
HAL Id: hal-01689110
https://hal.science/hal-01689110

Submitted on 20 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Seismicity rate modeling for prospective stochastic
forecasting: the case of 2014 Kefalonia, Greece, seismic

excitation
D. Gospodinov, V. Karakostas, E. Papadimitriou

To cite this version:
D. Gospodinov, V. Karakostas, E. Papadimitriou. Seismicity rate modeling for prospective stochastic
forecasting: the case of 2014 Kefalonia, Greece, seismic excitation. Natural Hazards, 2015, 79 (2),
pp.1039 - 1058. �10.1007/s11069-015-1890-8�. �hal-01689110�

https://hal.science/hal-01689110
https://hal.archives-ouvertes.fr


ORI GIN AL PA PER

Seismicity rate modeling for prospective stochastic
forecasting: the case of 2014 Kefalonia, Greece, seismic
excitation

D. Gospodinov1 • V. Karakostas2 • E. Papadimitriou2

Received: 19 November 2014 / Accepted: 29 June 2015 / Published online: 10 July 2015
� Springer Science+Business Media Dordrecht 2015

Abstract We examined the January–February 2014 earthquake doublet (Mw = 6.1 and

Mw = 6.0) and the associated aftershocks which form a seismic excitation adequately well

recorded by a dense local seismological network. It started on January 26 with the main

shock, causing a lot of panic and followed by numerous aftershocks. The second main

shock with Mw = 6.0 occurred 7 days later on an along-strike adjacent fault segment. The

close proximity of the two main shocks, in both space and time and the intense aftershock

sequence, triggered the investigation of the occurrence probability evolution for the

stronger aftershocks and possibly a third main shock in the seismic excitation. This purpose

was further motivated by the potential of the area for hosting a stronger (Mw C 6.0)

earthquake based upon both historical information and instrumental data. Aftershock rate

modeling was done on subsequent data samples by the restricted epidemic-type aftershock

sequence stochastic model, and probabilities for the occurrence of strong (Mw C 5.0)

earthquakes were calculated during the progress of the aftershock sequence. We executed

daily model simulations and probability forecasts for 30 days focusing in more detail on

the impact of some model parameters on the prospective forecasting. Trying to be near to a

real-time case, all forecasts were done on data up to the moment of forecasting.
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1 Introduction

On 26 January, 2014, an earthquake of Mw = 6.1 struck the western part of Kefalonia

Island, Greece, causing severe damage to the infrastructures and a lot of panic to the

inhabitants. Almost a week later, on February 3, a second strong earthquake of Mw = 6.0

occurred with its epicenter being located approximately 7 km to the north of the first one.

Both shocks were followed by numerous aftershocks increasing even more the feeling of

anxiety and the willingness of people to know more about the ongoing seismic activity.

The properties of the seismic sequence were studied by the use of precise aftershock

locations resulted from the recordings of a dense digital seismic network (Karakostas et al.

2014a). These authors also presented evidence of seismicity triggering in the along-strike

adjacent fault segment, due to the static stress changes from the first main shock. The

accurately located aftershocks illuminated for the first time the position of the causative

fault, which bounds the Island’s western coastlines, thus shading more light on the hazard

associated with the largest earthquakes of this region.

The along-strike activated adjacent fault segments consist parts of the Kefalonia

Transform Zone (KTFZ) and are located along the Palliki Peninsula (Fig. 1). This zone

exhibits the highest rate of large earthquakes (up to Mw* = 7.4 from historical informa-

tion, Mw* being the equivalent moment magnitude; see Papazachos and Papazachou 2003),

having hosted about 10 Mw* C 6.0 earthquakes every century. The exceptional high rate

results from the relatively fast tectonic loading (*30 mm/yr, McClusky et al. 2000),

whereas Coulomb stress interactions seem to play a role in the location and timing of

earthquakes in this area (Papadimitriou 2002), which appear to cluster in time. The most

prominent cluster was the one of 1953 when three earthquakes of 6.4 B Mw* B 7.2 have

Fig. 1 a Main geodynamic features of the Aegean and surrounding areas. The active boundaries are shown
as solid lines. The arrows indicate the approximate direction of relative plate motion. The study area is
denoted by the square. KTFZ Kefalonia Transform Fault Zone, NAT North Aegean Trough. b Main active
boundaries in the area of central Ionian Islands. The dextral strike-slip Kefalonia and Lefkada fault segments
are traced (forming the Kefalonia Transform Fault System). The most reliable available fault plane solutions
of the strong earthquakes that occurred in the area in the last four decades are shown as lower hemisphere
equal area projections
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occurred in 3 days apart (9–12 August 1953) and have turned important cities and smaller

villages in Kefalonia and the adjacent to the south Zakynthos Island (Fig. 1) into piles of

rubble.

Given the cascade-type occurrence of strong destructive main shocks as in the afore-

mentioned case, along with the high rate of the aftershock occurrence and in particular shortly

after the main shock occurrence, the seismicity rate modeling is an indispensable component

for any mitigation plan. Probability evolution analysis of aftershocks is one of the first steps

toward establishing an integrated decision-making support framework for emergency man-

agement in the case of a seismic excitation. The probability assessment has become feasible

on the basis of seismicity models, developed to represent spatiotemporal distribution of

earthquakes. Statistical and physical models on earthquake interactions (Ogata 1988, 1998;

Gospodinov and Rotondi 2006; Console et al. 2006a, 2007; Özel 2011) have begun to capture

many features of natural seismicity, such as aftershock triggering and clustering.

The short-term stochastic models provide the tools to perform an assessment of after-

shock occurrence probabilities with applications worldwide (Reasenberg and Jones 1989,

1994; Jordan et al. 2011) and in aftershock sequences in Greece (Drakatos and Latoussakis

1996; Latoussakis et al. 1991; Papadimitriou et al. 2013; Karakostas et al. 2014b). These

models demonstrate a probability gain in forecasting future earthquakes relative to the

long-term, time-independent models typically used in seismic hazard analysis. In their

papers, Reasenberg and Jones (1989, 1994) introduced an algorithm for calculating the

occurrence probability in a sequence of at least one aftershock above certain magnitude

level. The algorithm is grounded on a hazard model composed of two components to

determine the rate of the larger magnitude aftershocks. The first component depicts the

temporal decay of aftershock rate, and the second one analyzes aftershocks energy dis-

tribution. In these studies, the modified Omori formula (MOF) was selected to represent

aftershock distribution in time (Utsu 1961) and the Gutenberg–Richter law for magnitude

distribution (Gutenberg and Richter 1944). The stochastic models became more complex

later on for comprising spatial distribution. The most popular among them are the epi-

demic-type aftershock sequence (ETAS) model (Ogata 1988, 1998) and the short-term

earthquake probability (STEP) model (Gerstenberger et al. 2005, 2007). Recent attempts

are targeted to calculations of the nearly real-time aftershock occurrence probabilities and

in particular the ensuing strongest ones. Marzocchi and Lombardi (2009) were among the

first to carry out daily prospective forecasts of aftershocks after the 2009 L’Aquila

earthquake in Italy, based mainly on the ETAS model with some parameters being esti-

mated from beforehand seismicity.

In this study, the RETAS model (Gospodinov and Rotondi 2006; Gospodinov et al. 2007)

was selected for investigating events temporal evolution, because it provides the ability of

identifying the most appropriate among a number of model versions for best fitting the data,

among them MOF and ETAS being the limit cases. All necessary model parameters for the

execution of the occurrence probability calculations were estimated on data samples that

comprise aftershocks occurring up to the end of each day. From the beginning, the interest

was focused upon the possible options for the evolution of the aftershock sequence. A

possible scenario could be that an earthquake up to Mw = 7.0 could follow the first main

shock. Given that this case was a real fact in the past not only in the study area (1953 seismic

paroxysm) but also in other places as well (for example, 1978 in Thessaloniki; 1997 in

Umbria–Marche), it was important to analyze this contingency. Keeping this magnitude as

the ceiling, different possible scenarios were examined for anticipated earthquakes in the

magnitude range between 5.0 and 7.0. By choosing to consider also developments, in which

the strongest earthquake in the sequence is still anticipated, we proceed beyond modeling of
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only aftershock activity and have to take into account the activity preceding a strong

earthquake. This task can be solved using various models. The noncritical precursory

accelerating seismicity theory (N–C PAST, Mignan et al. 2007; Mignan 2012) and the

accelerated seismic release (ASR) model (Ben-Zion and Lyakovsky 2002) focus on seis-

micity patterns before strong earthquakes, based on the idea that small events are the sig-

nature of ongoing loading on a fault that will host the future mainshock (i.e., top-down

loading process). This view is quite far from the prevailing concept of complexity in the field

of earthquake prediction, which is based on the understanding that small events cascade into

the largest one by a bottom-up triggering process. In this study, the authors have chosen to

analyze the activity in the sequence by a model with a decreasing hazard function with the

purpose to forecast the evolution of occurrence probability of strong events in the sequence

on the grounds of aftershocks rate decay.

2 The seismic sequence of January–February 2014

The first main shock with Mw = 6.1 occurred on January 26, 2014, at the southern part of

Palliki peninsula (depicted by yellow star in Fig. 2a), causing considerable damage and

followed by an intense seismic sequence that lasted for several months. Figure 2a shows

Fig. 2 a Seismicity of the first 24 h after the occurrence of the Mw = 6.1 main shock on January 26, 2014.
b Seismicity of 24 h after the occurrence of the second strong earthquake with magnitude Mw = 6.0 on
February 03, 2014. Yellow stars depict the main shocks epicenters, big green circle the largest aftershock,
whereas aftershock epicenters are depicted by circles the size of which is proportional to the corresponding
magnitude. The lines indicate the inferred surface fault traces, whereas the ellipse emphasizes a low
seismicity area before the occurrence of the second main shock
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the relocated aftershocks of the first 24 h, with the largest aftershock of Mw = 5.5 (green

circle in Fig. 2a) occurring in the first few hours. This aftershock activity occupied an area

expanding in about 35 km from the southernmost part of Palliki peninsula to the offshore

area north of it, having a SSW–NNE orientation, and can be divided into three clusters.

The southern cluster, encompassing the most intense seismic activity, defines an area with

a length of about 12 km (the inferred fault trace is shown by the white line in Fig. 2a) as

anticipated for an Mw = 6.1 strike-slip earthquake (Wells and Coppersmith 1994;

Papazachos et al. 2004). The area marked with an ellipse accommodates the lowest seis-

micity in the first days of the sequence with a few small-magnitude aftershocks. Further to

the north, however, an offshore cluster with rather low magnitude earthquakes was

developed. An interpretation based upon the epicentral distribution attributes this pattern to

the first rupture with a length of 12 km, being stopped due to a strong asperity coinciding

with the low seismicity area (Karakostas et al. 2014a).

Almost a week later (3 February 2014), a second main shock of Mw = 6.0 occurred

just north of the southern cluster and at the southernmost part of the area that has been

recognized as an unbroken asperity after the first main shock occurrence. The second

main shock (yellow star in Fig. 2b) is associated with the adjacent along strike and

almost equal in length fault segment (black line in Fig. 2b). Aftershock activity for the

24 h after the second strong earthquake filled in the gap that highlighted from the first

day seismicity, although the activity again was not significant. The length of the second

rupture is about 10 km, in agreement with the aforementioned scaling laws for strike-slip

faulting. Due to stress transfer associated with the coseismic slip of the second strong

earthquake, seismicity is continued in the other two clusters, associated with two seg-

ments that belong to the main tectonic feature in this area, the right lateral Kefalonia

Transform Fault (KTF). The offshore seismicity is the result of either static or dynamic

triggering of smaller faults, which strike obliquely to the KTF. Later on Sakkas and

Lagios (2015), using geodetic data, proposed a rupture model of two segments in

agreement with Karakostas et al. (2014a).

Figure 3 shows the relocated aftershocks up to the end of June 2014. Relocation was

performed by hypoinverse and the double difference technique using appropriate

velocity model and station corrections (Karakostas et al. 2014a). The phase data are

included in the monthly bulletins of the Geophysics Department of the Aristotle

University of Thessaloniki. In addition to the recordings of the Hellenic Unified Seis-

mological Network (HUSN), the recordings of accelerometers installed by the Institute

of Engineering Seismology and Earthquake Engineering (ITSAK) inside the affected

area were used.

Based on the more than 5-month spatial distribution of the aftershock activity, it is

concluded that most of the seismic energy was released in the southern part of the after-

shock zone, hosting the first main shock and two shocks of Mw = 5.0 and Mw = 5.5. In

addition to the main rupture, other smaller active structures have been activated that

contributed in increasing the dimensions of the aftershock zone. The idea of a homoge-

neous asperity that was broken during the second strong earthquake in the middle part of

the aftershock zone is supported by the narrow zone of the aftershocks at this location.

Finally, the third offshore cluster is very clearly discriminated from the central and

southern clusters. Taking also into account the seismicity of the last decade, it is believed

that seismicity in this area is connected with smaller faults, which create a step over faults

dividing the KTFZ into a north and a south branch (Karakostas et al. 2014a).
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3 The RETAS model as a basis for short-term probability forecasts

Short-term probability forecasts (days to weeks) for aftershock occurrence in the course of a

seismic sequence are based on two key groups of seismicity models. The first of them comprises

a number of stochastic models of aftershock rate decay in time and space. Among them, the

MOF and ETAS models are the most widely used for subsequent occurrence probability

calculations (Reasenberg and Jones 1989; Marzocchi and Lombardi 2009; Marzocchi et al.

2012). The second group concerns models that study the magnitude distribution of earthquakes,

the so-called Gutenberg–Richter law (Gutenberg and Richter 1944) being used most often.

Historically, the MOF is the first model of aftershock rate decay, according to which the

aftershock frequency per unit time is given by the inverse power law (Utsu 1961):

nðtÞ ¼ K

t þ cð Þp ð1Þ

where t is the time elapsed since the main shock occurrence, K is a parameter related to the

main shock magnitude and to the cut-off magnitude M0, p is a coefficient of attenuation

and c is the time-offset parameter, i.e., the time delay before the onset of the power-law

aftershock decay rate (Holschneider et al. 2012). The frequency n(t) in (1) can be con-

sidered as the conditional intensity function of a point process, i.e.,

nðtÞ � kðtÞ ð2Þ

Fig. 3 Spatial distribution of the relocated aftershocks until the end of June 2014. Symbols are the same as
in Fig. 2
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where k(t) signifies

Pr an event occurs in t; t þ dtð ÞjHtf g ¼ k tjHtð Þdt þ o dtð Þ: ð3Þ

Here Ht is the history of the process, which for the MOF is only the main shock

occurrence time, because the model is grounded on the concept that the entire relaxation

process is controlled by the stress changes caused by the main shock alone. The aftershocks

are conditionally independent and follow a nonstationary Poisson process. The MOF model

fits well the data of simple aftershock sequences, but quite often there are earthquakes in a

sequence, which cause secondary clustering. Such compound cases with one or more

secondary aftershock sequences led Ogata (1988) to consider aftershock clustering as a

self-similar process, where all aftershocks can induce further aftershocks, the triggering

capacity depending on their magnitude. The model was called the ETAS model, and its

conditional intensity function is:

k tjHtð Þ ¼ lþ
X

ti\t

K0e
aðMi�M0Þ

t � ti þ cð Þp: ð4Þ

In this equation, l is the background seismicity rate, the history Ht consists of the times

ti (days) and magnitudes Mi of all events occurred before t, and the summation includes all

events with occurrence times ti\ t and magnitudes equal to or stronger than the lower cut-

off, M0. The parameters c and p are defined as the ones in the MOF and K0 is a multiplier,

common to all aftershocks, which has an impact on the total aftershock productivity. In

Eq. (4), every addend represents the contribution of a previous event to the occurrence

probability of subsequent events at time t; it is composed of two factors: the temporal

decay rate, presented by MOF, and the exponential term eaðMi�M0Þ, chosen upon the base of

the linear correlation between the logarithm of the aftershock area and the main shock’s

magnitude (Utsu and Seki 1955). Here a measures the effect of magnitude in the pro-

duction of ‘‘descendants.’’

The MOF and the ETAS models expressed by Eqs. (1) and (4), respectively, present

two limit cases to model the temporal distribution of an aftershock sequence. The former

assumes one event (the main shock) to trigger all aftershocks without any interaction

among them and the latter assumes that both the main shock and all aftershocks can trigger

events of subsequent generations. There is a group of trigger models, allocated between

MOF and ETAS and considering similar behavior (Ogata 2001). For many sequences,

however, only some events trigger additional seismicity, typically being some of the

stronger aftershocks, a case not covered by the MOF and the ETAS models. To fill in the

gap, Gospodinov and Rotondi (2006) developed a trigger model based upon the assump-

tion that not all events in a sample but only aftershocks with magnitudes larger than or

equal to a threshold Mth can induce secondary seismicity. Then, the conditional intensity

function for the model is formulated as

k tjHtð Þ ¼ lþ
X

ti\t
Mi �Mth

K0e
a Mi�M0ð Þ

t � ti þ cð Þp: ð5Þ

The history Ht in the latter formula consists only of the times ti (days) and the mag-

nitudes Mi of the earthquakes occurred before t with Mi C Mth. All other parameters are

similar to the ones in the ETAS model expressed by (4), and this similarity along with the

above restriction motivated the model expressed by (5) to be named as the RETAS model.
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RETAS is similar to the original trigger model (Ogata 2001), but the definition of a primary

event (an earthquake, capable of triggering aftershocks) here differs from the one in the

original model, in that a primary shock here can be triggered by preceding events, whereas in

the latter model the primary events are independent and follow a stationary Poisson process.

The RETAS model assumes possible interaction between aftershocks in a set, allowing each

one of them with magnitude Mi C Mth to be capable to induce further shocks of subsequent

generations. All events with magnitudes smaller than Mth, however, are excluded from the

triggering process, and they are regarded only as ‘‘descendants.’’ This model is advantageous,

in that the gap between Mth and M0 is not fixed and by varying Mth, all RETAS versions

between the MOF and the ETAS model (including them as two limit versions) can be

examined on the basis of the Akaike information criterion (AIC) (Akaike 1974), given by

AIC ¼ �2max log LðhÞ þ 2k ð6Þ

where h stands for the model parameters, k is the number of model parameters and log L is

the logarithm of the likelihood function

log L hð Þ ¼
XN

i¼1

log kh tijHtið Þ �
Z T

0

kh tjHtð Þdt: ð7Þ

Here Hti (history at time ti) are defined as in Eq. (4) and N is the number of events in the

sample. Allowing the triggering magnitude Mth to vary from the cutoff, M0, up to the main

shock magnitude, a number of RETAS model versions are considered with the smallest

value of the Akaike criterion revealing the best-fit model (Akaike 1974). Considering the

above-mentioned features of the RETAS model, the most important being the provision of

a number of model versions for choosing the one best fitting the data and also that it

includes the MOF and the ETAS models in the analysis, its application was decided in the

present study for modeling the aftershock temporal distribution. RETAS model simulations

were also executed for calculating aftershock occurrence probabilities.

The power-law describing the earthquake magnitude distribution necessary for the

aftershock probability calculations is (Gutenberg and Richter 1944)

log10 NðMÞ ¼ a� bM ð8Þ

where a is the productivity constant, b reflects the ratio of small to large events and

depends upon the material heterogeneity (Mogi 1962), and N is the number of events with

magnitudes larger than or equal to magnitude M. Combining formulae (1), (2) and (8),

Reasenberg and Jones (1989, 1994) developed a hazard model as

kðt;MÞ ¼ kðtÞSðMÞ: ð9Þ

where t is the time since the main shock, k(t) is the aftershock rate, and S(M) is the

probability of the magnitude being greater than or equal to M, given by

SðMÞ ¼ exp �bðM �M0Þf g ð10Þ

where M0 is the cutoff magnitude, and b = bln10 [b from Eq. (8)]. If the temporal model is

the MOF and both power laws [Eqs. (1), (2) and (8)] were combined, then the Eq. (9) turns

to (Reasenberg and Jones 1989):

kðt;MÞ ¼ 10aþbðMm�MÞðt þ cÞ�p ð11Þ
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Here t is the time since the main shock occurrence with magnitude Mm. The hazard model,

represented by Eq. (11), can be alternatively given on the basis of Eq. (9). For a nonsta-

tionary Poisson process, the probability P for at least one aftershock of magnitude between

M1 and M2, to occur in the period (T1, T2) after the main shock, is given by:

P M1;M2; T1; T2ð Þ ¼ 1 � exp �
ZM2

M1

ZT2

T1

k t;Mð ÞdM dt

2
64

3
75 ð12Þ

For more complex sequences, where the best-fitting model is different from the MOF,

we still may calculate the integrals in Eq. (12) and thus obtain probability estimates, under

the assumption that future aftershocks will follow the same temporal model and magnitude

distribution as the ones that have already occurred. The aftershock rate for the considered

period, however, will depend not only on the already existed earthquakes but also on

events that will occur in the study period. In this case, for a prospective probability forecast

to be made at time t, a Monte Carlo simulation of the RETAS model must be performed

after this time (Gospodinov and Rotondi 2006; Gospodinov et al. 2007; Papadimitriou

et al. 2013; Karakostas et al. 2014b) using the calculated model parameters MLEs and the

b value estimate from Eq. (8). Then formula (12) will provide the anticipated probability.

4 Daily forecasts of occurrence probabilities

Calculations of occurrence probabilities were performed for daily forecasts of strong

events in the magnitude ranges Mw = 5.0–6.0, Mw = 5.0–6.5 and Mw = 5.0–7.0. Aiming

to imitate prospective forecasting, calculations were based only on data available up to the

time when the forecast is pertained. It concerns a short-term forecasting, although

implemented retrospectively and not in real time. True real-time prospective forecasts were

provided by Marzocchi and Lombardi (2009) and Marzocchi et al. (2012) for L’Aquila and

Emilia earthquake sequences, respectively, with their model being calibrated on data

before the main shock occurrence, as we have already mentioned in the introduction

section. A number of models for short-term forecasting are presently under test in some

experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP)

(Jordan 2006; Schorlemmer et al. 2007), which, however, are not designed to evaluate the

real-time models performance but require a certain time lag for provisional seismicity

catalogs to be corrected and finalized. Short-range forecasting models were attempted and

fitted to the earthquake catalog of Greece by modeling temporal and spatial variations of

M C 4.0 earthquake occurrence rate for forecasting events of Mw C 6.0 and revealed that

the preparation of a major earthquake is often signaled by precursory changes in the

patterns of earthquake occurrence in time, space and magnitude (Console et al. 2006b).

The RETAS model estimates the seismicity rate accounting for the triggering effect of

the past events in a sequence above a magnitude threshold. A reliable forecast of the

expected number of events in a forecasting time window (1 day in our case) requires

accounting for the triggering effect of all these events that occurred before the forecasting

starting time and for the ones that will occur during the forecasting time window, the latter

being simulated by the model. We performed the following steps in our investigation:

(a) Compilation of cumulative datasets at the end of each day

(b) Initial statistical analysis of each dataset
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(c) RETAS model analysis and identification of the best-fit model for the sample

(d) Simulation of the identified best-fit model for the next day (24 h)

(e) Applying Eq. (12) to calculate occurrence daily probability of at least one event in a

certain magnitude range

(f) Repeating all previous steps subsequently for 30 days after the beginning of the

sequence.

Going into details for the first step, we defined subsequent data sets from the catalog,

prepared for the purpose of this study as it was described in the seismic sequence section,

each of them covering the period from the start of the sequence until the end of the day

before making the forecast. We did not prepare a data set for the first day only (first data

sample is for the first 2 days), because of insufficient number of events.

Then the sample was analyzed (step b) using the ZMAP software (Wiemer 2001) to

determine the completeness magnitude, M0, and the b value (Eq. 8). Figure 4 shows a

graph of this analysis for a randomly chosen sample (first 11 days). It can be seen that

stronger aftershocks are less than predicted from the G–R curve (the magnitude range

comprised into the circle in Fig. 4), an observation found in nearly all catalogs. For the

simulated catalogs, however, which were generated after the estimated b values, there

would not be such a deviation, which is reflected in aftershock rate overestimation by the

model, as will be further identified (as we will see in Fig. 5).

After defining the completeness magnitude M0 for a certain sample [step (c)], we

excluded all events weaker than M0 for the corresponding sample and analyzed the rest

through the RETAS model (the background rate l was assumed to be zero for all samples).

The minimum value of AIC (Eq. 6) then recognizes the model version, which best fits the

data set, providing also the MLEs of the model parameters (Table 1). All four model

parameters vary for the different best-fit models, which were identified for the subsequent

data sets, although only p and b values are shown in Table for the sake of simplicity and

since these are the most often considered in aftershock decay studies.

For executing step (d), we simulated the best-fit model for the next day (24 h). The

simulation was done within a certain magnitude range—the lower limit is equal to the

determined M0 and the upper limit is selected to verify the different possible scenaria, the

maximum upper limit being determined by the potential of the study area, in our case

Mmax = 7.0.

Fig. 4 Magnitude distribution of the catalog data for the first 11 days, along with the completeness
magnitude, M0, definition and b value estimation. Squares stand for the cumulative distribution, and
triangles represent the noncumulative one. The area encompassed by the dashed contour reveals a lack of
observed stronger aftershocks, compared to the expected by the fitting of the straight line
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To forecast the aftershock rate for the day (24 h) next to the one up to which the

corresponding data sample was prepared [step (d)], we had to consider all occurred events

stronger than or equal to the magnitude threshold Mth and the ones that would occur during

the next 24 h. We accomplished this step by Monte Carlo simulation of the identified best-

fit model. For each forecast, 1000 different synthetic 1-day catalogs were simulated by

following the thinning method (Ogata 1998). We can apply two approaches to simulate the

daily rate. At each time t (in days), we may simulate 1000 realizations of the best model;

for each i-th simulation, i = 1, …, 1000, we have Ni events at times j and with magnitudes

Mj, j = 1, …, Ni. As in the point processes E½Nð0; tÞjHt� ¼
R t

0
kðujHuÞdu, that is, the

expected number of events in the interval (0, t) is given by the cumulative intensity

function K(t), one can evaluate, every day t, the expected rate of the next day,

k̂ tþ1ð Þ i = 1, …, 1000 by integrating (6) over (t, t ? 1) conditioned on the history Ht plus

the simulated part (obtaining in this way the history Ht?1
i ), and then compute the average

N tþ1ð Þ ¼
P1000

i¼1 N
ðtþ1Þ
i =1000. Otherwise, one can use the simulated number of events Ni

(t?1)

and compute the average N tþ1ð Þ ¼
P1000

i¼1 N
ðtþ1Þ
i =1000. We have applied the latter

approach, subsequently simulating events and including them in the extended data sample

for the new simulation until the time exceeds 24 h and then taking the average and the

standard deviation from the full empirical distribution of the simulated rates, the standard

deviation being used to form the error bounds.

After that, for implementing step (e), we took the simulated average rate to stand forR tiþ1

ti
kðt;MÞdt in Eq. (12), and by integrating it in the chosen magnitude range, we cal-

culated the occurrence probability of at least one event in this range to occur in the next

day. We repeated all above operations [step (f)] subsequently for 30 days after the

beginning of the sequence.

The above considerations imply that probability values are influenced by the parameters

involved in the calculations, as the completeness magnitude, M0, the selected magnitude

range for the simulation, the b value and the best-fit model parameters. When comparing

probabilities assigned to different days, we have to keep in mind that they were calculated

after different values of the aforementioned parameters. Since M0 is not the same for the

entire study period but it changes every day, this is reflected to the simulated aftershock

rates.

Fig. 5 Observed (continuous
line) and simulated (dashed line)
daily aftershock rate above the
completeness magnitude, M0,
defined for each day. The vertical
line shows the occurrence time of
the second main shock. The
dotted lines represent the
standard deviation error bounds
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Table 1 Results from the RETAS analysis performed for the data samples at the end of each day (b and
p values are the ones from Eqs. (9) and (6), respectively

Forecast
date

b value Aftershocks
number (N)

Best-fit model 1-Day aftershock occurrence
probability of at least one event
in the corresponding magnitude
range

p value Completeness
magnitude (M0)

Mw

5.0–7.0
Mw

5.0–6.5
Mw

5.0–6.0

Jan. 28 b = 0.86 N = 123; M0 = 3.2 MOF Mth = 6.1 0.798 0.773 0.738

2014 p = 0.514

Jan 29 2014 b = 0.828 N = 190; M0 = 3.1 MOF Mth = 6.1 0.747 0.716 0.673

p = 0.5527

Jan 30 2014 b = 0.865 N = 212; M0 = 3.1 MOF Mth = 6.1 0.482 0.452 0.412

p = 1.171

Jan 31 2014 b = 0.881 N = 231; M0 = 3.1 MOF Mth = 6.1 0.339 0.321 0.3

p = 1.386

Feb 1 2014 b = 0.759 N = 371; M0 = 2.8 RETAS Mth = 4.3 0.73 0.706 0.68

p = 1.497

Feb 2 2014 b = 0.781 N = 409; M0 = 2.8 RETAS Mth = 3.1 0.627 0.615 0.588

p = 1.153

Feb 3 2014 b = 0.798 N = 427; M0 = 2.8 RETAS Mth = 3.1 0.438 0.429 0.407

p = 1.173

Feb 4 2014 b = 0.784 N = 499; M0 = 2.8 RETAS Mth = 3.1 0.732 0.753 0.732

p = 1.182

Feb 5 2014 b = 0.796 N = 531; M0 = 2.8 RETAS Mth = 3.1 0.643 0.633 0.604

p = 1.175

Feb 6 2014 b = 0. 802 N = 555; M0 = 2.8 RETAS Mth = 2.9 0.543 0.534 0.514

p = 1.287

Feb 7 2014 b = 0. 807 N = 576; M0 = 2.8 RETAS Mth = 2.9 0.452 0.425 0.398

p = 1.346

Feb 8 2014 b = 0. 807 N = 598; M0 = 2.8 RETAS Mth = 4.3 0.337 0.324 0.296

p = 1.368

Feb 9 2014 b = 0.724 N = 778; M0 = 2.6 RETAS Mth = 4.3 0.546 0.504 0.467

p = 2.17

Feb 10 2014 b = 0.73 N = 801; M0 = 2.6 RETAS Mth = 4.4 0.328 0.314 0.277

p = 2.43

Feb 11 2014 b = 0.737 N = 813; M0 = 2.6 RETAS Mth = 4.4 0.259 0.242 0.216

p = 2.348

Feb 12 2014 b = 0.735 N = 825; M0 = 2.6 RETAS Mth = 4.4 0.396 0.374 0.349

p = 1.994

Feb 13 2014 b = 0.698 N = 944; M0 = 2.5 RETAS Mth = 4.4 0.394 0.378 0.338

p = 1.99

Feb 14 2014 b = 0. 824 N = 669; M0 = 2.8 RETAS Mth = 3.1 0.248 0.246 0.23

p = 1.325

Feb 15 2014 b = 0.74 N = 877; M0 = 2.6 RETAS Mth = 4.4 0.445 0.401 0.375

p = 2.3
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We verified the consistency of the forecasts with the observed seismicity (Fig. 5).

Actually this was done only for the Mw = 5.0–6.0 case, because this scenario is the nearest

to the real one. In Fig. 5, the performance of the forecast seismicity rates over the observed

rates is demonstrated. Although the observed number stays almost always inside the

expected variability of the model itself, in general, several important discrepancies are also

observed. One of them is associated with the day before the second main shock (of

Mw = 6.0, see vertical dashed line in Fig. 5), when the simulated number of events sig-

nificantly exceeds the observed one. It can be considered as a kind of seismic quiescence,

without being effective to computationally increase the occurrence probability of the next

day strong ensuing earthquake. For the day after, an opposite type of discrepancy is

observed—the model has substantially underestimated the observed rate. As expected from

the definition of the RETAS model, offered in Sect. 3 and also supported by the results in

this analysis, the model is not able to forecast a specific strong event in the sequence (the

second strongest event), for which if correctly identified, it should determine the largest

occurrence probability. The model is appropriate to depict seismicity evolution in a sequence

and to estimate the average number of expected earthquakes in a time magnitude interval.

Table 1 continued

Forecast
date

b value Aftershocks
number (N)

Best-fit model 1-Day aftershock occurrence
probability of at least one event
in the corresponding magnitude
range

p value Completeness
magnitude (M0)

Mw

5.0–7.0
Mw

5.0–6.5
Mw

5.0–6.0

Feb 16 2014 b = 0.745 N = 896; M0 = 2.6 RETAS Mth = 4.4 0.316 0.293 0.268

p = 2.323

Feb 17 2014 b = 0.745 N = 912; M0 = 2.6 RETAS Mth = 4.4 0.3 0.278 0.248

p = 2.345

Feb 18 2014 b = 0.75 N = 914; M0 = 2.6 ETAS Mth = 2.6 0.171 0.158 0.149

p = 1.672

Feb 19 2014 b = 0.751 N = 922; M0 = 2.6 RETAS Mth = 3.1 0.216 0.203 0.195

p = 1.488

Feb 20 2028 b = 0.753 N = 931; M0 = 2.6 ETAS Mth = 2.6 0.239 0.230 0.211

p = 1.568

Feb 21 2014 b = 0.753 N = 942; M0 = 2.6 ETAS Mth = 2.6 0.204 0.201 0.188

p = 1.582

Feb 22 2014 b = 0.754 N = 949; M0 = 2.6 ETAS Mth = 2.6 0.222 0.202 0.193

p = 1.582

Feb 23 2014 b = 0.756 N = 960; M0 = 2.6 RETAS Mth = 2.7 0.148 0.14 0.131

p = 1.542

Feb 24 2014 b = 0.756 N = 965; M0 = 2.6 ETAS Mth = 2.6 0.131 0.129 0.122

p = 1.576

Feb 25 2014 b = 0.759 N = 971; M0 = 2.6 RETAS Mth = 2.7 0.093 0.093 0.086

p = 1.573

The last column presents the estimated 1-day probabilities for aftershock occurrence (at least one shock in
the selected magnitude range). Here N is the size of the data set on which estimation is based (from the
beginning of the sequence until the forecast time)
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On the whole, the results in Fig. 5 unclose a slight overestimation derived from the

model for nearly all days, most probably due to the estimation of the b value parameter of

the Gutenberg–Richter law to the larger magnitudes (Fig. 4), as already commented.

It is a common approach in Seismology to use the cumulative number of events in time

(see Ogata 1988; Drakatos and Latoussakis 1996; Gospodinov and Rotondi 2006;

Papadimitriou et al. 2013; Karakostas et al. 2014b) for displaying seismicity evolution

graphically and to reveal how well a model fits a certain dataset. In this paper, however, we

verified the reliability of the forecasts by plotting pairs of occurred events for each day on

Fig. 5—forecasted and real, and not cumulative numbers, because values were estimated

for different model versions. If we consider the model goodness-of-fit demonstration for

the entire 30-day data set, we could do that by plotting expected and real cumulative

numbers, which we have done in Fig. 6a. There thick line stands for the expected values,

calculated after the best-fit model parameters for the 30-day period (last row in Table 1;

see parameter values on Fig. 6a), dotted lines are the error bounds and circles denote the

real cumulative number. We have also focused on a 5-day period (dotted rectangle in

Fig. 6a), including the second Mw = 6.0 event, where a 1-day rate decrease can be

identified before this (arrows in Fig. 6b). On the other hand, the latter analysis can be

performed in a retrospective manner and our purpose was to imitate a nearly real-time case,

grounding on data only until the time of the probability forecast.

Getting back to Fig. 5, it could seem strange that for the first days smaller rates were

found than for the next ones, but it should be reminded that the completeness magnitude,

M0, varies with time. It is found equal to M0 = 3.2 for the first 2 days and progressively

drops down to M0 = 2.5, resulted to smaller rate for the first days than the later ones

(Fig. 5). Marzocchi and Lombardi (2009) used a constant value of M0 = 2.5, but in our

study it was difficult to choose a constant completeness magnitude only on catalog data

from the first 2 days. We could choose a constant M0 = 3.2; however, a large part of the

used data would be lost.

The simulation procedure (step d) requires the definition of the magnitude range for the

simulated catalog. The daily completeness magnitude, M0, was considered as lower

Fig. 6 Expected and real cumulative numbers. Thick line stands for the expected values, calculated after the
best-fit model parameters for the 30-day period (last row in Table 1), dotted lines are the error bounds and
circles present the real cumulative number; a for the entire 30-day period; b enlarged view of the cumulative
numbers picture for the period between the 5th and the 10th day, including the second Mw = 6.0 event. A
1-day rate decrease can be identified before the strong earthquake (see arrows)
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magnitude. For the upper magnitude limit, we took into account firstly the area’s potential

for the maximum expected or maximum observed earthquake, which exceeds Mw = 7.0,

and thus, this latter value was set as a target for occurrence probability calculations.

Earthquakes of M C 6.0, on the other hand, consist a threat for the area since they are

capable to produce severe damage and disturbance to the socioeconomic life, and thus

should be included in our targeting earthquake magnitudes. In between the two extremes,

the occurrence of M C 6.5 is also taken as the upper magnitude limit, as representative of

more common than Mw = 7.0 events and more severe than Mw = 6.0 ones. The occur-

rence probabilities were calculated for at least one event per day in each one of the three

magnitude ranges, are given in Table 1 and are plotted against time in Fig. 7, with the

dotted line signifying the error bounds for the Mw = 5.0–6.0 estimates. All three curves

follow the same temporal variations, an indication that this variation depends upon

aftershock rate changes alone, with the Mw = 5.0–7.0 exhibiting the largest values as they

are based on longer magnitude range. The standard deviation at the beginning is small and

then noticeably increases, a result attributed to the fact that for the first four samples, the

best-fit model found to be the MOF and the simulation was done with much smaller

variance than for other versions of the RETAS model (Gospodinov et al. 2007).

Usually the performance of time-dependent models in short-term forecasting is assessed

by comparison with long-term seismicity modeled by the stationary Poisson model (Jordan

and Jones 2010; Jordan et al. 2011). In this case, the time-dependent models, which capture

clustering, yield much higher probabilities than the Poisson model does. When, however,

the Poisson model is applied on aftershock data only, assuming stationary rate for the

forecast day, then to the contrary, this model will usually produce higher probabilities. This

is evidenced in Fig. 7, where the probabilities produced after the assumption of a Poisson

distribution for the next day are also shown (upper dashed line).

We later examined the differences between the estimated probability values for the

identified completeness magnitudes, compared to the ones for a constant completeness

magnitude, for example M0 = 2.8 (Fig. 8). The calculations were performed through the

Fig. 7 Daily occurrence probabilities of at least one event in three magnitude ranges, namely
Mw = 5.0–6.0, Mw = 5.0–6.5 and Mw = 5.0–7.0, respectively. Dotted lines represent error bounds for
the Mw = 5.0–6.0 case, given by the estimated standard deviation of the simulated rates. The probabilities,
produced after the assumption of a stationary Poisson distribution for next day, are also shown (upper
dashed line). The mean Poisson rate is estimated on all aftershocks until the forecast day
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best-fit model versions, presented in Table 1, which were identified by varying the domain

of the magnitude distribution (by M0). The probability investigation was done for at least

one event in the magnitude range Mw = 5.0–6.5, and the results revealed that the proba-

bility values changed significantly for the first four samples, when the estimated M0 values

were much higher (3.2, 3.1, 3.1, 3.1, respectively) than the chosen M0 = 2.8. The choice of

smaller M0 value reduced the forecasted probabilities because of the magnitude range

increase for the simulated events.

When analyzing the daily occurrence probability, we have to bear in mind that it was

calculated after the addition rule in probability theory, which means that this is the total

probability for the next 24 h. In fact, the forecast for a certain day is the probability of at

least one event in the considered magnitude range for the entire period of the following

24 h, which means that for a shorter period this probability would be different. Figure 9

shows the hourly forecasts for at least one shock in the Mw = 5.0–6.5 range. The prob-

ability progressively increases, but the increase rate becomes smaller with time. This is due

to the rate decay of aftershock occurrence, which was captured by the model.

Fig. 8 Estimated probability
values of at least one shock in the
magnitude range Mw = 5.0–6.5
for the determined varying values
of M0 for the different days and
for a chosen constant value of the
magnitude of completeness
M0 = 2.8

Fig. 9 Hourly probability for the 4th day as an example for the probability variation throughout the day.
These probabilities relate to at least one event in the Mw = 5.0–6.5 range. Similar relations are valid for all
other days
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5 Discussion

In this paper, we analyzed some aspects of the occurrence probability calculations of strong

aftershocks or new strong events in a sequence. An important contribution, compared to

similar papers (Marzocchi and Lombardi 2009; Console et al. 2010; Marzocchi et al.

2012), is the application of the RETAS stochastic model, which provides a number of

versions to identify the one best fitting the data, including among them ETAS and MOF as

limit cases. We think this is even more important for a case, in which the used model

cannot be calibrated on data before the main shock, as it was done by the above authors for

Italian sequences. In our case, the model parameters were estimated only on the available

aftershock data at the end of each day. At the beginning of the sequence (first four

samples), the best-fit model was MOF and our explanation is that the clustering pattern

during this period was mainly controlled by the stress changes due to the coseismic slip of

the first main shock. The p values for the second and third days are quite low (Table 1),

which points to a very slowly decaying aftershock rate, in other words a very intense

activity in these first days, an observation already mentioned in the description of the

seismic sequence. Then the clustering type changes and starts following the RETAS model

(Mth = 4.3, Mth = 3.1, Mth = 2.9), which reveals that randomness in clustering was

increased.

As the forecasting procedure required the simulations of the best-fit models, we

examined the impact that the selection of magnitude limits for the simulated events had on

the forecasts. The choice of the lower limit is rather a technical problem, related to the

seismological network detectability, and it is set here equal to completeness magnitude,

M0. The selection of a constant lower limit influences the probability values, depending

upon how much the selected lower magnitude differs from M0. The upper magnitude for

the simulation is a matter of choice, which could be made on the earthquake history of the

study area, and three alternatives were examined as it was explained in the respective

section. The results revealed that larger upper magnitudes resulted to higher probabilities

estimates. The general shape of all three curves does not vary significantly, showing quite a

similar pattern, which is a good substantiation that the pattern is not due to the chosen

magnitude limits, but due to rate changes, well captured by the RETAS model.

The goodness-of-fit verification, which we accomplished for the Mw = 5.0–6.5 case,

unclosed several important issues. The RETAS model is a stochastic point process

describing clustered seismicity due to coseismic stress perturbations. Generally the results

revealed that it is applicable to identify the model version, which is best fitting a certain

data set and in that way to provide adequate grounds for subsequent probability calcula-

tions of strong events occurrence in a sequence. RETAS model is relatively good to

forecast observed seismicity rates with a slight overestimation of the simulated rates, due

to the deviations in fitting the exponential probability distribution, borrowed from the

Gutenberg–Richter law, to the largest magnitude values. All considered models in this

paper (RETAS, ETAS, MOF) are developed to model clustering after the assumption that

an earthquake occurrence increases the probability of new events in its spatiotemporal

vicinity. Under this hypothesis, seismicity features as ‘‘quiescence’’ are not formally

incorporated in the modeling. In our analysis, we identified a significant decrease in

observed, compared to simulated rate before the second strong main shock in the sequence,

which was simply registered since there was not formal possibility for further examination.

In general (see Eq. 5), RETAS can be applied to forecast the occurrence probability

evolution, but is not principally adept for forecasting the occurrence of a certain large event

Nat Hazards (2015) 79:1039–1058 1055

123



(see also Marzocchi and Lombardi 2009), as the AMR and N-C PAST models, which are

more suitable for this purpose. The specific feature of the RETAS model is to select the

best fit model for a certain sequence by varying Mth. Thus, the model provides the

possibility to identify the prevailing type of clustering for the sequence. If the best fit

model is the MOF, then events are most probably clustered to only one strong earthquake,

if the RETAS model is recognized as best fitting the data, then there should be subclusters,

related to other stronger aftershocks and when the ETAS model is providing the best fit of

the data, there should be subclusters, following also weak shocks. One could be interested

in whether the type of clustering (best-fit RETAS version) is related to certain seismo-

tectonic features of the study area—fault length distribution and possible fault interaction.

Eventual answers of these questions require the common examination of many aftershock

sequences and seismotectonic information on the affected areas, but these issues are

beyond the scope of this study.

In aftershock occurrence probability studies, probability gain factors to be 10–100 or

even higher were reported (Jordan and Jones 2010; Jordan et al. 2011) relative to the long-

term base model, which is usually time independent and presented by the stationary

Poisson distribution. It has to be kept in mind that time-dependent models yield probability

gains in short-term forecasts only relative to long-term Poisson seismicity. To the contrary,

the application of a Poisson model to aftershock data will result to higher probabilities, as

we revealed in this study, because assuming a stationary rate for a certain day, it would

normally lead to an overestimation when compared to the usually decaying daily rate.

In addition to the scientific significance, the impact of short-term probability forecasts

extends to societal and economic consequences, when they are properly communicating to

competent authorities and decision makers. This research area is currently undergoing a

huge development concerning models applicability, operational aspects of the obtained

results, communication with authorities, etc. In the present study, we have examined the

impact of certain calculation parameters on the forecasts and the necessity that each time

when occurrence probability values are reported, these parameters should be clearly stated

for the reported probabilities to be considered and made compatible with the ones from

relevant studies.
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