Space-based infrared interferometry to study exoplanetary atmospheres

Abstract : The quest for other habitable worlds and the search for life among them are major goals of modern astronomy. One way to make progress towards these goals is to obtain high-quality spectra of a large number of exoplanets over a broad range of wavelengths. While concepts currently investigated in the United States are focused on visible/NIR wavelengths, where the planets are probed in reflected light, a compelling alternative to characterize planetary atmospheres is the mid-infrared waveband (5-20~$\mu$m). Indeed, mid-infrared observations provide key information on the presence of an atmosphere, the surface conditions (e.g., temperature, pressure, habitability), and the atmospheric composition in important species such as H$_2$O, CO$_2$, O$_3$, CH$_4$, and N$_2$O. This information is essential to investigate the potential habitability of exoplanets and to make progress towards the search for life in the universe. Obtaining high-quality mid-infrared spectra of exoplanets from the ground is however extremely challenging due to the overwhelming brightness and turbulence of Earth's atmosphere. In this paper, we present a concept of space-based mid-infrared interferometer that can tackle this observing challenge and discuss the main technological developments required to launch such a sophisticated instrument.
Type de document :
Article dans une revue
Experimental Astronomy, springer Link, 2018
Liste complète des métadonnées
Contributeur : Marie-Paule Pomies <>
Soumis le : jeudi 18 janvier 2018 - 10:50:14
Dernière modification le : lundi 24 septembre 2018 - 16:04:03

Lien texte intégral





D. Defrère, A. Léger, O. Absil, C. Beichman, B. Biller, et al.. Space-based infrared interferometry to study exoplanetary atmospheres. Experimental Astronomy, springer Link, 2018. 〈hal-01687109〉



Consultations de la notice