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Abstract: The combination of aerial images acquired in the visible and near infrared spectral ranges is
particularly relevant for agricultural and environmental survey. In unmanned aerial vehicle (UAV) imagery,
such a combination can be achieved using a set of several embedded cameras mounted close to each other,
followed by an image registration step. However, due to the different nature of source images, usual
registration techniques based on feature point matching are limited when dealing with blended vegetation and
bare soil patterns. Here, another approach is proposed based on image spatial frequency analysis. This
approach, which relies on the Fourier-Mellin transform, has been adapted to homographic registration and
distortion issues. It has been successfully tested on various aerial image sets, and has proved to be
particularly robust and accurate, providing a registration error below 0.3 pixels in most cases.

Keywords: multimodal image registration; Fourier-Mellin transform; homographic transformation; near
infrared; NDVI

Introduction

In the context of aerial imagery for agricultural and environmental monitoring purposes, the acquisition of radiance data
in the near-infrared domain is particularly important. This is due to the spectral response of green vegetation material,
which is characterized by a very sharp transition between low reflectance in the visible domain (typically 10 to 20%), and
high reflectance in the near-infrared domain (typically 50 to 80%). Indeed, since the early times of remote sensing (RS),
observation satellites (such as Landsat and SPOT) have been equipped with multi-spectral sensors including a near-infrared
band (typically around 800 nm) associated with visible ones.

One of the most popular usages of this multi-spectral combination is the computation of the normalized difference
vegetation index or NDVI, introduced by Rouse et al (1973). NDVI is defined as the ratio (NIR-R)/(NIR+R), where NIR
and R are respectively the near-infrared and red bands. As far as the radiance measurements are corrected for lighting and
atmospheric effects (reflectance correction), the NDVI can be considered as a quantitative index for crop assessment
(Myneni et al, 1995). In other cases, it remains a robust tool for the discrimination of vegetation areas in various lighting
conditions (Torres-Sanchez et al, 2013; Rabatel et al, 2014).

Other vegetation indices have also been proposed in various soil and vegetation conditions, with respect to their
relationship to agronomic indices such as biomass and LAI (leaf area index) (Huete et al, 1997; Jindong et al, 2007;
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Zhengwei et al, 2009). However, it is important to notice that most of these indices (such as ratio normalized difference
vegetation index (RNDVI), soil-adjusted vegetation index (SAVI) and transformed normalized difference vegetation index
(TNDVI) ) rely on the same red and near-infrared bands.

In satellite and airborne technologies, image acquisition is usually based on push-broom sensors, combined with the
regular motion of the vehicle to build 2D images. Separate spectral bands can thus be collected using parallel line sensors
(Petrie, 2005). It is quite different with UAV, for which the cost of an accurate inertial unit to control the motion regularity
is rarely affordable. Therefore UAV imagery generally relies on 2D image sensors. While Color Filter Arrays (CFA) are
nearly universally employed for standard color cameras, CFA including a near-infrared band are presently not available. As
an alternative, some camera manufacturers have proposed multi-CCD devices including a near-infrared channel, e.g. the
MS-4100 (Geospatial Systems Inc., West Henrietta, NY, USA), or the AD-080 (JAl AS, Copenhagen, Denmark).
However, such devices are characterized by high cost and limited image resolution.

On the other hand, UAV applications to agricultural monitoring are currently increasing dramatically, thanks to their
specific advantages compared to aerial or satellite approaches: ease of use, flexibility, low cost, and very short revisit time.
Also, the low flight elevation of UAV provides now access to imagery with centimetric spatial resolution, opening the door
to new kinds of applications (e.g. plant counting or adventice detection). However, such applications require low cost
acquisition devices to fit with the overall system cost, with high image resolution (typically more than 10 million pixels) in
order to compensate for their limited flight duration (low energy autonomy). As a consequence, despite increasing demand,
there is still no commercial multi-spectral solution that entirely fulfills the UAV requirements, i.e. combining low cost, low
footprint, low weight and high image resolution. Operators usually implement general use still color cameras, either
accepting limitation to standard color acquisition, or trying to adapt these cameras to their particular needs.

Hunt et al, (2010) proposed the use of a standard color camera where the internal near-infrared-blocking has been
removed and replaced by an external red-light-blocking filter, in order to get the G, B and NIR bands instead of R,G,B.
Similarly, Rabatel et al (2014) obtained R and NIR bands using an external red long-pass filter and a linear combination of
the resulting raw channels. However, in both cases, the original color image of the scene is no longer available, and the
spectral quality of the bands obtained is limited.

An alternative solution consists in coupling two still cameras, one providing a standard color image, the other being
devoted to the near-infrared band. For this purpose, the internal near-infrared-blocking filter of the second camera is
replaced with an external near-infrared band-pass filter (Lebourgeois et al, 2008). Despite the payload increase due to the
implementation of two cameras, this approach remains particularly attractive, as being able to provide a full four-channel
multi-spectral image including R,G, B and NIR bands. This kind of solution is also currently proposed by some camera
manufacturers or UAV service companies involved in agricultural survey applications. They propose multi-spectral
cameras based on 4 to 12 image sensors mounted close to each other, at the price of lower image resolution (Micro-MCA,
Tetracam Inc. Chatworth, CA, US; Agrosensor, Airinov, Paris, France). However, multi-camera approaches require a post-
processing step to accurately establish the relationship between the pixel co-ordinates of every camera. As detailed in the
following, this processing step, known as image registration, remains a challenge in the case of near-infrared and visible
image pairs (Dare, 2008; Hunt et al, 2010).

Indeed, image registration has been widely studied in the literature. Basically, it consists in finding local
correspondences between two images, in order to identify an image transformation model. According to Zitova and Flusser
(2003), there are two main approaches to find these local correspondences: i) feature-based methods, which search for
salient characteristics in both images (such as edges, lines and corners) and then try to match them in a separate matching
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step ii) area-based methods, which directly attempt to estimate the correspondence between predefined windows (or the
entire images) using integrative characteristics (such as correlation, Fourier spectrum and mutual information).

The choice between these two approaches mainly depends on the nature of the images. For unimodal registration (i.e.
when images are obtained from the same sensor with different viewpoints), very efficient algorithms like the scale invariant
feature transform (SIFT) (Lowe, 1999), or the more recent speeded up robust features (SURF) (Bay et al, 2008), have now
definitely established the pre-eminence of the feature-based methods: these algorithms are known for their robustness with
respect to scale and luminosity changes between images, and are widely used in image mosaicking, photogrammetry,
stitching, or mobile robotics.

On the other hand, multimodal registration deals with the registration of images captured from sensors with different
characteristics. A typical area is medical imagery, where images are captured from sensors using very different physical
principles (magnetic resonance, ultrasonic echoes, positron emission tomography (PET) ) can be combined (Oliveira and
Tavares, 2014). Moreover, multi-temporal image acquisition and non-rigid transformations often add supplementary issues.
Therefore, multimodal image registration remains an open field for research. While some authors have attempted to adapt
feature point methods (Sargent et al, 2009; Zhi et al, 2009), area-based methods associated with various similarity measures
have been widely investigated. Mutual information (MI), a measure derived from joint entropy computation, is popularly
used in medical imagery (Pluim et al, 2003). It can be combined with variational approaches, well adapted to non-rigid

transformations (Hermosillo et al, 2002).

Registration of visible and NIR images is a kind of multimodal registration. By the way, in the case of vegetation
scenes, the feature point matching is no longer reliable, due to contrast inversion in the pixel digital counts (see next section
for more detail). Figure 1 shows an illustration of this concern, when using a standard SIFT matching tool (VLFeat,
available at www.vlfeat.org/applications/sift-mosaic-code.html; last accessed: 29 April 2015) on a typical field scene.

Clearly, matching links are limited to bare soil areas, indicating a problem when vegetation is mixed with other material.

Figure 1. Example of SIFT point matching on a wheat crop scene.
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Top: original visible and NIR images. Bottom: matching result using VLFeat SIFT tool

(www.vlfeat.org/applications/sift-mosaic-code.html)

Some authors have proposed a SIFT descriptor variant where the sign of image gradients is not taken into account
(Firmenich et al, 2011). However the corresponding improvement did not appear to be sufficient for high resolution aerial

images.

A more robust solution could be to investigate some of the numerous multimodal registration algorithms mentioned above.
However, the complexity of such algorithms, mainly driven by medical imagery, is not well adapted to the specific context
of UAV imagery, for which the availability of user friendly and fully automated software tools is a priority. Indeed, such a
requirement for user-friendly tools is currently met in the field of photogrammetry (mosaicking and 3D reconstruction
based on unimodal registration): numerous commercial or open source tools based on SIFT point matching (Photoscan’,
ERDAS Imagine?, MicMac®, VisualSFM?) are able to process automatically hundreds of UAV images in a couple of hours.
Therefore, most UAV users dealing with multi-spectral image registration still try to use the same photogrammetric tools
for multimodal registration as well either by:

i) registering directly the different bands using the embedded feature point registration algorithm with more or

less success and accuracy depending on the image content

or by:

i) computing a geo-referenced and ortho-rectified mosaic for both sets of images and then overlaying them

based on their geographic co-ordinates, leading to a very limited registration quality.

The objective of the present paper is to propose an intermediate approach for the registration of visible and near-infrared
images in the context of UAV imagery, able to provide robust and high quality registration of vegetation scenes while
remaining fast and fully automated. The proposed approach involves spatial frequency analysis through the Fourier-Mellin
transform (FMT). FMT is a well-known tool that has been widely used for image registration before the emergence of the
SIFT algorithm (Reddy and Chatterji. 1996; Marcel et al, 1997). Because Fourier analysis integrates spatially characteristic
features over the whole image, it is robust to contrast inversion (see figure 3), and efficiently registers images of very
different kinds. Recently, Jaud et al (2013), for instance, have successfully used the FMT to match radar maps with aerial

images in the visible domain.

As a counterpart, the main drawback of the FMT approach is that it is only applicable to register images linked through
a transformation limited to translation, rotation and scale change. However, as shown further, it remains usable in aerial
imaging, as long as the distance between the cameras is negligible compared to the scene distance, and the camera optical
axis is nearly vertical. For this purpose, the initial method has been adapted to large size images and homographic
transformations, using an iterative implementation based on image partitioning. Lens distortion aspects have been taken

into account as well.

! Photoscan, Agisoft, St. Petersburg, Russia (www.agisoft.com)

2 ERDAS Imagine, GEOSYSTEMS France SARL, Montigny-le-Bretonneux, France. (www.geosystems.fr)
¥ MicMac, IGN, France (http:/logiciels.ign.fr/?-Micmac,3-)

* VisualSFM (http://ccwu.me/vsfm/)
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Theory of operation

Rotation-translation-scale identification

This sub-section addresses the problem of registering images that are linked by a similarity transformation, i.e. a
transformation that exclusively includes translation, rotation and homothetic scaling. Extension to homographic
transformation will be considered further.

Translation identification by Fourier Transform

Consider two grey-level images 7;(x,y) and I»(x,y) where I, is an image obtained from 7, through a translation (T, 7).
Formally, it can be written:

I, ) =1,(x, ) *o(T, = x,T, - y) @
where * is the convolution operator and &(7,-x, 7,-y) is the Dirac distribution centered on (7., T}).

The 2D Fourier Transforms (FT) of the two images are thus linked by the relation:

F,(u,v) = F,(u, V).e—Zm(TX.WTy,V) )

F(u,v) and Fy(u,v) only differ through a complex multiplicative term which is the FT of the Dirac distribution & (7,-x,
Ty-y). Thus, &(T,-x, T,-y) can be directly recovered through the inverse Fourier transform of the ratio Fa(u,v)/ F;(u,v), i.e.
by computing the image:

ImT(x,y)=FT* (M) =FT? (e_zm(r""”y'v)) =0(T. —x,T,— ) (3)
Fy(u,v) ’

As illustrated in Figure 2, the computed image ImT(x,y) appears as a black image with a unique amplitude peak at (7,
T,). The position of this peak can be retrieved by searching for the maximum amplitude in the image, and completely
identifies the translation between I; and 1.

Figure 2. Example of translation identification.
From left to right: images I; & I, and translation peak (2D & 3D representation)
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Notice that Equation (2) also indicates that F;u,v) and F,(u,v) have the same modulus, as the modulus of the
multiplicative term e /™ ™ * ™ is equal to one. This property will be used further.

Fourier Transform versus Feature Point in vegetation scenes

As stated above, feature point approaches like SIFT are largely used for registering images of the same nature. Now, let
consider visible and NIR images of a vegetation scene. As already mentioned, in the NIR band, vegetation reflects almost
all the incident light. Thus, vegetation appears much brighter than bare soil in the NIR image, while it will often appear
darker in the visible one. A direct consequence, illustrated in Figure 3, is that the direction of grey level gradients will be
inverted from one image to the other at the boundaries between vegetation and soil, while remaining the same within one

kind of object.

Visible NIR
Figure 3. Contrast inversion in a vegetation scene.

SIFT descriptors are based on gradient direction histograms collected over a large neighborhood around the feature
point (16x16 pixels). If the vegetation and soil are so blended that most feature point neighborhoods include both of them,
gradient inversions will occur within these neighborhoods, and the descriptors will not match between visible and NIR
images.

On the other side, the FT identification approach proceeds by enhancing the spatial frequency shifts that are coherent all
over the image area (i.e. that correspond to the same translation). In that sense, it accumulates area-extended information.
Within a given kind of object (vegetation or soil), the Fourier transform F,(u,v) in the second image will be affected by a
multiplicative factor compared to F,;(u,v), due to a different brightness, but the phase shift information will be preserved.
Finally, both kinds of objects will contribute to the translation identification peak, proportionally to their area. Only edges
between them will introduce some perturbation in the Fourier spectra, but this edge contribution will remain limited
compared to the image area (1D versus 2D accumulation), and should not jeopardize the translation identification.

Rotation and scale identification by Fourier-Mellin Transform

The Fourier-Mellin Transform (FMT) was first introduced by Casasent and Psaltis (1977) in the context of optical
image processing. The idea was to combine the Fourier Transform and the Mellin Transform (MT, which can be
assimilated to a Fourier transform after logarithmic co-ordinate scaling), in order to get both rotation and scaling
invariance. FT and MT are known to have their modulus invariant respectively to translation and scale. By considering a
polar representation f(r,0) of an image and by applying respectively FT on the 6 axis and MT on the r axis, the FMT is
obtained, which is formally defined as:
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The FMT is an invertible transform. Its module is invariant to 0 shift and to r scaling, i.e:
V(a,b) e R® |FMT(f(ar, 6+b)|=|[FMT(f(r,0)| =|Mf(k,iv)| )

FMT was initially designed to compare images that differ by scaling and rotation, looking at their FMT module, but not to
identify this difference. In a registration context, it is important to notice that FMT can be assimilated to the TF of a log-

polar representation of the image, as illustrated in Figure 4.

Mellin Transform on r

[ == | Log

FT

Log-Polar representation

Fourier Transform on 6

Figure 4. The Fourier-Mellin Transform scheme

Now, consider two images /;(r, 6) and I,(r, 6) in polar representation, which only differ by a centered rotation 46and a
scaling factor k. When considering the log-polar representation, the rotation corresponds to an image shift equal to A&along
the @ axis, and the scaling factor k£ corresponds to an image shift equal to Log(k) along the Log r axis. So the two log-polar
images will only differ by a 2D translation (46, Log(k)). In that sense, the same approach that was described for translation
identification can be applied: it consists in computing the ratio of the FT of the two log-polar representations, i.e. the ratio

of the FMT of images /;(r, 6) and I,(r, 6), and then in searching for the maximum of its inverse Fourier Transform.

Notice that this approach implicitly supposes that the image scaling is isotropic, i.e. that the scaling factor £ is independent

of the angle & (in other words, the same scaling factor is applied on x and y axes in the original images).

General scheme

Comparing the polar representations of two images through FMT supposes that these polar representations refer to the

same image center, which is not the case when a translation is involved. Fortunately, original images can be replaced by the
modulus of their Fourier transform, centered on frequency (0,0). As seen above, the FT modulus is invariant to translation.
On the other hand, it preserves rotation and scaling information: a rotation #and a scaling factor & applied to a given image

generate a rotation ¢and a scaling factor 1/k of its FT spectrum.
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According to this modification, already proposed by Casasent and Psaltis (1977), the general computing scheme illustrated
in Figure 5 is obtained, allowing recovering completely the similarity transform between two images: rotation and scaling
factor are recovered first using the FMT of the FT modulus, and are used to reverse rotate and scale the second image so

that only the translation is remaining. This translation is then recovered.

— Translation (Tx, Ty) |
—— | Image |, > Rotation 6,, — Image |,

Scaling k,, 3

~——1 | FT modulus FT modulus
FT |

[FT(1y| | LTI

l - i —

Log polar Log polar '

transform transform |

(Logr, ) | . (LegR %) | - FMT

|
N W/

FT El

— v

Log-pola-r translation identification
(scale factor 1/k,,, angle 6,,)

Rescaling and rotation of 12
| (scale factor 1/k,,, angle -0,,)

W

‘ Image I,* |
Image translation identification
(Tx, Ty)

Figure 5. General scheme for rotation, scaling and translation identification

Homographic registration of large size images

Homographic transformation

Homographic transformation is of primary importance in computer vision calibration issues, because it is directly related to
the perspective projection associated with image acquisition. Consider two cameras observing the same planar scene, and
providing respectively images 7,(x,y) and I»(x,y) of this scene (Figure 6). It can be shown that the co-ordinates (x;,y;) and

(x2,y2) of the same point in both images are related by the homographic relation:
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u.x, X,
uy, |=H| » (6)
u 1

where H is a 3x3 matrix, and « is a non-null scalar.

Taking the left member of equation (6), (x,,y,) co-ordinates can be recovered by dividing the two first vector components
by the 3rd one. The actual value of u has no importance, which means that the matrix H can be defined up to a
multiplicative factor.

>

;)

<

“y

Image 1 . Image 2
Figure 6. Example of homographic transformation

Homographic transformation versus similarity transformation

Because the homographic matrix can be defined up to a scale factor, consider the following equations, where H is
constrained to have its term H;; equal to 1:

RSll RSlZ X
H=|RSy RS, T, )
g, e, 1

Now, consider the matrix S obtained from H by setting & and &, equal to zero:

RSll RSlZ Tr
S=|RS, RS, T, ®)
0o o0 1

In that case, the u term of equation (6) is always equal to one, so that S corresponds to a simple similarity, transforming
(x5, v1) co-ordinates in (x,, y2)s co-ordinates defined as:

MR
=RS. + 9)
y2 S yl Ty

where RS= [RS;] is a rotation and scaling 2D sub-matrix, and (7., T,) is a translation vector.
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Thus, applying the homographic transformation H to (x;,y,):
(x2¥2) = (x2y2)s lu=(x2y)s (L + &.x; + &.)) (10)

As a conclusion, a homographic transformation can be considered as an extension of a similarity transformation where a

supplementary scale factor 1/u = 1/(1 + .x; + &.y;) is applied, which depends on the position (x,;, y,) in the initial image.

Application to homographic transformation identification

At this stage, some hypotheses must be introduced concerning the homographic transformation to identify:

- The values of terms &, and &, are small compared to 1, which means that the homographic transformation is close
to a similarity transformation.

- The similarity scaling factor is nearly isotropic (same homothetic factors on x and y axes).

- The image translation is small compared to the image size, in terms of pixels.

Fortunately, all these hypotheses are compatible with usual aerial imaging. More precisely, the first two hypotheses are
both related to the angle between the camera optical axis and the vertical. The more the camera orientation will be close to
the nadir, the more they will be matched. Of course, it also requires that the viewed scene is nearly planar (compared to the
camera-scene distance), otherwise homographic transformations are not applicable at all. Once again, it will be usually
verified except in the case of very low flight altitude or very rough or mountainous terrain. The last hypothesis about
translation amplitude will be usually matched in a multi-spectral acquisition context where coupled cameras are mounted
close to each other.

The first hypothesis &, <<1 and &, <<1 implies that the homographic factor 1/(1 + &.x; + &.y;) Wwill be slowly varying
across the images, so that simple similarity transformations can be considered over large image sub-portions. The second
isotropic hypothesis implies that in such sub-portions, the rotation-translation-scale identification scheme described earlier
can be applied. Finally, the hypothesis on limited translation amplitude means that matching sub-portions between the two
images can be easily defined.

As a consequence, the following scheme can be implemented for complete large size image registration (Figure 7):

- Image partitioning in a set of p small rectangular regions Ri

- Rotation-Translation-Scale identification on each region Ri

- Definition of a set of p matching points (C;;, C,), where C;; and C,; are respectively the center of region Ri in
image /;, and the corresponding point in image /, using the Rotation-Translation-Scale transformation model obtained for
this region Ri.

- Identification of the global homographic matrix H from the set of points (C;;, C5).
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Figure 7. Large size image registration scheme

2.3. Distortion correction

Image acquisition by means of a still camera does not match exactly the projective projection model mentioned above.
The image projection on the plane CCD sensor through the camera lens induces a non-linear deformation referred as “lens
distortion”. In most cases, lens distortion can be modeled as a radial distortion, where the (x* y*) co-ordinates on the

sensor can be obtained from the theoretical perspective projection model co-ordinates (x,y) as follows:

ri=r+ar’ vayrt +ova,r” (11)

where » and r* are respectively the radius of the polar representation of initial and corrected co-ordinates (x, y) and (x*,

y*), centered on the optical axis of the camera.

Thus, radial distortion can be identified using n+2 parameters:
*  cx, cy: optical center co-ordinates on the CDD sensor (pixels)

. ay, ..., a,. distortion coefficients

In order to identify both camera distortions and to refine homographic coefficients accordingly, a set of parameters P =
(D4, H, D,) is considered, which represent respectively the distortion parameters for image /;, the homographic matrix and

the distortion parameters for image 1,. A cost function involving all the p matching points (C;;, C,;) is then defined as:

CF(P)=>_" (CEst,, —C,)’ (12)

where CEst,; is the estimated position in image 7, computed from C;; using the set of parameters P (Figure 8):

r D z : H . D :

le Clr' i
Remove Apply
image 1 hor:gpr': . image 2
distorsion graphy distorsion

Figure 8. Position estimation on image 7, from image /;

The cost function CF(P) is minimized iteratively using the Gauss-Newton method, starting from the initial homographic

matrix H issued from the previous identification step.
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3. Material and methods
Image acquisition

Aerial images of wheat were acquired using a couple of Sigma DP2 Merril still cameras (Sigma, Kawasaki, Japan)
mounted on a UAV AR 200 (AirRobot® GmbH, Arnsberg, Germany) (see Figure 9). The images were acquired in
Arganda, Madrid, May 2013 (40.315421° N, 3.483774 E). Late wheat was specially prepared to be at early stage at this
period, for experimentation purposes. One of the cameras was modified for NIR acquisition, i.e. internal NIR blocking
filter was removed and replaced by an external NIR band-pass filter. Image size was 4704x3136 pixels. Two kinds of flight
have been considered: 60 m and 120 m altitudes, leading respectively to spatial resolutions of 10 mm per pixel and 20 mm

per pixel.

Figure 9. Two Sigma DP2 Merril cameras mounted on a UAV

Images were shot in manual exposure mode with the following parameters:

- Speed 1/800, aperture F5.0, 100 ISO for visible images

- Speed 1/800, aperture F7.1, 100 I1SO for NIR images

Images were then converted from raw image format X3F to TIFF Adobe RGB 16 bits, using Sigma proprietary software
(SIGMA Photo Pro 5.0). Green channel of the visible TIFF image and red channel of the near infrared TIFF image were
respectively selected as 16 bits grey level images for registration input.

For practical reasons, all image pairs are referred to in the following according to the original names of images /; and
L. As an example, SDIM0861_C2__SDIMO0989_C1 indicates the 2™ channel (green) of the visible image SDIMO0861.tif
and the 1% channel (red) of the NIR image SDIMO0989.tif.

Image registration

All the registration processes have been implemented according to the theory of operation described above with the
following features:

- Before each image matching, the NIR image was rotated by 180° (to compensate for the opposite mounting of the
cameras as shown in Figure 9).

- Before every Fourier transform, a hanning window (Blackman et Tukey, 1959) was applied to both images, in

order to remove image edge artefacts.
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- Before every inverse Fourier transform for maximum peak search, a Gaussian filtering envelop was introduced in
order to smooth the peak and allow its sub-pixel location.

- For every peak search, the peak amplitude was compared to the average amplitude of the whole spectrum, and
rejected if the ratio was lower than a threshold (set equal to 10).

- In order to overcome sub-image identification failures due to large initial translations in the images (typically more
than 100 pixels), the identification process was organized in three steps:

i) an initial FMT registration applied to entire images, after reducing them by a factor of 10, leading to a rough
similarity transformation,
ii) an initial partitioning in sub-regions of 600x600 pixels, leading to a first set of about 40 matching points,
according to the procedure described in the previous section
iii) a second partitioning in sub-regions of 200x200 pixels, leading to a second set of about 300 to 340
matching points, according to the procedure described in the previous section
In the 2" and 3" steps, the partitioning was made according to the transformation model obtained in the previous
step: centers of sub-regions in image 7; were regularly distributed, and centers of the sub-regions in image 7,, were defined
as the transformation of centers of the sub-regions in image 7.

- In the 2" and 3" steps, the homographic matrix was computed from the set of matching points using a RANSAC
algorithm (Fischler and Bolles, 1981) with 5000 iterations and an error tolerance of respectively 20 pixels on the 2nd step
and 5 pixels on the 3" step. Images with a number of inliers less than 50% of the number of matching points were rejected.

- The distortion model was limited to one distortion parameter (n=1), and a loop of 10 iterations of the Gauss-
Newton minimization was systematically applied.

As the final result of the whole process, a complete transformation model P = (D;, H, D,) was provided (see previous
section). This model was then used to geometrically transform the original NIR image, so that it can be exactly matched
with the visible one as a new layer.

CUDA implementation

All computations related to Fourier transform and spatial spectrum analyses have been implemented on NVIDIA® GPU
using CUDA (Compute Unified Device Architecture) C++ extension language, and the FFT computation library provided
in the CUDA package.

Results and discussion

The procedure described above has been successfully applied to the two sets of wheat crop images: 39 image pairs with
10 mm spatial resolution (60 m elevation), and 20 image couples with 20 mm spatial resolution (120 m elevation). No
parameter tuning has been made from one set to the other, or within a given set. For illustration, the detailed results
obtained on a typical pair of visible and NIR images are first presented. More general results for all image pairs are then
provided. Finally, a different example with a stronger homographic transformation is also presented.

Detailed results for one image pair
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The first image pair of the 10 mm resolution image set is considered here, referred to as
SDIM0861_C2__SDIM0989_C1, in order to examine some details of the registration process.

Matching point determination

The first fundamental concern in applying the Fourier-Mellin approach for registration was its ability to deal with
images of different nature, i.e. visible and near-infrared. As an illustration, Figure 10 shows an example of translation
identification, on a pair of 200x200 windows extracted from the pair under study (after transforming the NIR image
according to the results of registration, in order to limit this example to translation). The translation peak is much less sharp
than in Figure 1, but is still usable for a robust identification.

Visible image NIR image Translation peak (3D view)

Figure 10. Example of translation identification between visible and NIR images

As explained above, the identification procedure has been applied in three steps. In the second step, the image
partitioning in 40 windows of size 600x600 has allowed determination of a first homographic matrix H, with translation
terms (T, T,) = (133.267, -14.3521) (pixels). Large translations limit the number of windows in the visible image that have
a counterpart entirely included in the NIR image. In the present case, 308 matching windows of size 200x200 have been
determined for the third step.

Among those 308 matching windows, no identification procedure has failed, leading to 308 pairs of matching points.
Figure 11 shows the repartition of these matching points in the visible image, as well as the disparity of their co-ordinate
translations in the NIR image. It visually confirms that the transformation between visible and NIR images is not a simple
translation, and that the radial distortions play an important part in it.
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Figure 11. Transformation disparity for image pair SDIM0861_C2__SDIM0989_C1.
Segments indicate the 308 difference vectors (T, — T)c) in the visible image, where T}, is the translation vector
between matching point co-ordinates in NIR and visible images, and T,c is the T, value closest to the image center.

Segments are magnified (x10) for visibility.

Transformation model computation

In the 3" step, using the 308 pairs of matching points, a new homographic matrix has been computed by the RANSAC
algorithm with a 5 pixel tolerance, giving no outliers. Then the distortion parameters have been adjusted as described
earlier.

For each couple (C;;, C), where C;; and C,; are matching points respectively in visible and NIR images, the error of a
transformation model TM has been defined as the distance in the NIR image between C5; and its estimated position CEst,; =
TM(C},). In the present case, the following error figures have been obtained:

Number of links RMS error Maximal error
Step 2 (200x200 windows) 308 1.2626 3.1953
Step 3 (distortion adjustment) 308 0.205765 1.01606

As expected from Figure 11, the distortion adjustment dramatically reduces the root mean square (RMS) error. In
Figure 12, the residual error for every matching point has been plotted as a function of the distance to the image center. It
shows that the largest errors only concern a few points at the borders of the image, while for others the error remains below
0.4 pixels.
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Figure 12. Final registration error repartition for image pair SDIM0861_C2__SDIM0989_C1

The final transformation parameters for the image pair SDIM0861_C2_ SDIM0989_C1 are given below:

0.988860 - 0.000585 141.303881
H=| -0.005695 0.997577 - 8.8490590
-3.60856010° -2.03639810°7 1

Distortion parameters (center: cx, cy ; radial distortion: 1 + a;.r2 + a>.r” + a;5./°):
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Visible image : cx =2331.56 cy =1593.41 a,;=-5.47682 10° ; a2=a3=0
NIR image : cx =2351.76 cy =1568 a,=-5.69993 10° ; a2=a3=0

As expected, the & and &, values of the homographic matrix are very low (less than 10%). However, according to the
image size, they lead to a scale variation of about 1.7 % from top-left to bottom-right of the image.

Finally, Figure 13 shows a general view of the original images, as well as the registration result in false color (NIR, R,
B), on which the translation between images can be observed. Detail in false color shows the quality of registration,

compatible with NDVI computation at 10 mm spatial resolution.

Figure 13. Registration of pair SDIM0861-C2__SDIM0989_C1. Top: original images (visible + NIR). Bottom: false
color (NIR, R, G) representation of the registration result (general view and detail)

Comparison with a feature-based approach

For comparison purposes, the registration result obtained for the same image pair with a commercial registration tool is
presented here: Imagine AutoSync (ERDAS Imagine), which is based on feature point matching.

Figure 14 shows the matching points that have been retained by the software. As already discussed, most of them are
concentrated in homogeneous zones in terms of material content, i.e. the bare soil pathway and the dense vegetation area in
the top of the picture. Because of a lack of matching points, registration inaccuracy can be expected in the sparse vegetation

Zone.
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Figure 14. Set of matching points obtained for the pair SDIM0861-C2__ SDIM0989 C1
with ERDAS Imagine Autosync.

In Figure 15, a detail of the resulting false color image reconstruction in the sparse vegetation zone is presented. A
slight blurring effect can be observed compared to the same reconstruction using FMT registration, which is due to a less
accurate correspondence between NIR and visible radiometric values at a given spatial position. Such a positioning error,
with an order of magnitude of about one pixel, could be considered as visually negligible. However, it becomes important
in the case of multi-spectral processing. In Figure 16, the results for a simple NDVI computation are compared: NDVI has
been computed from the NIR and R components after inverse gamma correction (according to the Adobe RGB standard)
and then linearly converted from [-1, 1] range to [0, 255] range for image representation. An automatic thresholding based
on the Otsu algorithm (Otsu, 1979) has then been applied to simulate vegetation segmentation (Figure 17). It can be
observed that the segmentation result obtained with the feature point approach presents more noisy patterns, which indicate
less accurate multi-spectral information, and thus confirm a less accurate NIR-visible registration.

Finally, a quantitative comparison has been made using the tri-dimensional histograms of sub-images in Figures 15.a
and 15.b, and computing in each case the mutual information MI (Pluim, 2003) between R and NIR channels. The results
are given in Table 1.

Table 1: comparison of R-NIR mutual information

Entropy R Entropy NIR Joint Entropy Ml
FMT registration 4.549 4.657 9.055 0.150
Feature point registration | 4.557 4.653 9.126 0.084

The MI obtained with FMT registration is nearly the double of the one obtained using the feature point approach,
confirming the previous visual assessment (Figures 15 to 17).
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b
Figure 15: false color representation of registration results

a) Feature point approach  b) FMT approach

Figure 16: NDVI computation results
a) Feature point approach b) FMT approach

Ey

e )
Figure 17: NDVI thresholding

a) Feature point approach b) FMT approach

General results for all image pairs

The more significant figures obtained for the two sets of images are reported in Table 2 and Table 3 respectively. These
figures are:
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- The number of 200x200 windows (NbW) that have been used for the second step of identification. Because the
window distribution in the second image depends on the homographic computation issued from the first step, this number
can vary from one image pair to another. It ranges between 294 and 345.

- The number of inliers after RANSAC computation of the homographic matrix in step 3.

- The root mean square error (RMS) and maximal error obtained at the end of the registration process. These values
are computed considering all the inliers.

- The translation between visible and NIR images according to the transformation model (terms 7 and T, of the

homographic matrix)

The set of images at 10 mm resolution provides particularly good results. Only two sub-window identifications have
failed (for SDIM0873_C2__SDIM1001 C1 and SDIM0898 C2_SDIM1025 C1) over about 12000 (39 image pairs).
RMS error remains between 0.2 and 0.44 pixels. Maximal error is up to 1.81 pixel (as seen before, it corresponds to the
borders of the images).

It is worth noticing that translation values T, and 7, are very different from one image pair to the other. It means that
most of the translations observed are due to random shooting latency of the two cameras combined with UAV attitude

instability, rather than to their mechanical positioning.

Table 2. Main results for 10 mm resolution image set

Couple NbW | Inliers | RMS Max error | Tx Ty
(pixels) (pixels)
SDIM0861_C2__SDIM0989_C1 | 308 | 308 0.205765 | 1.01606 141.304 -8.84906
SDIM0862_C2__SDIM0990_C1 | 310 |310 0.268648 | 1.61977 206.65 7.2018
SDIM0863_C2__SDIM0991_C1 | 309 | 309 0.248254 | 1.75487 179.991 6.23115
SDIM0864_C2__SDIM0992_C1 | 308 | 308 0.213607 | 1.03461 134.235 -70.6822
SDIM0865_C2__SDIM0993_C1 (330 |330 0.246042 | 1.55204 164.918 35.8471
SDIM0866_C2__SDIM0994_C1 | 308 308 0.260177 | 1.01122 216.79 -23.4694
SDIM0867_C2__SDIM0995_C1 | 308 | 308 0.205254 | 1.08457 127.934 -56.9324
SDIM0868_C2__SDIM0996_C1 | 308 | 308 0.199852 | 0.993497 | 135.468 -19.6565
SDIM0869_C2__SDIM0997_C1 [ 330 |330 0.245332 | 1.49931 172.553 12.098
SDIM0870_C2__SDIM0998_C1 | 345 345 0.225745 | 1.63805 74.4094 21.4359
SDIM0871_C2__SDIM0999_C1 | 329 |329 0.253018 | 1.78237 167.997 26.0862
SDIM0872_C2__SDIM1000_C1 | 308 308 0.201389 | 1.01772 112.148 -2.6374
SDIM0873_C2__SDIM1001_C1 | 308 307 0.277907 | 1.20625 190.863 -51.4321
SDIM0874_C2__SDIM1002_C1 | 308 308 0.203207 | 1.13215 140.025 -3.1145
SDIM0875_C2__SDIM1003_C1 | 308 | 308 0.202374 | 0.657403 |-99.231 -2.28731
SDIM0876_C2__SDIM1004_C1 [ 330 |330 0.343585 | 1.32893 -121.629 20.3692
SDIM0877_C2__SDIM1005_C1 [ 330 |330 0.293634 | 1.18788 -139.211 0.988007
SDIM0878_C2__SDIM1006_C1 330 |330 0.364554 | 1.64644 -94.0046 20.0194
SDIM0879_C2__SDIM1007_C1 | 308 | 308 0.263832 | 1.00428 -195.768 -51.1397
SDIM0880_C2__SDIM1008_C1 | 313 313 0.255508 | 0.869559 |-170.886 -28.6676
SDIM0881_C2__SDIM1009_C1 | 294 294 0.280621 | 1.02383 -228.698 -130.32
SDIM0882_C2__SDIM1010_C1 | 308 | 308 0.246351 |1 -164.136 -83.1163
SDIM0883_C2__SDIM1011_C1 | 325 325 0.282107 | 1.19546 -154.086 -13.6132
SDIM0884_C2__SDIM1012_C1 |330 330 0.415529 | 1.70528 -60.063 25.6828
SDIM0886_C2__SDIM1013_C1 (330 |330 0.233672 | 1.6979 106.579 23.3675
SDIM0887_C2__SDIM1014_C1 (330 |330 0.235286 | 1.64073 130.636 42.0943
SDIM0888_C2__SDIM1015_C1 (330 |330 0.24275 | 1.64965 147.942 63.0498
SDIM0889_C2__SDIM1016_C1 [ 330 |330 0.256439 | 1.75686 151.126 13.9706
SDIM0890_C2__SDIM1017_C1 | 330 330 0.239517 | 1.47383 126.01 105.774
SDIM0891_C2__SDIM1018_C1 [ 330 |330 0.250685 | 1.69992 109.195 42.9601
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SDIM0892_C2__SDIM1019_C1 | 312 |312 |0.443181 |1.63157 |121.565 7.33859
SDIMO0893_C2__SDIM1020_C1 [ 330 |330 |0.270487 |1.68809 | 110.432 67.1179
SDIMO0894_C2__SDIM1021_C1 | 343 |343 |0.246417 |1.81263 |78.996 40.0072
SDIMO0895_C2__SDIM1022_C1 | 308 |308 |0.37076 |1.37542 |128.205 227.749
SDIMO0896_C2__SDIM1023_C1 [ 330 |330 |0.247288 |1.74025 |155.986 26.5518
SDIMO0897_C2__SDIM1024_C1 | 316 |316 |0.261298 |1.77994 |176.179 6.57355
SDIMO0898_C2__SDIM1025_C1 | 335 |334 |0.227009 |1.73867 |91.7082 29.1066
SDIMO0899_C2__SDIM1026_C1 | 345 |345 |0.235825 |1.72096 | 40.737 61.905
SDIM0900_C2__SDIM1027_C1 | 330 |330 |0.309022 |1.4055 144.271 59.9648
The set of images at 20 mm resolution provides comparable results except

in

two cases

20

(pairs

SDIM0904_C2__SDIM1031_C1 and SDIM0907_C2__SDIM1034_C1) where respectively 53 and 59 sub-window
identifications have failed. For these pairs, maximal errors are up to 5 pixels. When examining the corresponding images, it

can be observed that these images are blurred due to camera motion (Figure 18).

Table 3. Main results for 20 mm resolution image set

Couple NbW | Inliers RMS Max error Tx Ty
(pixels) (pixels)
SDIM0901_C2__SDIM1028_C1 345 345 0.238231 1.62974 19.837 33.0571
SDIM0902_C2__SDIM1029_C1 340 340 0.252882 1.81972 17.4474 54.3257
SDIM0903_C2__SDIM1030_C1 320 320 0.232668 1.29357 -84.5478 -10.915
SDIMO0904_C2__SDIM1031_C1 345 292 0.449388 5.40087 19.6816 17.9849
SDIM0905_C2__SDIM1032_C1 345 345 0.236375 1.70266 15.3072 38.9054
SDIM0906_C2__SDIM1033_C1 332 332 0.219682 1.55367 2.05891 11.721
SDIMO0907_C2__SDIM1034_C1 330 271 0.877862 5.55471 -64.2983 27.52
SDIM0908_C2__SDIM1035_C1 330 330 0.209042 | 0.938976 1.72416 8.94636
SDIM0909_C2__SDIM1036_C1 341 341 0.214602 1.52815 10.616 25.1422
SDIM0910_C2__SDIM1037_C1 336 336 0.212402 1.60552 12.199 45.3367
SDIM0911_C2__SDIM1038_C1 315 315 0.375712 1.21472 -16.1354 -15.9621
SDIM0912_C2__SDIM1039_C1 330 330 0.193718 1.15938 2.19996 36.8913
SDIM0913_C2__SDIM1040_C1 345 345 0.21571 1.55553 32.6721 49.4492
SDIM0914_C2__SDIM1041_C1 330 329 0.254166 1.14625 -13.2549 30.7771
SDIM0915_C2__SDIM1042_C1 330 330 0.358858 1.44805 -55.6044 38.0781
SDIM0916_C2__SDIM1043_C1 345 344 0.33042 1.84099 15.7268 50.7469
SDIM0917_C2__SDIM1044_C1 340 340 0.714914 2.1673 8.88959 21.606
SDIM0918_C2__SDIM1045_C1 330 330 0.276748 1.28785 -28.2551 36.5391
SDIM0919_C2__SDIM1046_C1 329 329 0.273745 1.60227 -27.7507 -2.04273
SDIM0920_C2__SDIM1047_C1 308 308 0.223654 1.38067 -26.9073 -45.8858
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SDIM0901 SDIM0904 SDIM0907
Fig. 18. Zoomed detail of 20 mm resolution images for sharpness assessment (the blue objects are geo-referencing

targets of 30 mm diameter distributed around the crop field)

Moreover, these large error values are not limited to image borders, as indicated by Figure 19.
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Figure 19. Registration error repartition for image pairs
SDIMO0904_C2__SDIM1031_C1 (a) and SDIM0907_C2__SDIM1034_C1 (b)
Thanks to the GPU implementation, the processing time has been reduced from about 3 min with a conventional CPU
implementation (Intel Xeon CPU, 3.19 GHz, 8 Go RAM) to 30 s per image pair, even using a low-end NVIDIA Quadro
400 graphic card with 500 Mbytes of memory.

Example of stronger homographic transformation

In the image sets presented previously, the homographic transformation models were close to affine transformation, due
to a rigorous image acquisition protocol and camera alignment. Indeed, the first processing step (initial registration on
reduced images) was optional. The registration result for a pair of images acquired with the same sensors in a different
context (south of France, May 2015) is presented in figure 20. Visible and NIR images were captures during successive
flights. Due to the time delay between images (tree shadow is different in both images), the registration has a lower
accuracy. However, it illustrates the ability of the registration procedure to deal with stronger homographic transformations.
In the present case, the three successive steps were mandatory.

Nbinliers RMS error Max error
236 0.638701 3.08678



Author-produced version of the article published in Precision Agriculture, 2016, N°17, p.564-587.
The original publication is available at http://link.springer.com/article/10.1007%2Fs11119-016-9437-x
Doi: 10.1007/s11119-016-9437-x

22

Transformation matrix:

1.0288 -0.047  219.1279
H=| 0.03087 0.962 -54.7878
1.3939 10° -1.80710° 1

Figure 20. Registration of a strong homographic transformation

5. Conclusion

The assembly of several cameras close to each other is a relevant solution for multi-spectral image acquisition with a UAV.
However, it requires a very accurate registration between bands to further compute multi-spectral indices such as NDVI. In
this context, the visible-NIR registration procedure proposed here has proved to be particularly efficient for agricultural
scenes in which vegetation and bare soil areas are deeply nested. Moreover, this procedure is very robust: for the set of data
under study, no parameter tuning was necessary from one image pair to another, and (though it was no presented in this
study), it has been also observed that the choice of the visible band (blue, green or red) had no influence.

An error below 0.3 pixels was obtained in most cases, except at the image borders. Error at the image border is due to
an incomplete modeling of the sensor distortion. Starting from the set of matching points obtained from sub-window
processing, a more sophisticated camera modeling, e.g. issued from laboratory calibration, could probably lead to still
better results. However, this issue is not specific to the Fourier-Mellin approach, and would be similar with a registration
process based on feature points. Another possible way of improvement could be to introduce a last step of local refinement,
e.g. using mutual information minimization on each sub-region (associated with a flexible transformation model).
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The main limitation, compared to feature point approaches, is related to some geometric assumptions that are
mandatory, i.e. large camera-scene distance and camera orientation close to the nadir. Nevertheless, these assumptions are

usually reached in the context of aerial imagery.

Because it is well adapted to images of different nature, beyond the acquisition of high quality NDVI data, the proposed
approach could certainly be used in many other registration problem involving several image acquisitions in different
optical bands, either simultaneously (multi-sensor cameras) or sequentially (multiple flights).

The registration of thermal and optical images is a particular case that could also be investigated. It would require some
software adaptations, in order to deal with images of different native size and resolution.
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