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Abstract.	 Simple	 numerical	 versions	 of	 the	 Spatial	 Coding	 and	 of	 the	 Open	 Bigrams	

coding	of	character	strings	are	presented,	together	with	a	natural	merging	of	these	two	

approaches.	Comparing	the	predictive	performance	of	these	three	orthographic	coding	

schemes	 on	 orthographic	 masked	 priming	 data,	 we	 observe	 that	 the	 merged	 coding	

scheme	always	provides	the	best	fits.	Testing	the	ability	of	the	orthographic	codes,	used	

as	regressors,	 to	capture	relevant	regularities	 in	 lexical	decision	data,	we	also	observe	

that	the	merged	code	provides	the	best	fits	and	that	both	the	spatial	coding	component	

and	 the	 open	 bigrams	 component	 provide	 specific	 and	 significant	 contributions.	 This	

gives	 us	 a	 new	 lighting	 on	 probable	 mechanisms	 involved	 in	 orthographic	 coding,	

together	 with	 new	 tools	 for	 modelling	 behavioural	 and	 electrophysiological	 data	

collected	in	word	recognition	tasks.	

	

Key	words.	Orthographic	Code;	Spatial	Coding;	Open	Bigrams;	Orthographic	Similarity;	

Orthographic	Regressors	

	

1.	Introduction	

	 Encoding	 symbol	 strings	 in	 relevant	 and	 convenient	 numerical	 formats	 is	 a	

recurrent	problem	 in	various	scientific	domains	such	as	bioinformatics,	 computational	

linguistic,	artificial	 intelligence,	psycholinguistic,	and	neurosciences.	 In	at	 least	 the	 last	

two	 cited	 domains,	 it	 is	 of	 importance	 to	 use	 string	 codes	 whose	 properties	 are	

compatible	 with	 those	 of	 the	 human	 perception	 of	 character	 strings.	 For	 instance,	

psycholinguists	 use	 string	 codes	 to	 model	 the	 data	 of	 visual	 word	 perception	

experiments	 with	 orthographic	 priming	 (Davis	 &	 Bowers	 2006;	 Grainger,	 Granier,	

Farioli,	 Van	 Assche,	 &	 van	 Heuven,	 2006).	 In	 neurosciences,	 one	 uses	 various	 word	
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properties	to	analyse	cerebral	event	related	potentials	(ERPs)	in	word	perception	tasks	

(Hauk,	 Davis,	 Ford,	 Pulvermüller,	 &	 Marslen-Wilson,	 2006;	 Rey,	 Madec,	 Grainger,	 &	

Courrieu,	 2013).	 Numerical	 string	 codes	 are	 also	 useful	 in	 neurocomputational	

modelling	as	input	or	output	layers	of	multi-layer	neural	networks.	When	they	are	used	

as	 an	 output	 (for	 instance	 the	 output	 of	 a	 handwritten	 character	 string	 recognition	

system),	 numerical	 string	 codes	 must	 also	 be	 decodable	 into	 the	 corresponding	

character	string	(Courrieu,	2012).	

	 In	 the	present	work,	we	propose	new	numerical	 string	codes	whose	properties	

are	as	much	as	possible	compatible	with	those	of	the	human	perception.	Incidentally,	we	

also	 propose	 a	 simple	 and	 natural	 way	 of	 solving	 the	 conflict	 between	 the	 two	main	

current	 and	 concurrent	 theories	 of	 orthographic	 coding,	 namely	 the	 Open	 Bigrams	

theory	 (Dehaene,	 Cohen,	 Sigman,	&	Vinckier,	 2005;	Grainger	 et	 al.,	 2006;	Hannagan	&	

Grainger,	2012;	Whitney,	2001),	and	the	Spatial	Coding	theory	(Davis,	1999,	2010).	

In	 the	 next	 section,	 we	 present	 the	 main	 concepts	 of	 these	 two	 theories.	 In	

sections	 3,	 4,	 and	 5,	we	 propose	 simple	 numerical	models	 belonging	 to	 each	 of	 these	

theoretical	families,	together	with	a	natural	merging	of	these	two	approaches.	In	section	

6,	we	test	the	three	models	on	available	orthographic	priming	data.	In	section	7,	we	use	

the	numerical	orthographic	 codes	as	 regressors	 to	 test	 the	models	on	available	 lexical	

decision	 data.	 Then	 we	 conclude	 in	 section	 8,	 and	 we	 provide	 useful	 Matlab/Octave	

programs	 in	 Appendix	 1.	 As	 usual	 in	 Matlab/Octave	 codes,	 instructions	 for	 use	 are	

included	as	comments	(at	right	of	%).	

	

2.	Two	usual	orthographic	coding	theories	

One	of	the	main	families	of	orthographic	coding	models	available	to	date	is	based	

on	the	concept	of	"open	bigrams"	(Dehaene	et	al.,	2005;	Grainger	et	al.,	2006;	Hannagan	



	 4	

&	Grainger,	2012;	Whitney,	2001).	An	open	bigram	is	an	ordered	pair	of	not-necessarily	

adjacent	characters,	and	the	open	bigrams	code	of	a	character	string	is	basically	the	list	

of	all	the	open	bigrams	of	the	string	(e.g.	{SO,	SN,	ON}	for	the	word	SON).	Open	bigrams	

are	commonly	associated	with	numerical	values	depending	on	the	gap	between	the	two	

symbols	in	the	string	and	the	number	of	occurrences	of	the	open	bigram.	For	instance,	

following	Hannagan	and	Grainger	(2012),	 the	open	bigram	ME	appearing	 in	 the	string	

MEMES	is	associated	with	the	numerical	value	2λ2+λ4	(for	some	real	λ	such	that	0>λ>1)	

because	the	open	bigram	ME	appears	two	times	in	sub-sequences	of	two	characters,	and	

one	 time	 in	 a	 subsequence	 of	 four	 characters.	 Unfortunately,	 several	 empirical	

arguments	against	the	open	bigrams	coding	theory	have	recently	been	stated	(Davis	&	

Bowers,	2006;	Kinoshita	&	Norris,	2013;	Lupker,	Zhang,	Perry,	&	Davis,	2015),	so	 that	

there	 is	 now	 a	 serious	 doubt	 about	 the	 capability	 of	 this	 family	 of	 models	 to	 make	

relevant	predictions.	

Another	important	family	of	orthographic	coding	models	is	based	on	the	concept	

of	 "spatial	 coding"	 (Davis,	 1999,	 2010).	 The	 spatial	 coding	 principle	 originates	 from	

Grossberg's	 theory	of	 the	encoding	of	event	 sequences	 (Grossberg,	1978;	Grossberg	&	

Pearson,	2008).	The	spatial	coding	model	developed	by	Davis	 is	a	complete	simulation	

model	of	visual	word	identification,	including	a	number	of	possibly	realistic	but	complex	

features.	 Empirical	 arguments	 supporting	 the	 spatial	 coding	 principle	 in	 word	

recognition	can	be	found	in	the	paper	of	Davis	and	Bowers	(2006).		

In	 short,	 in	 spatial	 coding,	 one	 associates	 a	dedicated	detector	 to	 each	possible	

symbol	of	an	alphabet,	 this	detector	being	activated	when	an	 input	string	 includes	 the	

corresponding	symbol.	In	the	simplest	approaches,	the	activation	value	of	each	detector	

depends	on	the	serial	position	of	the	corresponding	symbol	in	the	current	input	symbol	

string.	For	instance,	Davis	(1999)	suggested	that	the	activation	at	time	T	for	a	character	



	 5	

appearing	at	the	ith	position	in	a	string	is	of	the	form	  µω(T-i),	 for	some	real	µ	and	ω>1.	

There	was	a	difficulty	whenever	several	occurrences	of	the	same	symbol	appeared	in	the	

same	 string.	 Davis	 (1999,	 2010)	 solved	 this	 problem	 assuming	 that	 there	 are	 several	

detectors	 for	 each	 alphabetical	 character,	 that	 is,	 one	 detector	 for	 each	 possible	

occurrence	 of	 this	 character	 in	 a	 string.	 This	 requires	 that	 one	 a	 priori	 fixes	 the	

maximum	number	of	occurrences	of	a	given	character	 in	a	string	(e.g.	 four	 in	common	

English	words),	and	that	the	total	number	of	nodes	(code	length)	is	equal	to	the	alphabet	

length	times	the	maximum	number	of	occurrences.	A	simplified	approach	of	the	spatial	

coding	of	 character	 strings	was	proposed	by	Courrieu	 (2012)	 to	 encode	 the	output	of	

handwritten	 words	 recognition	 systems.	 It	 allows	 one	 to	 compactly	 encode	 every	

symbol	string	in	the	form	of	a	fixed	length	numerical	vector.	An	important	property	of	

spatial	 coding	models	 is	 that	 every	 code	 vector	 can	 be	 exactly	 decoded	 back	 into	 the	

corresponding	 symbol	 string,	 which	 guaranties	 that	 the	 code	 completely	 and	

unequivocally	represents	the	string,	and	allows	one	to	use	 it	as	a	decodable	numerical	

output	 of	 various	 systems.	 The	 code	 format	 also	 allows	 one	 to	 use	 such	 orthographic	

codes	as	multidimensional	predictors	in	regression	analyses.	

	

3.	New	Spatial	Coding	(SC)	model	

3.1	Code	definition	

	 Consider	 an	 alphabet	 of	n	 symbols	 {s1,	 s2,	 ...,	 sn},	 for	 instance	 the	 26	 lower-case	

letters	 of	 the	 Roman	 alphabet.	 The	 spatial	 coding	 associates	 to	 each	 symbol	 of	 the	

alphabet	 one	 component	 of	 a	 real	 vector	 (c1,	 c2,	 ...,	 cn).	 Let	X	 be	 a	 symbol	 string	 of	m	

characters,	 one	 first	 determines	 the	 "symbol	 position	 bits"	 as	 bk,i	 =	 1	 if	 the	 symbol	 si	

appears	at	 rank	k	 in	X,	 else	one	has	bk,i	=	0.	Then	 the	 components	of	 the	orthographic	

code	are	given	by:	
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	 	 	 ci(X)	=		(Σk=1..m	bk,i	2-k)p		,		i=1..n,	0	<	p	≤1,													(1)	

where	p	 is	a	 free	parameter.	For	 instance,	 the	code	 for	 the	word	"parabola",	 in	 the	26	

letters	Roman	alphabet,	is	the	following	26	components	vector:	

C(parabola)	=		
[(2-2+2-4+2-8)p,	(2-5)p,	0,0,0,0,0,0,0,0,0,	(2-7)p,	0,0,	(2-6)p,	(2-1)p,	0,	(2-3)p,	0,0,0,0,0,0,0,0].		

The	Matlab/Octave	 function	“str2scob”	 listed	 in	Appendix	1	allows	the	computation	of	

the	Spatial	Codes	of	character	strings.	Examples	of	string	Spatial	Codes	and	of	the	effect	

of	p	are	visualized	in	Fig.	1.	

	
	
Figure	1.	Visualization	of	the	numerical	spatial	codes	of	two	words	(windy,	winner),	and	

of	 the	 effect	 of	 the	 parameter	 p	 (p	 =	 0.25,	 or	 p	 =	 0.75)	 on	 the	 alphabet	 string	 code	

(abcdefghijklmnopqrstuvwxyz).	
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3.2	Decoding	

	 Such	 a	 code	 can	 be	 completely	 and	 unequivocally	 decoded	 back	 into	 the	

corresponding	 character	 string	 in	 all	 cases.	 If	 a	 component	 is	 zero,	 then	 the	

corresponding	 character	does	not	 appear	 in	 the	 string.	For	each	non-zero	 component,	

the	corresponding	character	appears	one	or	several	times	in	the	string.	To	know	where	

it	 appears,	 it	 suffices	 to	 raise	 the	 component	 to	 the	 power	 1/p,	 and	 to	 compute	 the	

binary	 form	 of	 the	 result.	 The	 non-zero	 bits	 of	 this	 form	 correspond	 to	 the	 symbol	

position	bits.	 For	 instance,	 in	 the	 above	example	of	 the	word	 "parabola",	 consider	 the	

code	vector	component	corresponding	to	the	letter	"a",	its	value	is	(2-2+2-4+2-8)p.	Raising	

it	 to	 the	 power	 1/p,	 we	 obtain	 (2-2+2-4+2-8)	 =0.31640625,	 whose	 binary	 form	 is	

(.01010001),	 which	 indicates	 that	 the	 letter	 "a"	 appears	 at	 ranks	 2,	 4,	 and	 8	 in	 the	

character	string.		

	 The	use	of	base	2	 exponential	 functions	 for	 the	 coding	 is	motivated	by	 the	 fact	

that	 2	 is	 the	 minimum	 base	 that	 allows	 complete	 and	 unequivocal	 decoding.	 On	 the	

other	hand,	the	exponential	function	of	base	2	decreases	very	fast	as	the	rank	of	letters	

increases,	which	tends	to	crush	the	code	values	for	most	letters	in	the	string,	except	the	

initial	ones.	The	use	of	 the	parameter	p	 allows	us	 to	correct	 for	 this	drawback,	and	 to	

obtain	a	function	that	is	possibly	more	suitable	to	cognitive	modelling.	In	particular,	the	

use	 of	 an	 appropriate	 p	 value	 allows	 minimizing	 the	 influence	 of	 noise	 and	 of	

approximation	 errors	 occurring	 in	 natural	 or	 artificial	 systems,	 because	p	 determines	

the	 minimum	 difference	 (spacing)	 between	 two	 distinct	 exact	 values	 in	 the	 code	

(including	0).	The	effect	of	p	on	spatial	codes	is	visualized	in	the	lower	part	of	Fig.	1.	

The	actual	decoding	procedures	must	manage	the	possible	presence	of	noise	and	

approximation	 errors	 in	 realistic	 models	 using	 spatial	 coding.	 This	 is	 what	 does	 de	

Matlab/Octave	function	“scob2str”	listed	in	Appendix	1,	and	used	hereafter.	
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Figure	 2.	 Summary	 of	 a	 computational	 experiment	 measuring	 the	 decoding	 error	 of	

noisy	spatial	codes	as	a	function	of	the	scale	of	the	Gaussian	noise	in	the	codes	(2-5,	2-10,	

2-15,	 2-20),	 the	 length	 of	 the	 original	 character	 string	 (5,	 10,	 or	 15	 letters),	 and	 the	 p	

parameter	value	(from	0.05	to	1	by	steps	of	0.05).	

		

Fig.	 2	 summarizes	 a	 computational	 experiment	 illustrating	 the	 behavior	 of	 the	

decoding	process	 as	 a	 function	of	p,	 the	 amount	of	 noise	 in	 the	 spatial	 codes,	 and	 the	

length	 of	 the	 character	 strings.	 A	 total	 of	 480000	 computational	 tests	 has	 been	

performed,	each	of	them	using	a	randomly	generated	character	string	of	a	given	length	

(5,	10,	or	15	characters),	a	p	parameter	value	(varying	from	0.05	to	1	by	steps	of	0.05),	

and	a	given	amount	of	Gaussian	noise	(with	mean	0	and	standard	deviation	2-5,	2-10,	2-15,	
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or	2-20)	added	to	the	spatial	code	components	of	the	string,	resulting	in	a	noisy	spatial	

code	 which	 was	 decoded	 back	 using	 the	 "scob2str"	 routine.	 The	 resulting	 string	 was	

then	 compared	 to	 the	 original	 one	 using	 the	 Damerau-Levenshtein	 string	 distance	

(Damerau,	1964)	as	a	"decoding	error"	measure.	This	was	repeated	2000	times	for	each	

combination	of	 the	experimental	variables	modalities,	 and	 the	average	decoding	error	

was	used	as	 the	dependent	variable	 in	 the	plots	of	Fig.	2.	Note	 that	 for	zero	noise,	 the	

decoding	error	is	always	zero	if	the	length	of	strings	does	not	exceed	the	precision	of	the	

used	 real	 numbers	 (the	maximum	 is	 52	 characters	with	 the	 usual	 standard	 IEEE	 754	

double-precision	binary	floating-point	format).	With	non-zero	noise,	one	can	observe	in	

Fig.	2	that	the	decoding	error	increases	with	the	amount	of	noise	and	with	the	length	of	

strings,	which	is	not	surprising.	However,	the	decoding	error	is	not	a	monotonic	function	

of	p,	and	its	shape	depends	on	the	relation	between	the	noise	scale	and	the	length	of	the	

string.	In	short,	 let	L	be	the	number	of	characters	of	the	string,	then	there	is	almost	no	

effect	of	p	on	the	decoding	error	(zero)	if	the	noise	scale	is	lower	than	2-L,	except	a	small	

increase	for	very	low	p	values.	However,	the	decoding	error	function	has	a	maximum	on	

the	middle	zone	of	the	p	values	if	the	noise	scale	is	close	to	2-L,	while	it	has	a	minimum	

on	the	middle	zone	of	the	p	values	if	the	noise	scale	is	greater	than	2-L.	Thus,	in	weakly	

noisy	systems,	one	can	use	any	value	of	p,	even	1,	which	is	equivalent	to	remove	the	p	

parameter.	In	highly	noisy	systems,	the	critical	string	length	is	low,	and	most	words	are	

longer	than	this	critical	length,	thus	it	is	preferable	for	the	decoding	accuracy	to	choose	

an	 intermediate	 value	 for	 p	 (in	 a	 neighborhood	 of	 0.5).	 Now,	 in	 a	 system	 where	

(unfortunately)	the	noise	scale	corresponds	to	the	modal	string	length,	the	plots	in	Fig.	2	

show	that	the	best	choice	is	p=1.	
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4.	New	Open	Bigrams	Coding	(OB)	model	

	 The	 coding	 model	 described	 hereafter	 is	 a	 variant	 of	 the	 one	 described	 in	

Hannagan	and	Grainger	(2012),	and	 in	Lodhi,	Saunders,	Shawe-Taylor,	Cristianini,	and	

Watkins	 (2002).	 Contrarily	 to	 the	 original	 model,	 this	 variant	 does	 not	 detect	 one-

character	strings	since	it	encodes	only	open	bigrams,	thus	at	least	two	character	strings.	

For	instance,	in	the	word	'hat',	the	open	bigrams	are	'ha',	'ht',	and	'at',	while	the	word	'at'	

is	itself	a	bigram,	but	in	the	one-letter	word	'a',	there	is	no	bigram	in	the	usual	sense.	In	

fact,	 the	 following	model	was	designed	to	be	compatible	with	the	above	spatial	coding	

scheme	(1),	in	the	perspective	of	merging	the	two	approaches,	as	described	in	the	next	

section.	

In	an	alphabet	of	n	characters,	the	open	bigrams	code	of	a	string	X	of	m	characters	

is	defined	as	a	real	matrix	of	n×n	components	cij,	each	one	corresponding	to	a	possible	

open	bigram	whose	 first	 character	 has	 the	 index	 i	 in	 the	 alphabet,	 and	whose	 second	

character	has	the	index	j.	The	symbol	position	bits	bk,i		are	defined	as	previously,	and	one	

has:	

cij(X)	=		(Σk=1..m-1	Σl=k+1..m	bk,i	bl,j	2-(l-k))p	,		i,	j	=	1..n,		0	<	p	≤1,													(2)	

	 For	 instance,	 using	 the	 26	 letters	 Roman	 alphabet,	 the	 open	 bigram	 'aa'	 in	 the	

word	'parabola',	has	the	code	value	c1,1(parabola)=(2-(4-2)+2-(8-2)+2-(8-4))p,	while	the	open	

bigram	 'oa'	 has	 the	 code	 value	 c15,1(parabola)=(2-(8-6))p.	 Since	 it	 is	more	 convenient	 to	

store	the	codes	in	the	form	of	row	vectors	than	in	the	form	of	matrices,	one	vectorizes	

the	 code	matrix	by	 concatenating	 its	 rows	one	 after	 the	other,	which	 results	 in	 a	 row	

vector	 of	n2	 components.	 The	Matlab/Octave	 function	 “str2scob”	 listed	 in	 Appendix	 1	

allows	the	computation	of	the	Open	Bigrams	codes	of	character	strings.	

The	size	of	an	Open	Bigrams	code	is	the	square	of	the	size	of	a	Spatial	Code,	which	

is	 somewhat	 cumbersome,	 but	 also	much	more	 redundant,	 and	 thus	 potentially	more	
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robust	in	case	of	approximation	errors	and	noisy	code.	An	Open	Bigrams	code	is	easy	to	

decode	if	the	target	character	string	does	not	include	more	than	one	repeated	character	

(as	the	A	in	PARABOLA).	However,	in	the	general	case,	decoding	an	Open	Bigrams	code	

is	 a	 hard-to-solve	 problem	 and	 there	 is	 no	 known	 practical	 solution	 for	 large-scale	

applications	that	require	fast	decoding.	

	

5.	Merging	Spatial	and	Open	Bigrams	Codes	(SCOB)	

There	is	in	fact	a	very	simple	and	quite	natural	solution	to	the	main	drawbacks	of	

the	open	bigrams	coding.	Assume	that	the	beginning	of	every	character	string	is	not	its	

first	 symbol	 (letter),	 but	 a	 "start	 character".	 For	 instance,	 one	 can	 consider	 the	 left	

whitespace	 as	 a	 tag	 of	 the	 start	 character	 for	 printed	words.	 One	 can	 append	 a	 start	

character	at	the	beginning	of	the	alphabet,	and	append	a	start	character	at	the	beginning	

of	each	character	string.	 If	 the	size	of	 the	original	alphabet	was	n	characters,	 then	 it	 is	

now	n+1,	but	the	size	of	the	corresponding	open	bigrams	code	is	(n+1)n,	since	the	start	

character	is	not	a	stop	character	and	it	never	appears	at	the	second	position	in	a	bigram.	

The	code	is	computed	in	the	same	way	as	the	basic	OB	code,	and	one	obtains	an	Open	

Bigrams	code	where	one	character	strings	are	represented	as	(start	character	+	symbol).	

Assigning	to	the	start	character	the	index	0	in	the	alphabet,	and	the	serial	position	0	in	

the	character	strings,	one	sets	b0,0=1,	and	the	code	components	are	defined	as:	

cij(X)	=		(Σk=0..m-1	Σl=k+1..m	bk,i	bl,j	2-(l-k))p	,		i	=	0..n,	j	=	1..n,		0	<	p	≤	1.													(3)	

This	 code	 is	 easily	 decodable	 in	 all	 cases	 since	 its	 first	 n	 components	 (c0j	

components)	are	exactly	equal	to	those	of	the	spatial	code	(1)	of	the	same	string,	which	

is	decodable.	For	this	reason,	we	will	abbreviate	this	code	as	SCOB,	for	"Spatial	Code	+	

Open	Bigrams",	but	also	remembering	"Start	Character	+	Open	Bigrams".	In	this	context,	
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one	can	consider	that	the	Spatial	Coding	is	just	the	initial	part	(n	components)	of	an	Open	

Bigrams	coding	using	an	alphabet	that	includes	a	start	character.	

The	 Matlab/Octave	 function	 “str2scob”	 listed	 in	 Appendix	 1	 allows	 the	

computation	of	the	SCOB	codes	of	character	strings,	and	the	function	“scob2str”	allows	

their	decoding.	

	

6.	Tests	on	masked	orthographic	priming	data	

6.1.	Test	on	Adelman	et	al.’s	(2014)	data	

Orthographic	 coding	 models	 are	 commonly	 tested	 using	 masked	 orthographic	

priming	techniques	(Davis	&	Bowers,	2006;	Grainger	et	al.,	2006;	Van	Assche	&	Grainger,	

2006;	Welvaert,	Farioli,	&	Grainger,	2008),	where	one	assumes	that	the	more	the	prime	

and	the	target	are	orthographically	similar,	the	more	the	priming	effect	is	large	(in	first	

approximation).	 The	 orthographic	 similarity	 of	 two	 character	 strings	 depends	 on	 the	

considered	 coding	model,	 together	with	 an	 associated	 similarity	 function.	 In	 the	 case	

where	the	orthographic	codes	are	 fixed	 length	numerical	vectors,	say	x	and	y,	one	can	

for	 instance	 use	 a	 similarity	 function	 of	 the	 form	 S(x,	y)=	<x,	y>/(||x||.||y||),	 where	 <.,	.>	

denotes	 the	 inner	 (dot)	product,	 and	 ||.||	 is	 the	Euclidean	norm	(Hannagan	&	Grainger,	

2012).	 If	 the	 considered	 orthographic	 coding	model	 is	 correct,	 then	 one	 can	 expect	 a	

strong	 positive	 correlation	 between	 S(x,	 y)	 and	 the	 perceptual	 priming	 effect	 of	 the	

string	whose	code	is	x	on	the	string	whose	code	is	y.		

We	 used	 27	 masked	 priming	 effects	 obtained	 in	 a	 lexical	 decision	 task	 with	

different	 prime	 structures,	 reported	 by	 Adelman	 et	 al.	 (2014),	 in	 order	 to	 test	 the	

predictive	 capability	 of	 the	 orthographic	 coding	 schemes	 SC,	 OB,	 and	 SCOB	 described	

above.	 The	 parameter	 p	 was	 optimized	 for	 each	 model	 in	 order	 to	 obtain	 the	 best	

possible	 correlation	 between	 S(x,	y)	 and	 the	 corresponding	 empirical	 priming	 effects.	
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For	 SC,	 one	 obtained	 p=0.54,	 r=0.59;	 for	 OB,	 one	 obtained	 p=0.55,	 r=0.90;	 finally,	 for	

SCOB,	one	obtained	p=0.81,	and	r=0.92.	Using	Williams	T2	test	(Steiger,	1980;	Williams,	

1959),	we	observed	that	the	OB	fit	was	significantly	better	than	the	SC	fit	(T2(24)=3.73,	

p<.001),	and	the	SCOB	fit	was	significantly	better	than	the	SC	fit	(T2(24)=4.45,	p<.001).	

However,	the	correlations	were	not	significantly	different	for	OB	and	SCOB,	although	the	

fit	was	 a	bit	 better	 for	 SCOB	 (T2=1.01,	 n.s.).	 Thus,	 contrarily	 to	what	was	 expected,	 it	

seems	that	the	open	bigrams	coding,	even	alone,	is	more	suitable	than	the	spatial	coding	

for	predicting	orthographic	priming	effects	in	a	lexical	decision	task.	

	
6.2	Test	on	Kinoshita	and	Norris’s	(2013)	data	

This	unexpected	result	led	us	to	reconsider	arguments	recently	reported	against	

the	Open	Bigrams	 theory,	 in	particular	 those	of	Kinoshita	 and	Norris	 (2013).	 In	 three	

experiments	 using	 the	 same-different	 match	 task	 (Norris	 &	 Kinoshita,	 2008),	 with	

masked	 primes	 including	 open	 bigrams	 and	 reversed	 open	 bigrams,	 the	 authors	

observed	 that	 reversed	 bigram	 primes	 (e.g.	 ob-ABOLISH),	 as	 well	 as	 widely	 non-

contiguous	 open	 bigram	 primes	 (e.g.	 bs-ABOLISH)	 produced	 robust	 orthographic	

priming	 effects,	 while	 this	 is	 not	 possible	 with	 current	 open	 bigrams	 models.	 The	

authors	 then	 concluded:	 “letter	 order	 is	 not	 coded	 by	 open	 bigrams”.	 However,	 such	

priming	effects	are	possible	in	spatial	coding	models,	and	if	one	simply	appends	a	start	

character	at	the	beginning	of	each	word,	performing	an	open	bigrams	coding	on	such	a	

string	will	generate	a	SCOB	code	whose	initial	part	is	in	fact	equal	to	a	Spatial	Code.	Then	

one	can	expect	that	this	particular	open	bigrams	model	is	able	to	account	for	the	critical	

priming	 effects.	 In	 order	 to	 verify	 this	 on	 Kinoshita	 and	 Norris	 (2013)	 data,	 we	

computed	the	prime-target	orthographic	similarities	predicted	by	our	three	models	(SC,	

OB,	 and	 SCOB),	 using	 for	 each	 model	 the	 optimal	 p	 parameter	 value	 previously	
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estimated	 on	 Adelman	 et	 al.’s	 (2014)	 data,	 and	 we	 compared	 these	 orthographic	

similarities	with	the	empirical	priming	effects.		

	

Table	1.	Orthographic	priming	effects	obtained	by	Kinoshita	and	Norris	(2013)	in	three	

experiments	 using	 the	 same-different	match	 task	with	masked	 primes	 including	 open	

bigrams	 and	 reversed	 open	 bigrams.	 The	 corresponding	 orthographic	 similarities	

computed	by	the	SC,	OB,	and	SCOB	models	between	the	primes	and	the	targets	are	also	

reported,	with	the	model	fits	at	the	bottom	of	the	table.	

	

Prime	-	Target	 Priming	effect	
(ms)	

SC	model	
(p=0.54)	

OB	model	
(p=0.55)	

SCOB	model	
(p=0.81)	

Experiment	1	
of	–	OF	
fo	–	OF	
the	–	THE	
hte	–	THE	
	
Experiment	2	
bo,	is	–	ABOLISH	
bl,	ls	–	ABOLISH	
bs	–	ABOLISH	
	
Experiment	3	
bo,	is	–	ABOLISH	
bs	–	ABOLISH	
ob,	si	–	ABOLISH	
sb	–	ABOLISH	
	
Model	fit	

	
97	
57	
82	
48	
	
	
24	
24	
28	
	
	
29	
25	
18	
13	
	

	
1.0	

0.9338	
1.0	

0.9425	
	
	

0.4027	
0.4067	
0.4759	

	
	

0.4027	
0.4759	
0.3760	
0.3760	

	
r=0.91,	p<.0001	

	
1.0	
0	
1.0	

0.5538	
	
	

0.3223	
0.2202	
0.1027	

	
	

0.3223	
0.1027	
0	
0	
	

r=0.85,	p<.001	

	
1.0	

0.4906	
1.0	

0.6355	
	
	

0.3056	
0.2149	
0.1668	

	
	

0.3056	
0.1668	
0.0814	
0.0814	

	
r=0.97,	p<.0001	

	
	

The	results	are	reported	in	Table	1,	where	one	can	see	that	the	OB	model	behaves	

as	Kinoshita	and	Norris	expected,	predicting	zero	priming	for	reversed	bigrams,	and	it	

provides	 the	worst	 fit	 to	 the	 data	 (r=0.85).	 As	we	 expected,	 the	 SC	model	 provides	 a	

good	account	of	these	data	(r=0.91),	however,	its	fit	is	not	significantly	better	than	that	

of	the	OB	model	(T2(8)=0.77,	n.s.).	Finally,	the	SCOB	model	provides	the	best	fit	to	the	

data	(r=0.97),	which	is	significantly	better	than	the	OB	model	 fit	(T2(8)=3.91,	p<.005),	
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but	not	significantly	better	than	the	SC	model	fit	(T2(8)=1.49,	n.s.).	Thus	the	SCOB	model	

suitably	 account	 for	 Kinoshita	 and	 Norris’s	 data	 and	 it	 remains	 the	 best	 predictor,	

however,	 the	 hierarchy	 of	 performance	 is	 reversed	 for	 the	 two	 other	 models	 with	

respect	 to	what	was	 observed	with	 lexical	 decision	 data.	 This	 suggests	 the	 possibility	

that	 the	 same-different	match	 task	 and	 the	 standard	masked	 priming	 lexical	 decision	

task	do	not	involve	the	exact	same	mechanisms.	

	

7.	Numerical	string	codes	as	multidimensional	regressors	

	 Another	way	 of	 examining	 the	 relevance	 of	 numerical	 orthographic	 codes	 is	 to	

test	their	ability	to	capture	significant	regularities	in	word	processing	behavioral	data	as	

those	 collected	 in	 large-scale	 item-level	 behavioural	 databases	 (Balota,	 Yap,	 Cortese,	

Hutchison,	 Kessler,	 Loftis,	 Neely,	 Nelson,	 Simpson,	 &	 Treiman,	 2007;	 Ferrand,	 New,	

Brysbaert,	Keuleers,	Bonin,	Méot,	Augustinova,	&	Pallier,	2010).	In	this	context,	we	use	

string	codes	as	multidimensional	regressors.	

	

7.1.	Methodological	considerations	

	 One	 can	 directly	 use	 the	 numerical	 string	 codes	 as	 multidimensional	

regressors	on	large-scale	item	level	behavioural	databases,	where	the	number	of	items	

is	much	larger	than	the	number	of	regressor	dimensions	(it	is	usually	recommended	to	

have	at	least	10-20	times	more	items	than	regressor	dimensions).	In	large	OB	or	SCOB	

codes,	there	are	frequently	components	corresponding	to	open	bigrams	that	never	occur	

in	a	given	database.	The	regression	coefficients	of	 these	components	are	a	priori	 zero,	

and	the	corresponding	components	must	be	temporarily	removed	to	compute	the	other	

coefficients.	 As	 a	 result,	 the	 number	 of	 degrees	 of	 freedom	 of	 the	 multidimensional	

regressors	in	regression	analyses	can	be	lower	than	the	number	of	code	components.		
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However,	high	dimension	independent	variables	tend	to	mechanically	account	for	

a	large	part	of	the	data	variance	in	multiple	regression	analyses,	even	if	they	are	purely	

random,	and	it	is	known	that	the	usual	R2	statistic	is	positively	biased.	This	problem	can	

be	 partially	 solved	 using	 the	 so-called	 "adjusted	 R2",	 denoted	R2	 hereafter,	which	 is	 a	

well-known	 unbiased	 estimator	 of	 the	 corresponding	 population	 parameter,	 and	 is	

designed	to	be	 independent	of	 the	regressor	dimension	(Cohen,	Cohen,	West,	&	Aiken,	

2003,	pp.	83-84;	Theil,	1961,	p.	212).		

	 Another	possibility	 is	to	use	well-known	validation	methods	such	as	the	Monte-

Carlo	 cross-validation	 procedure	 to	 estimate	 the	 generalization	 power	 of	 a	 built	

regressor.	Cross-validation,	as	a	generalization	process,	avoids	the	overfitting	problems	

that	 systematically	 occur	 in	 least	 squares	multiple	 regression	models	 (Picard	&	 Cook,	

1984).	In	short,	using	a	large-scale	database,	one	repeatedly	randomly	sample	a	subset	

of	 items	 of	 a	 given	 size	 as	 the	 cross-validation	 (generalization)	 set,	 and	 one	 uses	 the	

remaining	subset	of	items	as	the	learning	set.	One	computes	the	regression	coefficients	

of	 the	orthographic	 code	 components	on	 the	 learning	 set	data,	 then	one	applies	 these	

coefficients	 to	 the	orthographic	codes	of	 the	 items	of	 the	cross-validation	set,	 and	one	

computes	 the	 correlation	 coefficient	 of	 the	 resulting	 one-dimensional	 orthographic	

regressor	with	the	target	data	of	the	cross-validation	set.	One	obtains	a	sample	of	cross-

validation	 correlation	 coefficients,	 which	 can	 be	 summarized	 by	 its	 mean	 and	 a	

confidence	 interval	 (for	 instance	 the	 99%	 one).	 To	 compute	 the	 useful	 statistics,	 it	 is	

convenient	to	use	the	r-to-z	Fisher	transformation,	then	to	compute	the	mean	and	99%	

confidence	interval	on	the	z	values,	and	finally	to	transform	the	results	in	r	values	using	

the	inverse	Fisher	transformation.		
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7.2.	Test	on	lexical	decision	data	of	the	English	Lexicon	Project	

	 The	 English	 Lexicon	 Project	 (Balota	 et	 al.,	 2007)	 includes	 two	 behavioural	

databases.	 The	 first	 one	 provides	 lexical	 decision	 data,	 and	 the	 second	 one	 provides	

speeded	word	 naming	 data	 for	 40481	 English	words.	 For	 the	 present	 study,	we	 used	

only	the	lexical	decision	data,	and	the	items	selection	was	conditional	to	the	availability	

of	valid	data	concerning:	the	word	spelling,	 its	pronunciation,	 its	frequency,	 its	OLD20,	

OLD20	frequency,	the	mean	lexical	decision	z-time	and	response	accuracy.	The	number	

of	selected	words	was	 finally	39302.	Both	uppercase	and	 lowercase	 letters	were	used,	

resulting	in	an	alphabet	of	52	characters:	

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz.	

The	 average	 number	 of	 valid	 observations	 per	 item	 was	 27.8.	 Using	 the	 ICC	

method	(Courrieu,	Brand-D'Abrescia,	Peereman,	Spieler,	&	Rey,	2011;	Courrieu	&	Rey,	

2011,	2015),	we	computed	the	proportion	of	systematic	 item	variance	available	 in	 the	

RT	z-scores,	which	gave	the	ICC=	0.8954,	with	a	99%	CI=	[0.8934,	0.8973].	

	

7.2.1.	Determination	of	the	optimal	code	and	p	parameter	value	

	 We	 tried	 to	determine	a	suitable	orthographic	code	 for	 the	ELP	 lexical	decision	

data	by	fitting	(least	squares	method)	the	RT	z-scores	and	the	accuracy,	on	the	basis	of	

spatial	 codes	 (SC),	 open	 bigrams	 codes	 (OB),	 and	 merged	 spatial	 and	 open	 bigrams	

codes	(SCOB),	as	a	function	of	the	p	parameter	value,	which	was	varied	from	0.05	to	1.00	

by	 steps	 of	 0.05.	 One	 can	 observe	 in	 Fig.	 3	 that	 open	 bigrams	 codes	 always	 provided	

better	fits	(Pearson's	r)	than	the	spatial	code	alone,	while	the	SCOB	codes	seem	to	have	a	

small	but	regular	advantage	on	OB	codes.	The	smallest	p	parameter	values	are	optimal	

for	 the	 spatial	 code	 alone,	 while	 p=1	 is	 optimal	 for	 the	 OB	 and	 SCOB	 codes.	 Thus,	

globally,	p=1	is	the	optimal	choice,	which	is	equivalent	to	remove	the	p	parameter.	
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Figure	 3.	 Correlation	 of	 ELP	 lexical	 decision	 z-times	 (upper	 panel),	 and	 response	

accuracy	(lower	panel)	with	their	 least	squares	approximations	based	on	spatial	codes	

(SC),	on	open	bigrams	codes	(OB),	and	on	merged	SC	and	OB	codes	(SCOB),	as	functions	

of	the	code	parameter	p.	

	

	 In	 order	 to	 see	 whether	 or	 not	 both	 the	 SC	 and	 the	 OB	 components	 provided	

specific	 significant	 contributions	 to	 the	 performance	 of	 the	 SCOB	 code	 regressor,	 we	

performed	 a	 series	 of	 hierarchical	 multiple	 regressions,	 with	 the	 RT	 z-scores	 as	

dependent	 variable,	 while	 the	 orthographic	 codes	 SC	 and	 OB	 were	 entered	 as	

multidimensional	regressors	in	this	order,	and	in	the	reverse	order,	with	various	values	

of	the	p	parameter.	These	analyses	are	presented	in	Table	2,	where	one	can	see	that	in	

all	cases,	both	the	SC	and	the	OB	components	provide	specific	significant	contributions	

to	the	data	fit,	while	p=1	for	the	two	components	is	globally	the	best	parameter	choice.	
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We	 conclude	 that	 the	 SCOB	 code	 without	 p	 parameter	 is	 the	 most	 appropriate	

orthographic	 code	 for	 these	data,	while	 the	contribution	of	 the	SC	component	 is	 small	

but	always	relevant.		

	

Table	2.	Hierarchical	multiple	regression	analyses	of	the	 lexical	decision	z-times	of	the	

English	 Lexicon	 Project	 (Balota	 et	 al.,	 2007).	 The	 multidimensional	 orthographic	

regressors	are	the	spatial	code	(SC)	and	the	open	bigrams	code	(OB)	of	the	words,	with	

various	values	of	the	code	parameter	p.		

	

Regressor	1	 R2	 Regressor	2	 R2	 ΔR2	 ΔR2	significance	 Adj.	R2	
	
SC	(p=1)	
OB	(p=1)	
	
SC	(p=0.70)	
OB	(p=0.70)	
	
SC	(p=0.05)	
OB	(p=0.05)	
	
SC	(p=0.05)	
OB	(p=1)	

	
0.1410	
0.4031	

	
0.1175	
0.4017	

	
0.2158	
0.3849	

	
0.2158	
0.4031	

	
OB	(p=1)	
SC	(p=1)	
	
OB	(p=0.70)	
SC	(p=0.70)	
	
OB	(p=0.05)	
SC	(p=0.05)	
	
OB	(p=1)	
SC	(p=0.05)	

	
0.4132	
0.4132	

	
0.4106	
0.4106	

	
0.3895	
0.3895	

	
0.4089	
0.4089	

	
0.2723	
0.0102	

	
0.2931	
0.0089	

	
0.1737	
0.0047	

	
0.1931	
0.0058	

	
F(1243,	38006)=14.19	
F(52,	38006)=12.65	

	
F(1243,	38006)=15.20	
F(52,	38006)=11.00	

	
F(1243,	38006)=8.70	
F(52,	38006)=5.57	

	
F(1243,	38006)=9.99	
F(52,	38006)=7.17	

	
0.3932	
0.3932	

	
0.3905	
0.3905	

	
0.3687	
0.3687	

	
0.3887	
0.3887	

	
Underscored	F-values	are	highly	significant	(p<0.0001)	
	
	

7.2.2.	Relation	with	usual	regressors	

	 In	Table	3,	one	can	see	the	inter-correlations	of	the	SCOB	based	one-dimensional	

orthographic	 regressors	 (A.RTz	 and	A.Acc),	 the	 corresponding	 targeted	 data	 variables	

(RTz	 and	 Acc),	 and	 four	 usual	 regressors,	 namely	 the	 word	 length,	 the	 word	 log-

frequency,	the	OLD20,	and	the	OLD20	frequency	(Yarkoni,	Balota,	&	Yap,	2008).	For	the	

word	frequency,	we	used	the	logarithm	of	the	HAL	frequency	plus	one	(to	avoid	log(0)	
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for	very	rare	words).	We	note	the	high	correlations	of	A.RTz	with	the	word	length	and	

the	OLD20.	

	

	

Table	 3.	 Inter-correlations	 of	 the	 ELP	 one-dimensional	 SCOB	 based	 regressors,	 A.RTz	

and	 A.Acc,	 targeting	 the	 lexical	 decision	 z-times	 (RTz)	 and	 the	 accuracy	 	 (Acc),	

respectively.	 Correlations	 with	 4	 usual	 regressors:	 word	 length,	 word	 log-frequency,	

old20	and	old20	frequency	are	also	provided.	

	
r39302	 						A.RTz								A.Acc									RTz											Acc									length							log-Fr							old20						old20F	
A.RTz	
A.Acc	
RTz	
Acc	
length	
log-Fr	
old20	
old20F	

											-									-0.3627					0.6428				-0.1240					0.8637				-0.3559					0.8568				-0.6412	
				-0.3627											-									-0.2332					0.3418					0.0474					0.1054				-0.1438					0.0305	
					0.6428				-0.2332											-									-0.5974					0.5552				-0.6594					0.6114				-0.4313	
				-0.1240					0.3418				-0.5974											-										0.0162					0.4915				-0.1154					0.0191	
					0.8637					0.0474					0.5552					0.0162											-										-0.3514					0.8683				-0.7217	
				-0.3559					0.1054				-0.6594					0.4915				-0.3514											-									-0.4016					0.4583	
					0.8568				-0.1438					0.6114				-0.1154					0.8683				-0.4016											-									-0.6622	
				-0.6412					0.0305				-0.4313					0.0191				-0.7217					0.4583				-0.6622											-	

	
	

	

	 In	 Table	 4,	 one	 analysed	 the	 relations	 of	 the	multidimensional	 SCOB	 regressor	

with	the	four	usual	regressors	in	fitting	the	RT	z-scores.	This	was	done	using	a	series	of	

hierarchical	 multiple	 regression	 analyses	 from	 which	 we	 can	 observe	 that	 all	 tested	

regressors	provided	specific	significant	contributions	to	the	fit,	except	the	word	length	

whose	contribution	was	completely	explained	by	the	SCOB	(but	not	the	reciprocal).		
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Table	 4.	 Hierarchical	multiple	 regression	 analyses	 of	 the	 ELP	 lexical	 decision	 z-times.	

The	 regressors	 are	 the	 multidimensional	 SCOB	 code	 of	 the	 words	 and	 the	 usual	

regressors:	 word	 length,	 word	 log-frequency,	 and	 old20,	 and	 old20	 frequency.	 All	

regressors	 provide	 significant	 specific	 contributions,	 except	 the	 word	 length	 whose	

effect	is	completely	explained	by	the	SCOB.	

	
	

Regressor	1	 R2	 Regressor	2	 R2	 ΔR2	 ΔR2	significance	 Adj.	R2	

old20	+	
old20F	+		
log-Fr	+	
Length		
	
SCOB	
	
SCOB	
	
SCOB	
	
SCOB	

	
	
	

0.5959	
	

0.4132	
	

0.4132	
	

0.4132	
	

0.4132	

	
	
	
SCOB	
	
old20	
	
old20F	
	
log-Fr	
	
length	

	
	
	

0.6744	
	

0.4505	
	

0.4148	
	

0.6604	
	

0.4132	

	
	
	

0.0785	
	

0.0372	
	

0.0015	
	

0.2472	
	
0	

	
	
	

F(1295,	38002)=7.08	
	

F(1,	38005)=2575.4	
	

F(1,	38005)=98.45	
	

F(1,	38005)=27660	
	

F(1,	38005)=	0	

	
	
	

0.6632	
	

0.4317	
	

0.3948	
	

0.6488	
	

0.3932	
	
Underscored	F-values	are	highly	significant	(p<0.0001)	
	
	

7.2.3.	Orthographic	regressors	cross-validation	

The	 learning	and	 cross-validation	of	 SCOB	orthographic	 regressors	were	 tested	

on	ELP	lexical	decision	z-times	and	on	the	response	accuracy.	We	used	cross-validation	

sets	 of	 2000	 items,	 learning	 sets	 of	 39302-2000=37302	 items,	 and	 120	 random	 test	

repetitions.		

The	distributions	of	120	cross-validation	r	values	for	ELP	lexical	decision	z-times,	

and	ELP	lexical	decision	accuracy	are	shown	in	Fig.	4.	For	the	RT	z-scores,	one	obtained	

the	 learning	 average	 r	 =	 0.6437,	 99%	 CI	 =	 [0.6435,	 0.6438],	 and	 the	 cross-validation	

average	r	=	0.4313,	99%	CI	=	[0.3888,	0.4720].	For	the	response	accuracy,	one	obtained	

the	 learning	 average	 r	 =	 0.3440,	 99%	 CI	 =	 [0.3438,	 0.3443],	 and	 the	 cross-validation	

average	 r	 =	 0.1430,	 99%	 CI	 =	 [0.1267,	 0.1592].	 The	 cross-validation	 mean	 r	 value	
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obtained	for	the	RT	z-scores	corresponds	to	18.6%	item	variance	accounted	for,	and	to	

20.78%	 systematic	 item	 variance	 accounted	 for,	 given	 the	 ICC=0.8954.	 The	 difference	

between	 the	 cross-validation	 r	 and	 the	 learning	 r	 reveals	 a	 substantial	 overfitting	

resulting	from	the	least	squares	fit	of	the	regressors	to	the	data.	

	

	
	
Figure	4.	Distribution	of	120	cross-validation	r	values	for	ELP	lexical	decision	RTz,	and	

ELP	lexical	decision	accuracy.	Each	r	value	was	computed	using	2000	randomly	selected	

generalization	 test	words,	while	37302	other	words	were	used	 to	compute	regression	

coefficients	of	the	SCOB	code	components	in	order	to	approximate	the	data	(learning).		

	

	 Finally,	we	must	note	 that	 very	 similar	 results	were	obtained	with	other	 large-

scale	behavioural	databases	such	as	the	ELP	word-naming	database	(Balota	et	al.,	2007),	

and	the	French	Lexicon	Project	(Ferrand	et	al.,	2010).	These	results	clearly	confirm	the	

conclusions	obtained	with	masked	orthographic	priming	data.	
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8.	Conclusion	

We	presented	 simple	numerical	 versions	of	 the	Spatial	Coding	and	of	 the	Open	

Bigrams	coding	of	character	strings,	 together	with	a	merging	of	these	two	approaches.	

This	merging	was	obtained	making	the	simple	and	natural	hypothesis	that	all	character	

strings	begin	with	a	"start	character"	(tagged	by	the	left	whitespace	of	printed	words,	for	

instance).	 In	 these	 conditions,	 the	 initial	 part	 of	 an	open	bigrams	 code	 is	 equal	 to	 the	

spatial	 code	 of	 the	 same	 string,	 which	 makes	 the	 open	 bigrams	 code	 decodable.	

Comparing	 the	 predictive	 performance	 of	 the	 three	 orthographic	 coding	 schemes	 on	

orthographic	masked	 priming	 data,	 as	well	 as	 on	 large-scale	 lexical	 decision	 data,	we	

observe	that	the	merged	coding	scheme	always	provides	the	best	performance,	and	that	

both	 the	 spatial	 coding	 component	 and	 the	 open	bigrams	 component	 provide	 specific	

and	 significant	 contributions.	 This	 new	 lighting	 on	 probable	 mechanisms	 involved	 in	

orthographic	 coding	 also	 provides	 new	 tools	 for	 modelling	 behavioural	 and	

electrophysiological	data	collected	in	word	recognition	tasks.	 In	order	to	 illustrate	this	

last	 point,	 an	 example	 of	 application	 of	 the	 Spatial	 Coding	 model	 in	 the	 analysis	 of	

cerebral	 event	 related	 potentials	 (ERPs),	 initially	 reported	 by	 Rey	 et	 al.	 (2013),	 is	

summarized	in	Appendix	2.	
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Appendix	1	

Matlab/Octave	code	of	useful	functions	(for	academic	use	only).	
 
function [v,alphabet,lsaprx,lscoef] = str2scob(s,p,alphabet,lscoef,data,RL) 
% Spatial Coding and/or Open Bigrams coding of character strings. 
% Optionally compute regression coefficients and data approximation 
% -------------------------------------------------------------------- 
%                 Input arguments: 
% s: cell/char array of m strings (m >= 1).  
% p: 1x2 vector; SC included if p(1)>0, OB included if p(2)>0. 
%  default ([]): p=[1,1], i.e. both SC and OB with power equal to 1. 
% data: optional data vector or matrix to be approximated (m-by-dw). 
% RL: if provided then the strings are encoded from right to left. 
% 
%                 Input or output arguments: 
% alphabet: optional string of lenght N (set to '' if unknown). 
% lscoef: optional least square approximation coefficients such that 
%    lsaprx=[ones(m,1),v]*lscoef; (set lscoef to [] if unknown) 
% 
%                 Output arguments: 
% v: table of numerical codes of all strings. The size of v is: 
%    m-by-N for SC, m-by-N*N for OB, or m-by-N(N+1) for SC + OB. 
% lsaprx: optional least square approximation of data on the v basis. 
%  
%                 Usage: 
% Exemple 1. Simple SCOB encoding 
% v=str2scob('word',[1/3 1],'a':'z'); 
%     result: 
% size(v) = [1 702] 
% 
% Exemple 2. SC encoding, LS coefficients & LS approximation of data 
% s{1}='caba'; s{2}='bab'; s{3}='bacaba'; s{4}='ababa'; data=[4;3;6;5];   
% p=[1/(6*log(2)),0];      % Note: this is a simple SC since p(2)=0 
% [v,alphabet,lsaprx,lscoef]=str2scob(s,p,'',[],data); 
%     result: 
% v = 0.7560    0.6065    0.8465 
%     0.7165    0.8931         0 
%     0.7649    0.8589    0.6065 
%     0.9037    0.7560         0 
% alphabet = 'abc' 
% lsaprx = [4.0000; 3.0000; 6.0000; 5.0000] 
% lscoef = [-20.4385; 18.8399; 11.1284; 4.0703] 
% 
% Exemple 3. Reuse of coefficients for generalization on new strings 
%     new input: 
% t{1}='baa'; t{2}='cabb'; 
% [v2,alphabet,aprx2]=str2scob(t,p,alphabet,lscoef); 
%     result: 
% v2 = 0.7899    0.8465         0 
%      0.7165    0.6686    0.8465 
% aprx2 = [3.8632; 3.9471] 
% --------------------------------------------------------------------- 
if ischar(s), s=cellstr(s); end 
m=length(s); 
if (nargin>5) && ~isempty(RL), RL=true; else RL=false; end 
if nargin<2 || length(p)<2, p=[1,1]; end 
scflag=false; obflag=false; 
if p(1)>0, scflag=true; end 
if p(2)>0, obflag=true; end 
if (nargin<3) || isempty(alphabet)            % Compute the alphabet 
    alphabet=''; 
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    for i=1:m 
        alphabet=unique(strcat(alphabet,s{i})); 
    end 
end 
N=length(alphabet);  
if scflag && obflag 
    v=zeros(m,(N+1)*N); 
else if scflag 
        v=zeros(m,N); 
    else if obflag 
            v=zeros(m,N*N); 
        else 
            error('No coding method selected') 
        end 
    end 
end 
sc=[]; ob=[]; 
for i=1:m                        % Compute codes of the m strings 
    si=s{i}; L=length(si); 
    if RL, si=fliplr(si); end 
    if scflag                    % Spatial Code or start-OB 
        sc=zeros(1,N);    
     for j=1:L                   
        c=strfind(alphabet,si(j)); 
        sc(1,c)=sc(1,c)+2^(-j); 
     end 
     sc=sc.^p(1); 
    end 
    if obflag                    % Open Bigrams coding 
        ob=zeros(N,N); 
     for j1=1:(L-1)               
        for j2=(j1+1):L 
            c1=strfind(alphabet,si(j1)); 
            c2=strfind(alphabet,si(j2)); 
            gap=j2-j1; 
            ob(c1,c2)=ob(c1,c2)+2^(-gap); 
        end 
     end 
     ob=ob.^p(2); ob=ob'; ob=ob(:)'; 
    end 
    v(i,:)=[sc,ob]; 
end 
if nargin<4, lscoef=[]; lsaprx=[]; end 
% Reuse given lscoef on the codes of new input strings 
if (nargin>=4) && ~isempty(lscoef) 
    lsaprx=[ones(m,1),v]*lscoef; 
end 
% Compute lscoef and lsaprx from given data to be approximated 
if (nargin>=5) && ~isempty(data) && isempty(lscoef) 
    [vh,vw]=size(v); [dh,dw]=size(data); 
    if vh~=dh, error('data size error'); end 
    lscoef=zeros(vw+1,dw); nzv=find(sum(v)>0); 
    x=pinv([ones(m,1),v(:,nzv)])*data; lsaprx=[ones(m,1),v(:,nzv)]*x; 
    lscoef([1;nzv(:)+1],:)=x; 
end 
end 
 
 
function st = scob2str(v,p,alphabet,RL) 
% Decoding of a SC or a SCOB numerical code of a character string 
% --------------------------------------------------------------- 
%              Input arguments: 
% v: SC or SCOB numerical code of a character string 
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% p: power parameter of the code, or only p(1). 
% alphabet: character string including all reference characters 
% RL: if provided then the output string is reversed. 
% 
%              Output argument: 
% st: character string resulting from the decoding of v 
% 
%              Usage: 
%    Preliminary encoding: 
% v=str2scob('word',[1/3 1],'a':'z'); 
%    result: 
% size(v) = [1 702] 
%    Decoding: 
% st=scob2str(v,1/3,'a':'z') 
%    result: 
% st = word 
% ---------------------------------------------------------------- 
if (nargin>3) && ~isempty(RL), RL=true; else RL=false; end 
N=length(alphabet); v=v(1:N); maxlen=-log2(eps);  
v(v>1)=1-eps; v(v<0)=0; v= v.^(1/p(1)); 
  st=''; nextk=1; 
  vmax=max(v,[],2); 
    while (vmax>=eps) && (nextk<=maxlen) 
      j=find(v==vmax,1,'first'); 
      ch=alphabet(j); 
      k=ceil(-log2(v(j)));  
      if abs(k-nextk)>1, break, end 
      st=strcat(st,ch); 
      k=min(k,nextk); 
      v(j)=v(j)-2^(-k); 
      vmax=max(v,[],2); 
      nextk=nextk+1; 
    end 
if RL, st=fliplr(st); end 
end 
 
	
Appendix	2	
	
Example	of	application	in	electrophysiological	data	analysis	(Rey	et	al.,	2013)	

	 As	 mentioned	 in	 the	 introduction,	 an	 application	 field	 of	 special	 interest	 of	

orthographic	 or	 phonological	 regressors	 is	 the	 analysis	 of	 cerebral	 event	 related	

potential	data	 (ERPs)	 in	various	psycholinguistic	 tasks	 (lexical	decision,	word	naming,	

…).	 The	 problem	 of	 the	 dimension	 of	 regressors	 is	 particularly	 critical	 in	 this	 area	

because	the	number	of	distinct	stimuli	used	in	ERP	experiments	is	usually	limited.	As	an	

example,	we	rapidly	summarize	the	work	of	Rey,	Madec,	Grainger,	and	Courrieu	(2013).	

These	authors	collected	ERPs	associated	 to	200	printed	French	 test	words,	4-8	 letters	

long,	in	a	speeded	word	naming	task,	using	averaged	ERPs	on	4	repetitions	per	word	for	
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48	French	participants.	The	EEG	activity	was	recorded	continuously	using	64	electrodes,	

positioned	on	the	scalp	according	to	the	10-10	International	System,	in	a	time	window	of	

-100	 ms	 to	 +500	 ms	 with	 respect	 to	 the	 stimulus	 onset.	 The	 between-participant	

consistency	 of	 ERPs,	 as	 measured	 by	 the	 ICC,	 allowed	 detecting	 latencies	 and	 scalp	

locations	 where	 systematic	 electrophysiological	 responses	 occurred.	 At	 these	

spatiotemporal	points,	 various	 regressors	were	applied	 (with	 test	 inflation	 control)	 to	

attempt	 to	 identify	 the	 nature	 of	 the	 involved	 processes.	 In	 particular,	 one	 used	 an	

orthographic	Spatial	Code	(1)	of	26	lowercase	letters	to	detect	orthographic	processing,	

a	phonological	Spatial	Code	(1)	of	35	French	phonemes	to	detect	phonological	encoding,	

and	the	usual	word	log-frequency	to	detect	a	lexical	level	processing.	Spatial	codes	were	

computed	using	a	p	parameter	value	of	about	1/3	in	order	to	obtain	non-negligible	code	

values	at	all	serial	positions.	However,	the	size	of	the	orthographic	code	matrix	was	200-

by-26,	 while	 the	 size	 of	 the	 phonological	 code	 matrix	 was	 200-by-35,	 which	 in	 both	

cases	resulted	in	substantial	regressor	overfitting	for	200	words.	So,	it	was	necessary	to	

lower	 the	 dimension	 of	 the	 regressors,	which	was	 done	 by	 replacing	 each	 of	 the	 two	

string	 code	matrices	 by	 its	 first	 three	 (left)	 singular	 vectors	 (Golub	&	Reinsch,	 1970).	

This	 provided	 acceptable	 three-dimensional	 regressors	 (i.e.	 200-by-3	matrices),	while	

preserving	a	maximum	part	of	each	original	regressor	variation	for	the	considered	200	

test	words.		

Fig.	 5	 shows	 the	 obtained	 time	 course	 of	 the	 detected	 processes.	 The	 first	

systematic	(significant	ICCs)	but	unidentified	processes	appeared	before	100	ms,	while	

the	beginning	of	an	orthographic	processing	was	detected	at	a	latency	of	about	148	ms	

on	a	right	occipital	area,	migrating	to	an	occipital	area	at	188	ms,	where	and	when	also	

appeared	 the	beginning	of	 a	phonological	 encoding.	The	phonological	 processing	 then	

migrated	to	a	left	occipital	area	at	about	238	ms,	and	was	followed	by	a	word-frequency	
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effect	beginning	at	about	246	ms,	also	on	a	left	occipital	area.	The	sequence	of	detected	

processes	seems	logical	in	a	word	naming	task,	and	the	scalp	locations	of	corresponding	

ERPs	 are	 consistent	with	 those	 observed	with	 other	methods	 in	 other	 tasks	 involving	

visual	character	processing	and	phonological	transcoding	(Madec	et	al.,	2016).	

	

	
	
	
Figure	5.	Time	course	of	the	between-participant	consistency	(ICC)	and	regressor	fits	

(R2/ICC),	for	orthographic,	phonological,	and	word	frequency	regressors	applied	to	

cerebral	Event	Related	Potentials	in	a	word-naming	task.	Non-significant	statistics	are	

set	to	zero	for	readability,	and	only	the	maximal	significant	values	among	64	electrodes	

are	displayed	for	each	latency	(after	Rey,	Madec,	Grainger,	&	Courrieu,	2013).	

	

	


