E. Acar and M. Rais-rohani, Ensemble of metamodels with optimized weight factors, Structural and Multidisciplinary Optimization, vol.47, issue.10, pp.279-294, 2009.
DOI : 10.1017/CBO9780511543241

H. Akaike, A new look at the statistical model identification. Automatic Control, IEEE Transactions on, vol.19, issue.6, pp.716-723, 1974.

S. Arlot and C. A. , A survey of cross-validation procedures for model selection, Statistics Surveys, vol.4, issue.0, pp.40-79, 2010.
DOI : 10.1214/09-SS054

URL : https://hal.archives-ouvertes.fr/hal-00407906

P. Chen, J. Wang, and H. Lee, Model selection of svms using ga approach, Neural Networks Proceedings . 2004 IEEE International Joint Conference on, pp.2035-2040, 2004.

J. Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, pp.85-100, 1977.
DOI : 10.1007/BFb0086566

B. Efron and R. Tibshirani, An introduction to the boot- strap Forrester AI Recent advances in surrogate-based optimization, Keane AJ Progress in Aerospace Sciences, vol.45, issue.1, pp.50-79, 1993.

J. Friedman, Multivariate adaptive regression splines. The annals of statistics pp, pp.1-67, 1991.

T. Goel, R. Haftka, W. Shyy, and N. Queipo, Ensemble of surrogates, Structural and Multidisciplinary Optimization, vol.47, issue.4, pp.199-216, 2007.
DOI : 10.1007/s00158-006-0051-9

D. Gorissen, T. Dhaene, and F. Turck, Evolutionary model type selection for global surrogate modeling, The Journal of Machine Learning Research, vol.10, pp.2039-2078, 2009.

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning, 2009.

G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning Springer Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection, Proceedings of the 14th International Joint Conference on Artificial Intelligence - IJCAI'95, pp.1137-1143, 2013.

P. Lancaster and K. Salkauskas, Surfaces generated by moving least squares methods, Mathematics of Computation, vol.37, issue.155, pp.141-158, 1981.
DOI : 10.1090/S0025-5718-1981-0616367-1

URL : http://www.ams.org/mcom/1981-37-155/S0025-5718-1981-0616367-1/S0025-5718-1981-0616367-1.pdf

S. Lessmann, R. Stahlbock, and S. Crone, Genetic algorithms for support vector machine model selection, The 2006 IEEE International Joint Conference on Neural Network Proceedings, IEEE, pp.3063-3069, 2006.

G. Matheron, Principles of geostatistics, Economic Geology, vol.58, issue.8, pp.1246-1266, 1963.
DOI : 10.2113/gsecongeo.58.8.1246

M. Mckay, R. Beckman, and W. Conover, Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.21, issue.2, pp.239-245, 1979.

J. Müller and R. Piché, Mixture surrogate models based on Dempster-Shafer theory for global optimization problems, Journal of Global Optimization, vol.5, issue.1, pp.79-104, 2011.
DOI : 10.1115/1.1906264

H. Nguyen, I. Couckuyt, L. Knockaert, T. Dhaene, D. Gorissen et al., An alternative approach to avoid overfitting for surrogate models, Proceedings of the 2011 Winter Simulation Conference (WSC), pp.2760-2771, 2011.
DOI : 10.1109/WSC.2011.6147981

URL : https://biblio.ugent.be/publication/2029398/file/2029402.pdf

N. Queipo, R. Haftka, W. Shyy, T. Goel, R. Vaidyanathan et al., Surrogate-based analysis and optimization, Progress in aerospace sciences, pp.1-28, 2005.
DOI : 10.1016/j.paerosci.2005.02.001

URL : http://hdl.handle.net/2060/20050186653

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

L. Shi, R. Yang, and P. Zhu, A method for selecting surrogate models in crashworthiness optimization, Structural and Multidisciplinary Optimization, vol.223, issue.5, pp.159-170, 2012.
DOI : 10.1243/09544070JAUTO1045

A. Smola and B. Schlkopf, A tutorial on support vector regression, Statistics and Computing, vol.14, issue.3, pp.199-222, 2004.
DOI : 10.1023/B:STCO.0000035301.49549.88

M. Stone, Cross-validatory choice and assessment of statistical predictions, Journal of the Royal Statistical Society Series B, pp.111-147, 1974.

S. Tomioka, S. Nisiyama, and T. Enoto, Nonlinear Least Square Regression by Adaptive Domain Method With Multiple Genetic Algorithms, IEEE Transactions on Evolutionary Computation, vol.11, issue.1, pp.1-16, 2007.
DOI : 10.1109/TEVC.2006.876363

URL : https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/20117/1/TEC11-1.pdf

F. Viana, R. Haftka, and V. Steffen, Multiple surrogates: how cross-validation errors can help us to obtain the best predictor, Structural and Multidisciplinary Optimization, vol.47, issue.4, pp.439-457, 2009.
DOI : 10.1007/s00158-008-0338-0

F. Viana, G. Venter, and V. Balabanov, An algorithm for fast optimal Latin hypercube design of experiments, International Journal for Numerical Methods in Engineering, vol.49, issue.1, pp.135-156, 2010.
DOI : 10.1007/s00158-008-0338-0

D. Watson, Computing the n-dimensional delaunay tessellation with application to voronoi polytopes. The computer journal, pp.167-172, 1981.

L. Zerpa, N. Queipo, S. Pintos, and J. Salager, An optimization methodology of alkaline???surfactant???polymer flooding processes using field scale numerical simulation and multiple surrogates, Journal of Petroleum Science and Engineering, vol.47, issue.3-4, pp.197-208, 2005.
DOI : 10.1016/j.petrol.2005.03.002

C. Zhang, H. Shao, and Y. Li, Particle swarm optimisation for evolving artificial neural network, IEEE International Conference on, pp.2487-2490, 2000.

X. Zhou and T. Jiang, Metamodel selection based on stepwise regression, Structural and Multidisciplinary Optimization, vol.29, issue.2, pp.641-657, 2016.
DOI : 10.1002/qre.1298

X. Zhou, Y. Ma, and X. Li, Ensemble of surrogates with recursive arithmetic average, Structural and Multidisciplinary Optimization, vol.47, issue.5, pp.651-671, 2011.
DOI : 10.1016/j.petrol.2005.03.002