Extending K-means to Preserve Spatial Connectivity

Abstract : Clustering is one of the most important steps in the data processing pipeline. Of all the clustering techniques, perhaps the most widely used technique is K-Means. However, K-Means does not necessarily result in clusters which are spatially connected and hence the technique remains unusable for several remote sensing, geoscience and geographic information science (GISci) data. In this article, we propose an extension of K-Means algorithm which results in spatially connected clusters. We empirically verify that this indeed is true and use the proposed algorithm to obtain most significant group of wa-terbodies mapped from multispectral image acquired by IRS LISS-III satellite.
Type de document :
Communication dans un congrès
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Jul 2018, Valencia, Spain. IEEE, 2018, 〈https://www.igarss2018.org/〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01686321
Contributeur : Sampriti Soor <>
Soumis le : mercredi 17 janvier 2018 - 11:31:35
Dernière modification le : mercredi 11 avril 2018 - 12:12:03

Fichier

KMeansGraph_IGARSS2018V4.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01686321, version 1

Citation

Sampriti Soor, Aditya Challa, Sravan Danda, B Daya Sagar, Laurent Najman. Extending K-means to Preserve Spatial Connectivity. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Jul 2018, Valencia, Spain. IEEE, 2018, 〈https://www.igarss2018.org/〉. 〈hal-01686321〉

Partager

Métriques

Consultations de la notice

139

Téléchargements de fichiers

55