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Abstract

The standard model for the dynamics of a fragmented density-dependent popu-
lation is built from several local logistic models coupled by migrations. First intro-
duced in the 1970s and used in innumerable articles, this standard model applied to
a two-patch situation has never been fully analyzed. Here, we complete this anal-
ysis and we delineate the conditions under which fragmentation associated with
dispersal is either favorable or unfavorable to total population abundance. We pay
special attention to the case of asymmetric dispersal, i.e., the situation in which the
dispersal rate from patch 1 to patch 2 is not equal to the dispersal rate from patch 2
to patch 1. We show that this asymmetry can have a crucial quantitative influence
on the effect of dispersal.

1 Introduction1

We deal here with population dynamics of a fragmented population. This is a problem2

with potentially very important applied aspects. For example, in conservation ecology,3

a standard question is whether a single large refuge is better or worse than several4
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small ones, with the objective of maximizing the total population abundance of an5

endangered species (the SLOSS debate; see, e.g., Hanski, 1999). On the contrary,6

in the context of pest control, the question is whether a single large field is better or7

worse than several small ones, with the objective of minimizing the occurence of an8

insect pest or a plant disease. A huge body of theoretical literature exists around these9

questions. However, even the simplest and most ancient model still contains unresolved10

aspects with unsupported generalizations.11

The theoretical paradigm that has been used to treat these questions is that of a12

single population fragmented into two coupled patches. It is widely accepted to as-13

sume that each subpopulation in each patch follows a local logistic law and that the14

two patches are coupled by density-independent migrations. Freedman and Waltman15

(1977) were first to propose the following model:16 
dN1

dt
= r1N1

(
1− N1

K1

)
+β (N2−N1) ,

dN2

dt
= r2N2

(
1− N2

K2

)
+β (N1−N2) ,

(1)

where Ni is the population abundance in patch i. The parameters ri and Ki are re-17

spectively the intrinsic growth rate and the carrying capacity in patch i and β is the18

migration rate, assumed to be identical in both directions. All parameters are assumed19

to be positive.20

After Freedman and Waltman (1977), aspects of this model were later studied by21

DeAngelis et al. (1979) and Holt (1985), and a graphical presentation was given by22

Hanski (1999, pp. 43–46) in his reference book on metapopulations. More recently,23

DeAngelis and Zhang (2014), DeAngelis et al. (2016) have brought new developments.24

We think we were first to publish the full mathematical study of model (1) in Arditi et25

al. (2015).26

A limitation of model (1) is the assumption of symmetric dispersal: the single27

parameter β quantifies the migration rate from patch 1 to patch 2 and from patch 2 to28

patch 1. In the present paper, we will expand our first analysis to the case of asymmetric29

dispersal between patches and we will delineate the conditions under which dispersal30

can either be favorable or unfavorable to total population abundance.31

We denote by N∗1 and N∗2 the population abundances at equilibrium. In isolation32

(β = 0), each population equilibrates at its local carrying capacity: N∗i = Ki. Freedman33

and Waltman (1977) analyzed the model in the case of perfect mixing (β → ∞) and34

showed that the total equilibrium population, N∗T =N∗1 +N∗2 , is generally different from35

the sum of the carrying capacities K1+K2. Depending on the parameters, N∗T can either36

be greater or smaller than K1 +K2. For instance, if r1/K1 < r2/K2 (with K1 < K2), we37

will have N∗T > K1 +K2, which means that dispersal is favorable with respect to the38

total equilibrium population. This spectacular result, somewhat paradoxical, has been39

widely discussed and has led to speculations about the general virtues of patchiness40

and dispersal.41

Freedman and Waltman (1977) only contrasted the situations of perfect isolation42

and perfect mixing; they did not study the effect of intermediate values of the dispersal43

parameter β . This effect was studied by DeAngelis and Zhang (2014), but only in the44

special case r1/K1 = r2/K2. In our earlier paper (Arditi et al. 2015), we calculated45
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the full set of parameter conditions for which dispersal is favorable or not to total46

population abundance.47

In another paper, Arditi et al. (2016) returned to the simpler case of perfect mixing48

(i.e., with the migration rate β → ∞) in order to compare the properties of Verhulst’s49

and Lotka’s formulations of the logistic model in relation with the paradox outlined50

above (the non-additivity of carrying capacities). In a criticism of this paper, Ramos-51

Jiliberto and Moisset de Espanés (2017) proposed the following alternative model:52 
dN1

dt
= r1N1

(
1− N1

K1

)
+β

(
N2
K2
− N1

K1

)
,

dN2

dt
= r2N2

(
1− N2

K2

)
+β

(
N1
K1
− N2

K2

)
.

(2)

In this model, the dispersal rate is β/Ki. It is different in each direction: the prob-53

ability of an individual to leave its patch is inversely proportional to the local carry-54

ing capacity. This is known as the Balanced Dispersal Model proposed by McPeek55

and Holt (1992). Ramos-Jiliberto and Moisset de Espanés (2017) showed that, in this56

model, the equality N∗T = K1 +K2 is always true. Thus, the model (2) does not present57

the “perfect mixing paradox”: there is strict additivity of carrying capacities.58

In their reply to Ramos-Jiliberto and Moisset de Espanés (2017), Arditi et al. (2017)59

moved beyond the polemical opposition of models (1) and (2) by embedding both of60

them into the following more general model with differential dispersal:61 
dN1

dt
= r1N1

(
1− N1

K1

)
+β

(
N2
γ2
− N1

γ1

)
,

dN2

dt
= r2N2

(
1− N2

K2

)
+β

(
N1
γ1
− N2

γ2

)
.

(3)

As in model (2), the dispersal rate (β/γi) is generally different in each direction.62

However, this model encompasses both (1) and (2) because model (1) corresponds to63

the case γ1 = γ2 = 1 and model (2) corresponds to the case γ1 = K1, γ2 = K2. Note64

that model (3) is overparameterized in order that it can be written in a symmetric way.65

Among the parameters β , γ1, and γ2, two only are independent. With no loss of gen-66

erality, the ratio γ2/γ1 can be considered as a single parameter. Thus, model (3)’s67

total number of independent parameters is six, not seven. In this parameterization, β68

quantifies the migration intensity and γ2/γ1 quantifies the migration asymmetry.69

Assuming perfect mixing (i.e., β →∞), Arditi et al. (2017) showed that the paradox70

exhibited by model (1) is a generic property of the more general model (3). They71

showed that its absence in model (2) corresponds to a very special case in parameter72

space, i.e., balanced dispersal. They also showed that a second special case exists for73

which carrying capacity additivity is observed.74

The purpose of the present paper is to perform the mathematical analysis of the75

general model (3) in the full parameter space. That is, we will consider all finite positive76

values of β and no longer assume perfect mixing as in Arditi et al. (2017).77
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2 Equilibrium analysis78

The equilibria of the dynamic model (3) are the solutions of the algebraic system79  0 = r1N1

(
1− N1

K1

)
+β

(
N2
γ2
− N1

γ1

)
,

0 = r2N2

(
1− N2

K2

)
+β

(
N2
γ2
− N1

γ1

)
.

(4)

Adding the two equations gives80

r1N1

(
1− N1

K1

)
+ r2N2

(
1− N2

K2

)
= 0, (5)

which is the equation of an ellipse (shown in red in Fig. 1 and the other figures). This81

ellipse E passes through the points (0,0), (K1,0), (0,K2), and (K1,K2). It does not82

depend on the migration intensity β (or on the migration asymmetry γ2/γ1).83

Solving the first equation in (4) for N2 yields a parabola Pβ of equation N2 =84

Pβ (N1), where the function Pβ is defined by85

Pβ (N1) = γ2

(
N1

γ1
− r1

β
N1

(
1− N1

K1

))
. (6)

This parabola Pβ (shown in blue in Fig. 1 and the other figures) depends on the86

migration intensity β (and on γ2/γ1). It always passes through the points 0 and Ω =87

(K1,K1γ2/γ1).88

The equilibria are the nonnegative intersections of the ellipse E and the parabola
Pβ . There are two equilibrium points. The first is the trivial point (0,0) and the second
is a nontrivial point whose position depends on β :

Eβ = (N∗1β ,N
∗
2β ).

A straightforward isocline analysis (see Fig. 2) shows that (0,0) is always unstable89

and that Eβ is always stable.90

When β→ 0, the left branch of the parabola Pβ merges into the vertical line N1 = 091

and the right branch into the vertical line N1 = K1 (P0 in Fig. 1). The parabola’s limit92

for β → ∞ is the oblique line N2 = (γ2/γ1)N1 (P∞ in Fig. 1).93

We denote by A the intersection of the ellipse E with P0 and by B the intersection94

of E with P∞. A = (K1,K2) is the perfect-isolation equilibrium and B is the perfect-95

mixing equilibrium. It is easy to calculate that96

B = (B1,B2) =

(
(γ1/γ2)r1 + r2

(γ1/γ2)r1/K1 +(γ2/γ1)r2/K2
,

r1 +(γ2/γ1)r2

(γ1/γ2)r1/K1 +(γ2/γ1)r2/K2

)
. (7)

The slope of P∞ is B2/B1. With the expressions in (7), this slope is found to be97

γ2/γ1. As this ratio can vary from 0 to ∞, B can be anywhere on the ellipse E in the98

positive quadrant. As β increases from 0 to ∞, the equilibrium point Eβ follows the99

ellipse arc from A to B. This change is clockwise if γ2/γ1 <K2/K1 or counterclockwise100

if γ2/γ1 > K2/K1 (respectively left and right panels of Fig. 1).101
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Figure 1: The equilibrium point Eβ is the positive intersection of the ellipse E and the
parabola Pβ . The lines P0 and P∞ are the limits of Pβ for β = 0 and for β→∞. The
slope of P∞ is γ2/γ1. The equilibrium Eβ can only belong to the ellipse arc between A
and B. Left: γ2/γ1 < K2/K1. Right: γ2/γ1 > K2/K1.

In the special case γ2/γ1 = K2/K1, the points A and B become confounded and102

the equilibrium Eβ does not depend on β ; it is always equal to (K1,K2) and thus N∗T =103

K1+K2. This is the special case considered by Ramos-Jiliberto and Moisset de Espanés104

(2017). Note that this occurs in wider conditions than those assumed by these authors:105

β can have any value, not only β → ∞, and it is not necessary to have the separate106

equalities γ1 = K1, γ2 = K2; the condition is only on the ratio: γ2/γ1 = K2/K1. Anyway,107

this special case is by no means a representative of the general case.108

3 Influence of dispersal on total population size109

In the previous section, we saw that, depending on the values of the migration param-110

eters β and γ2/γ1, the equilibrium can be anywhere on the ellipse E in the positive111

quadrant. In this section, we will describe how this position affects the total equi-112

librium population N∗T of model (3). In particular, we will investigate whether N∗T is113

greater or smaller than K1 +K2. The analysis can largely be done graphically.114

On Fig. 3, the straight line ∆ is the line of slope −1 passing through the point115

A = (K1,K2). It is the set of points with N1 +N2 = K1 +K2. For any equilibrium116

E = (N∗1 ,N
∗
2 ), the total population N∗T = N∗1 +N∗2 can be read on the intersection with117

the horizontal axis of the straight line of slope −1 passing through E. We see very118
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E� E�

�1 = 1 �2 = 1.1 � = 2�1 = 1 �2 = 1.1 � = 0.4 �1 = 1 �2 = 2 � = 2

Figure 2: The isoclines of (3) are drawn (in red for N1, in blue for N2) for the parameter
values r1 = 1,r2 = 2,K1 = 1.4,K2 = 2 and for three different combinations of migration
parameters. These three examples are typical of all possible configurations. In all cases
the trajectories are attracted by Eβ .

simply that dispersal is favorable to N∗T if E is above ∆, unfavorable if below ∆. For119

example, on Fig. 3, dispersal is favorable when the equilibrium is Eβ1 and unfavorable120

when the equilibrium is Eβ2 .121

Let us consider the slope of the ellipse E at point A = (K1,K2). By differentiating122

the ellipse equation (5) with respect to N1, it is easy to calculate that this slope is equal123

to −r1/r2.124

In the special case r1 = r2, the slope is precisely −1, which means that the ellipse125

E is entirely below the straight line ∆ except for the point A, which is exactly on ∆.126

This result can be stated as the following proposition:127

Proposition 1 If r1 = r2, dispersal is always unfavorable to N∗T .128

When r1 6= r2, we will assume, with no loss of generality, that r1 < r2 (as in Fig.129

3). In this case, the point A is still an intersection of E with ∆ but there exists a second130

intersection point, which we denote by C (see Fig. 3).131

We denote by Σ the straight line joining the origin to C and by σ the slope of Σ. An132

easy calculation shows that the coordinates of C are:133

C =

(
r2K1(K1 +K2)

r1K2 + r2K1
,

r1K2(K1 +K2)

r1K2 + r2K1

)
, (8)

meaning that the slope σ is:134

σ =
r1

r2

K2

K1
. (9)

The rest of this section is essentially a comment of Figs. 4 and 5. We saw in Section135

2 that the equilibrium Eβ follows the ellipse arc AB when β varies from 0 to ∞, where136

B is the intersection of the ellipse E with the oblique line P∞. Since the slope of P∞137
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E

N1

N2

K1 +K2

K1 +K2

N⇤
T1N⇤

T2

Eb1

Eb2

K1

K2
A

C

S

D

Figure 3: The straight line ∆ is the set of points with N1 +N2 = K1 +K2. Eβ1 is an
example equilibrium point for which dispersal is favorable, while Eβ2 is an example of
unfavorable dispersal.

is γ2/γ1, we will distinguish the following three cases, as this slope increases:138

(a)
γ2

γ1
<

r1

r2

K2

K1
, (b)

r1

r2

K2

K1
≤ γ2

γ1
<

K2

K1
, (c)

K2

K1
≤ γ2

γ1
. (10)

Figure 4 presents the case (a), in which P∞ is lower than Σ. Figure 5 presents the139

other two cases, with P∞ higher than Σ but lower than A (case b) and P∞ higher than A140

(case c). Besides each of the pictures in the state space N1×N2, we show a qualitative141

graph of the function β 7→ N∗T (β ).142

Let us first consider the case (a) on Fig. 4. For β = 0, the equilibrium point starts at143

A and, as β increases, Eβ moves clockwise along E and ends at B. The total equilibrium144

population N∗T (β ) starts with the value K1+K2 at A, then increases, attains a maximum145

N∗max for some βmax, decreases to K1 +K2 again at point C for some βC and decreases146

further to the limit corresponding to point B. Note that N∗max, βmax, βC, and B can all be147

calculated explicitly but we will not give them here because the expressions are heavy148

and have no practical interest.149
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N⇤
T (b )

b
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Figure 4: This illustrates the case (a) of (10). As the migration intensity β increases
from 0 to ∞, the equilibrium point moves clockwise along the ellipse E from A to B,
passing through C.

For the other two cases (Fig. 5), descriptions are similar but simpler because N∗T (β )150

is either always greater than K1 +K2 (case b) or always smaller than K1 +K2 (case c).151

This description can be summarized in the following proposition.152

Proposition 2 Assume that r1 < r2. Then:153

(a) γ2
γ1
< r1

r2

K2
K1

=⇒ there exists βC such that154

0≤ β ≤ βC =⇒ N∗T (β )≥ K1 +K2,155

βC < β =⇒ N∗T (β )< K1 +K2,156

(b) r1
r2

K2
K1
≤ γ2

γ1
< K2

K1
=⇒ N∗T (β )≥ K1 +K2 for every β ,157

(c) K2
K1
≤ γ2

γ1
=⇒ N∗T (β )≤ K1 +K2 for every β .158

4 Discussion159

The ecological problem that has motivated this study is to find the conditions for which160

fragmentation and dispersal can lead to higher total equilibrium population abundance161

N∗T than the sum K1 +K2. Mathematically, this is the six-parameter problem posed by162

model (3) that we have solved in the present paper.163

The propositions 1 and 2 contain the full set of results of the present general model164

(3). They show that all parameters have an influence in determining whether N∗T is165
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Figure 5: Left: case (b) of (10). As the equilibrium point moves clockwise from A to
B with increasing β , it is always greater than K1 +K2. Right: case (c) of (10). As the
equilibrium point moves counterclockwise from A to B with increasing β , it is always
smaller than K1 +K2.

higher or lower than K1 +K2. Compared with earlier models, which new results are166

brought by dispersal asymmetry? This can be found by investigating the influence167

of γ2/γ1 in the two propositions, and by considering the special value γ2/γ1 = 1 that168

corresponds to symmetric dispersal.169

Proposition 1 does not depend on γ2/γ1 and remains valid in the case of symmetric170

dispersal: dispersal is always unfavorable when r1 = r2.171

In Proposition 2 for r1 < r2, the assumption of symmetric dispersal simplifies the172

conditions for the three cases, which become:173

(a) 1 <
r1

r2

K2

K1
, (b)

r1

r2

K2

K1
≤ 1 <

K2

K1
, (c)

K2

K1
≤ 1. (11)

As an example, let us have a closer look at condition (c). If this condition is satis-174

fied, dispersal always has an unfavorable effect on total abundance, for any dispersal175

intensity β . If dispersal is symmetric, the inequality (11c) means that (with r1 < r2),176

the total equilibrium abundance N∗T will always be lower than K1 +K2 when K2 ≤ K1.177

However, in the presence of dispersal asymmetry, the corresponding condition (10c) is178

not necessarily satisfied: if the asymmetry is such that γ2/γ1� 1, dispersal can become179

favorable. Conversely, if γ2/γ1� 1, dispersal remains unfavorable in wider conditions180
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of the ratio K2/K1. Similarly, the conditions (10a) and (10b) are also influenced by the181

asymmetry γ2/γ1.182

In sum, dispersal asymmetry can play a crucial role. The various patterns describ-183

ing the influence of dispersal on total population abundance (the small graphs in Figs. 4184

and 5) remain qualitatively the same whether dispersal is symmetric or not. However,185

comparing the conditions (10) and (11) shows that dispersal asymmetry can have a186

strong quantitative influence, depending on its magnitude and on its direction. In com-187

bination with the other parameters, it can either amplify or attenuate the favorable or188

unfavorable effects of dispersal intensity. Strong asymmetry combined with high dis-189

persal intensity can reverse the predictions of symmetric dispersal. This is particularly190

important if the model is used for applied purposes such as population conservation or191

pest control.192
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