning that s is a subsequence of one of the sequences in S), algorithm 1 finds the S-optimal covering that consists of s itself.

Then, assuming that the proposition holds for n, such that $n \geq 1$ (IH), we consider a sequence s that admits a S-optimal covering of size $n + 1$. Let $s = s_1 + \bar{s}_1$, be the decomposition of s according to the full covering provided by algorithm 1, where s_1 is the prefix of the covering (first element) and \bar{s}_1 the remaining suffix subsequence (concatenation of the remaining covering elements). $+$ is the sequence concatenation operator. Similarly, let $s = s^*_1 + \bar{s}^*_1$, be the decomposition of s according to a S-optimal covering of s. Necessarily, s^*_1, which is also a prefix of s, is a subsequence of s_1 (otherwise, since s^*_1 is in S_{sub}, algorithm 1 would have increased the length of s_1 at least to the length of s^*_1). Hence, \bar{s}_1 is a subsequence of \bar{s}^*_1 and, according to ii), $|c^*_S(\bar{s}_1)| \leq |c^*_S(\bar{s}^*_1)| = n$. This shows that \bar{s}_1 is a sequence that admits a S-optimal covering, $c^*_S(\bar{s}_1)$, of size at most equal to n. According to (HI), algorithm 1 returns such an optimal covering for \bar{s}_1. This shows that the
covering \(\{s_1\} \cup c_S^* (\bar{s}_1) \) that is returned by algorithm 1 for the full sequence \(s \), is at most of size \(n+1 \), meaning that it is actually a \(S \)-optimal covering for \(s \) of size \(n+1 \). Hence, by induction, the proposition is true for all \(n \), which proves the proposition.

2.2.1 Other property

Proposition 2.2. By definition of the \(S \)-optimal covering of a sequence, it is easy to show that

\[
\text{For all } S \subset \Sigma^*, \text{ all } A \subset S \text{ and all } s \in \Sigma^*, \ |c_S^*(s)| \leq |c_A^*(s)|, \text{ leading to } \mathcal{I}(s, S) \geq \mathcal{I}(s, A).
\]

2.3 Pairwise similarity and pairwise distance for comparing pairs of symbolic sequences (strings)

The covering similarity between a sequence and a set of sequences as defined in Eq. 1 allows for the definition of a covering similarity measure on the sequence set, \(\Sigma^* \), itself. For any pair of non empty sequences \(s_1, s_2 \in \Sigma^* \) we define it as follows

\[
\mathcal{I}_{\text{seq}}(s_1, s_2) = \frac{1}{2}(\mathcal{I}(s_1, \{s_2\}) + \mathcal{I}(s_2, \{s_1\}))
\]

(2)

where \(\mathcal{I} \) is defined in Eq. 1.

Then, we define \(\mathcal{I}_{\text{seq}}(\epsilon, \epsilon) = 1.0 \), and for any non empty \(s \in \Sigma^* \), we get that \(\mathcal{I}_{\text{seq}}(s, \epsilon) = \mathcal{I}_{\text{seq}}(\epsilon, s) = \frac{1}{2}(1 + \frac{1}{|s|+1}) \)

Finally we define straightforwardly \(\delta_c \) a pairwise distance on \(\Sigma^* \) as

\[
\delta_c(s_1, s_2) = 1 - \mathcal{I}_{\text{seq}}(s_1, s_2)
\]

(3)

Leading to

\[
\delta_c(\epsilon, \epsilon) = 0 \text{ and,} \\
\text{for any non empty } s \in \Sigma^*, \delta_c(\epsilon, s) = \delta_c(s, \epsilon) = \frac{1}{2}(1 - \frac{1}{|s|+1})
\]

(4)

Proposition 2.3. \(\delta_c(\ldots, \ldots) \) is a semimetric on \(\Sigma^* \)
Proof. It is easy to verify that δ_c is non negative: for all $s \in \Sigma^*$, and all $S \subset \Sigma^*$, $\mathcal{I}(s,S) \in \left[\frac{1}{|s|+1}, 1 \right]$. Hence, for all $s_1, s_2 \in \Sigma^*$, $\delta_c(s_1, s_2) \in \left[\frac{1}{|S|} \cdot \left(\frac{1}{|s_1|+1} + \frac{1}{|s_2|+1} \right) ; 1 \right]$, and, according to Eq. 3 and Eq. 4, for all $s_1, s_2 \in \Sigma^*$, $\mathcal{I}_{seq}(s_1, s_2) \in [0; 1]$.

identity of indiscernibles: First, for all $s_1, s_2 \in \Sigma^*$, if $s_1 = s_2$, then $\mathcal{I}(s_1, \{s_1\}) = 1$ hence $\delta_c(s_1, s_2) = 0$.

Conversely, for all $s_1, s_2 \in \Sigma^*$ s.t. $\delta_c(s_1, s_2) = 0$,

- if $s_1 = \epsilon$, then necessarily $s_2 = \epsilon$, otherwise $|s_2| > 0$ and $\delta_c(\epsilon, s_2) = \frac{1}{2}(1 - \frac{1}{|s_2|+1}) > 0$

- If if $s_1 \neq \epsilon$, then necessarily $s_2 \neq \epsilon$ and, since $\delta_c(s_1, s_2) = 1 - \frac{1}{2} \left(\mathcal{I}(s_1, \{s_2\}) + \mathcal{I}(s_2, \{s_1\}) \right) = 0$, necessarily $\mathcal{I}(s_1, \{s_2\}) = \mathcal{I}(s_2, \{s_1\}) = 1$, which means that s_1 is a subsequence of s_2 and conversely, s_2 is a subsequence of s_1, showing that $s_1 = s_2$.

symmetry: As $\mathcal{I}_{seq}(.,.)$ is symmetric by construction, so is $\delta_c(.,.)$.

\[\square \]

3 Algorithmic complexity

A suffix tree implementation of algorithm 1 leads to a time complexity that is upper bounded by $O(k \cdot |s| \cdot \log(|s|))$, where $k = c^*_S(s)$ is the size of a S-optimal covering for s.

The previous time complexity does not depend on $|S|$, which means that we can increase the size of S without loosing on the processing time. This property is particularly important for applications for which $|S|$ is potentially large such as in plagiarism detection for instance.

For the pairwise distance $\delta_c(s_1, s_2)$, the time complexity is $O(k_1 \cdot |s_1| \cdot \log(|s_1|) + k_2 \cdot |s_2| \cdot \log(|s_2|))$ where $k_1 = c^*_{\{s_2\}}(s_1)$ is the size of a $\{s_2\}$-optimal covering for s_1 and $k_2 = c^*_{\{s_1\}}(s_2)$ is the size of a $\{s_1\}$-optimal covering for s_2. In comparison, the Levenshtein’s distance is in $O(|s|^2)$.
4 Examples

We give below some examples that present the use of the covering similarity or distance for string matching and processing. A python 3 implementation available at https://github.com/pfmarteau/STree4CS allows to play these examples.

4.1 Pairwise distances on strings

Table 1 presents the covering distance values obtained for some pairs of strings. As a comparative baseline, the Levenshtein’s distance [4] is also given for the same pairs of strings.

<table>
<thead>
<tr>
<th>string_1</th>
<th>string_2</th>
<th>δ_c</th>
<th>Levenshtein</th>
</tr>
</thead>
<tbody>
<tr>
<td>’amrican’</td>
<td>’american’</td>
<td>.196</td>
<td>.067</td>
</tr>
<tr>
<td>’european’</td>
<td>’amrican’</td>
<td>.75</td>
<td>.375</td>
</tr>
<tr>
<td>’european’</td>
<td>’indoeuropean’</td>
<td>.167</td>
<td>.25</td>
</tr>
<tr>
<td>’indian’</td>
<td>’indoeuropean’</td>
<td>.5</td>
<td>.583</td>
</tr>
<tr>
<td>’indian’</td>
<td>’american’</td>
<td>0.708</td>
<td>.417</td>
</tr>
<tr>
<td>’narcotics’</td>
<td>’narcoleptics’</td>
<td>.222</td>
<td>.167</td>
</tr>
<tr>
<td>’little big man’</td>
<td>’big little man’</td>
<td>.143</td>
<td>.286</td>
</tr>
</tbody>
</table>

Table 1: Covering and Levenshtein’s distances on some pairs of strings. Min and max values for each distance are in bold fonts.

4.2 Detection of plagiarism

We show in this example how the sequence covering similarity is able to detect lifted passage of an original source text spread in a plagiarized text.

This example (Example 2) is borrowed from https://www.princeton.edu/pr/pub/integrity/pages/plagiarism/

Original source text

"From time to time this submerged or latent theater in Hamlet becomes almost overt. It is close to the surface in Hamlet’s pretense of madness, the
Plagiarism: Lifting selected passages and phrases without proper acknowledgment (lifted passages are underlined)

"Almost all of Shakespeares Hamlet can be understood as a play about acting and the theater. For example, in Act 1, Hamlet adopts a pretense of madness that he uses to protect himself and prevent his antagonists from discovering his mission to revenge his fathers murder. He also presents truth by means of a show when he compares the portraits of Gertrudes two husbands in order to describe for her the true nature of the choice she has made. And when he leaps in Ophelias open grave ranting in high heroic terms, Hamlet is acting out the folly of excessive, melodramatic expressions of grief.”
The small differences between lifted passages that are underlined in the original text and in the optimal covering is due to the non-uniqueness of the optimal covering. A simple post-processing can easily correct these small discrepancies. We notice also that few covering substrings such as ‘when he leaps in’ have not been underlined in the original text.

Indeed, if the plagiarized text is re-written with the same text structure but different wording, then the similarity would drop, and the covering won’t be so informative.

5 Conclusion

We have introduced the notion of sequence covering given a set of reference sequences which define a dictionary of subsequences that are used to ‘optimally’ cover any sequence. Originally this notion has been introduced in the context of host intrusion detection. From this notion we have defined a pairwise distance measure that can be used to compare two sequences and shown that this measure is a semimetric. As the nature of the sequence covering similarity is somehow complementary to other existing similarity defined for sequential data, one may conjecture it could help by bringing some complementary discriminant information. In particular, as efficient implementations exist using suffix trees or arrays, this similarity could bring some benefits in bioinformatics or in text processing applications.

References

