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Abstract: The combination of aerial images acquired in the visible and near infrared spectral ranges is 

particularly relevant for agricultural and environmental survey. In unmanned aerial vehicle (UAV) imagery, 

such a combination can be achieved using a set of several embedded cameras mounted close to each other, 

followed by an image registration step. However, due to the different nature of source images, usual 

registration techniques based on feature point matching are limited when dealing with blended vegetation and 

bare soil patterns.  Here, another approach is proposed based on image spatial frequency analysis. This 

approach, which relies on the Fourier-Mellin transform, has been adapted to homographic registration and 

distortion issues. It has been successfully tested on various aerial image sets, and has proved to be 

particularly robust and accurate, providing a registration error below 0.3 pixels in most cases. 

Keywords:  multimodal image registration; Fourier-Mellin transform; homographic transformation; near 

infrared; NDVI 

 

Introduction 

In the context of aerial imagery for agricultural and environmental monitoring purposes, the acquisition of radiance data 

in the near-infrared domain is particularly important. This is due to the spectral response of green vegetation material, 

which is characterized by a very sharp transition between low reflectance in the visible domain (typically 10 to 20%), and 

high reflectance in the near-infrared domain (typically 50 to 80%). Indeed, since the early times of remote sensing (RS), 

observation satellites (such as Landsat and SPOT) have been equipped with multi-spectral sensors including a near-infrared 

band (typically around 800 nm) associated with visible ones. 

One of the most popular usages of this multi-spectral combination is the computation of the normalized difference 

vegetation index or NDVI, introduced by Rouse et al (1973). NDVI is defined as the ratio (NIR-R)/(NIR+R), where NIR 

and R are respectively the near-infrared and red bands. As far as the radiance measurements are corrected for lighting and 

atmospheric effects (reflectance correction), the NDVI can be considered as a quantitative index for crop assessment 

(Myneni et al, 1995). In other cases, it remains a robust tool for the discrimination of vegetation areas in various lighting 

conditions (Torres-Sanchez et al, 2013; Rabatel et al, 2014). 

 

 Other vegetation indices have also been proposed in various soil and vegetation conditions, with respect to their 

relationship to agronomic indices such as biomass and LAI (leaf area index) (Huete et al, 1997; Jindong et al, 2007; 
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Zhengwei et al, 2009). However, it is important to notice that most of these indices (such as ratio normalized difference 

vegetation index (RNDVI), soil-adjusted vegetation index (SAVI) and transformed normalized difference vegetation index 

(TNDVI) ) rely on the same red and near-infrared bands. 

In satellite and airborne technologies, image acquisition is usually based on push-broom sensors, combined with the 

regular motion of the vehicle to build 2D images. Separate spectral bands can thus be collected using parallel line sensors 

(Petrie, 2005). It is quite different with UAV, for which the cost of an accurate inertial unit to control the motion regularity 

is rarely affordable. Therefore UAV imagery generally relies on 2D image sensors. While Color Filter Arrays (CFA) are 

nearly universally employed for standard color cameras, CFA including a near-infrared band are presently not available. As 

an alternative, some camera manufacturers have proposed multi-CCD devices including a near-infrared channel, e.g. the 

MS-4100 (Geospatial Systems Inc., West Henrietta, NY, USA), or the  AD-080 (JAI AS, Copenhagen, Denmark). 

However, such devices are characterized by high cost and limited image resolution. 

On the other hand, UAV applications to agricultural monitoring are currently increasing dramatically, thanks to their 

specific advantages compared to aerial or satellite approaches: ease of use, flexibility, low cost, and very short revisit time. 

Also, the low flight elevation of UAV provides now access to imagery with centimetric spatial resolution, opening the door 

to new kinds of applications (e.g. plant counting or adventice detection). However, such applications require low cost 

acquisition devices to fit with the overall system cost, with high image resolution (typically more than 10 million pixels) in 

order to compensate for their limited flight duration (low energy autonomy). As a consequence, despite increasing demand, 

there is still no commercial multi-spectral solution that entirely fulfills the UAV requirements, i.e. combining low cost, low 

footprint, low weight and high image resolution. Operators usually implement general use still color cameras, either 

accepting limitation to standard color acquisition, or trying to adapt these cameras to their particular needs. 

Hunt et al, (2010) proposed the use of a standard color camera where the internal near-infrared-blocking has been 

removed and replaced by an external red-light-blocking filter, in order to get the G, B and NIR bands instead of R,G,B. 

Similarly, Rabatel et al (2014) obtained R and NIR bands using an external red long-pass filter and a linear combination of 

the resulting raw channels. However, in both cases, the original color image of the scene is no longer available, and the 

spectral quality of the bands obtained is limited. 

 

An alternative solution consists in coupling two still cameras, one providing a standard color image, the other being 

devoted to the near-infrared band. For this purpose, the internal near-infrared-blocking filter of the second camera is 

replaced with an external near-infrared band-pass filter (Lebourgeois et al, 2008). Despite the payload increase due to the 

implementation of two cameras, this approach remains particularly attractive, as being able to provide a full four-channel 

multi-spectral image including R,G, B and NIR bands. This kind of solution is also currently proposed by some camera 

manufacturers or UAV service companies involved in agricultural survey applications. They propose multi-spectral 

cameras based on 4 to 12 image sensors mounted close to each other, at the price of lower image resolution (Micro-MCA, 

Tetracam Inc. Chatworth, CA, US; Agrosensor, Airinov, Paris, France). However, multi-camera approaches require a post-

processing step to accurately establish the relationship between the pixel co-ordinates of every camera. As detailed in the 

following, this processing step, known as image registration, remains a challenge in the case of near-infrared and visible 

image pairs (Dare, 2008; Hunt et al, 2010).   

 

Indeed, image registration has been widely studied in the literature. Basically, it consists in finding local 

correspondences between two images, in order to identify an image transformation model. According to Zitova and Flusser 

(2003), there are two main approaches to find these local correspondences:  i) feature-based methods, which search for 

salient characteristics in both images (such as edges, lines and corners) and then try to match them in a separate matching 
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Top: original visible and NIR images. Bottom: matching result using VLFeat SIFT tool 

(www.vlfeat.org/applications/sift-mosaic-code.html) 

 

 
Some authors have proposed a SIFT descriptor variant where the sign of image gradients is not taken into account 

(Firmenich et al, 2011). However the corresponding improvement did not appear to be sufficient for high resolution aerial 

images.  

 

A more robust solution could be to investigate some of the numerous multimodal registration algorithms mentioned above. 

However, the complexity of such algorithms, mainly driven by medical imagery, is not well adapted to the specific context 

of UAV imagery, for which the availability of user friendly and fully automated software tools is a priority. Indeed, such a 

requirement for user-friendly tools is currently met in the field of photogrammetry (mosaicking and 3D reconstruction 

based on unimodal registration): numerous commercial or open source tools based on SIFT point matching (Photoscan1,  

ERDAS Imagine2, MicMac3, VisualSFM4) are able to process automatically hundreds of UAV images in a couple of hours. 

Therefore, most UAV users dealing with multi-spectral image registration still try to use the same photogrammetric tools 

for multimodal registration as well either by: 

i) registering directly the different bands using the embedded feature point registration algorithm with more or 

less success and accuracy depending on the image content 

 or by:  

ii) computing a geo-referenced and ortho-rectified mosaic for both sets of images and then overlaying them 

based on their geographic co-ordinates, leading to a very limited registration quality. 

 

The objective of the present paper is to propose an intermediate approach for the registration of visible and near-infrared 

images in the context of UAV imagery, able to provide robust and high quality registration of vegetation scenes while 

remaining fast and fully automated.  The proposed approach involves spatial frequency analysis through the Fourier-Mellin 

transform (FMT).  FMT is a well-known tool that has been widely used for image registration before the emergence of the 

SIFT algorithm (Reddy and Chatterji. 1996; Marcel et al, 1997). Because Fourier analysis integrates spatially characteristic 

features over the whole image, it is robust to contrast inversion (see figure 3), and efficiently registers images of very 

different kinds. Recently, Jaud et al (2013), for instance, have successfully used the FMT to match radar maps with aerial 

images in the visible domain. 

As a counterpart, the main drawback of the FMT approach is that it is only applicable to register images linked through 

a transformation limited to translation, rotation and scale change. However, as shown further, it remains usable in aerial 

imaging, as long as the distance between the cameras is negligible compared to the scene distance, and the camera optical 

axis is nearly vertical. For this purpose, the initial method has been adapted to large size images and homographic 

transformations, using an iterative implementation based on image partitioning. Lens distortion aspects have been taken 

into account as well. 
 

                                                           
1 Photoscan, Agisoft, St. Petersburg, Russia  (www.agisoft.com) 
2 ERDAS Imagine, GEOSYSTEMS France SARL, Montigny-le-Bretonneux, France. (www.geosystems.fr) 
3 MicMac, IGN, France (http://logiciels.ign.fr/?-Micmac,3-) 
4 VisualSFM (http://ccwu.me/vsfm/) 
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Notice that Equation (2) also indicates that F1(u,v) and F2(u,v) have the same modulus, as the modulus of the 

multiplicative term e-2 i π (Tx.u + Ty.v) is equal to one. This property will be used further. 

Fourier Transform versus Feature Point in vegetation scenes 

As stated above, feature point approaches like SIFT are largely used for registering images of the same nature. Now, let 

consider visible and NIR images of a vegetation scene. As already mentioned, in the NIR band, vegetation reflects almost 

all the incident light. Thus, vegetation appears much brighter than bare soil in the NIR image, while it will often appear 

darker in the visible one. A direct consequence, illustrated in Figure 3, is that the direction of grey level gradients will be 

inverted from one image to the other at the boundaries between vegetation and soil, while remaining the same within one 

kind of object. 

  

 

       Visible      NIR 

Figure 3. Contrast inversion in a vegetation scene. 

 

SIFT descriptors are based on gradient direction histograms collected over a large neighborhood around the feature 

point (16x16 pixels). If the vegetation and soil are so blended that most feature point neighborhoods include both of them, 

gradient inversions will occur within these neighborhoods, and the descriptors will not match between visible and NIR 

images. 

 

On the other side, the FT identification approach proceeds by enhancing the spatial frequency shifts that are coherent all 

over the image area (i.e. that correspond to the same translation). In that sense, it accumulates area-extended information. 

Within a given kind of object (vegetation or soil), the Fourier transform F2(u,v) in the second image will be affected by a 

multiplicative factor compared to F1(u,v), due to a different brightness, but the phase shift information will be preserved. 

Finally, both kinds of objects will contribute to the translation identification peak, proportionally to their area. Only edges 

between them will introduce some perturbation in the Fourier spectra, but this edge contribution will remain limited 

compared to the image area (1D versus 2D accumulation), and should not jeopardize the translation identification. 

Rotation and scale identification by Fourier-Mellin Transform 

The Fourier-Mellin Transform (FMT) was first introduced by Casasent and Psaltis (1977) in the context of optical 

image processing. The idea was to combine the Fourier Transform and the Mellin Transform (MT, which can be 

assimilated to a Fourier transform after logarithmic co-ordinate scaling), in order to get both rotation and scaling 

invariance. FT and MT are known to have their modulus invariant respectively to translation and scale. By considering a 

polar representation f(r,) of an image and by applying respectively FT on the  axis and MT on the r axis, the FMT is 

obtained, which is formally defined as: 
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FMT was initially designed to compare images that differ by scaling and rotation, looking at their FMT module, but not to 

identify this difference.  In a registration context, it is important to notice that FMT can be assimilated to the TF of a log-

polar representation of the image, as illustrated in Figure 4. 

 

Figure 4. The Fourier-Mellin Transform  scheme 

Now, consider two images I1(r, ) and I2(r, ) in polar representation, which only differ by a centered rotation  and a 

scaling factor k. When considering the log-polar representation, the rotation corresponds to an image shift equal to  along 

the  axis, and the scaling factor k corresponds to an image shift equal to Log(k) along the Log r axis. So the two log-polar 

images will only differ by a 2D translation (, Log(k)). In that sense, the same approach that was described for translation 

identification can be applied: it consists in computing the ratio of the FT of the two log-polar representations, i.e. the ratio 

of the FMT of images I1(r, ) and I2(r, ), and then in searching for the maximum of its inverse Fourier Transform. 

Notice that this approach implicitly supposes that the image scaling is isotropic, i.e. that the scaling factor k is independent 

of the angle  (in other words, the same scaling factor is applied on x and y axes in the original images). 

 

General scheme 

Comparing the polar representations of two images through FMT supposes that these polar representations refer to the 

same image center, which is not the case when a translation is involved. Fortunately, original images can be replaced by the 

modulus of their Fourier transform, centered on frequency (0,0).  As seen above, the FT modulus is invariant to translation. 

On the other hand, it preserves rotation and scaling information:  a rotation  and a scaling factor k applied to a given image 

generate a rotation  and a scaling factor 1/k of its FT spectrum. 
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Thus, applying the homographic transformation H to (x1,y1): 

(x2,y2) =  (x2,y2)S  /u = (x2,y2)S  /(1 + x.x1 + y.y1)      (10) 

 

As a conclusion, a homographic transformation can be considered as an extension of a similarity transformation where a 

supplementary scale factor 1/u = 1/(1 + x.x1 + y.y1)  is applied, which depends on the position (x1, y1) in the initial image. 

 

Application to homographic transformation identification 

 

At this stage, some hypotheses must be introduced concerning the homographic transformation to identify: 

- The values of terms x and y are small compared to 1, which means that the homographic transformation is close 

to a similarity transformation. 

- The similarity scaling factor is nearly isotropic (same homothetic factors on x and y axes). 

- The image translation is small compared to the image size, in terms of pixels. 

 

Fortunately, all these hypotheses are compatible with usual aerial imaging. More precisely, the first two hypotheses are 

both related to the angle between the camera optical axis and the vertical. The more the camera orientation will be close to 

the nadir, the more they will be matched. Of course, it also requires that the viewed scene is nearly planar (compared to the 

camera-scene distance), otherwise homographic transformations are not applicable at all. Once again, it will be usually 

verified except in the case of very low flight altitude or very rough or mountainous terrain. The last hypothesis about 

translation amplitude will be usually matched in a multi-spectral acquisition context where coupled cameras are mounted 

close to each other. 

The first hypothesis x <<1 and y <<1 implies that the homographic factor 1/(1 + x.x1 + y.y1)  will be slowly varying 

across the images, so that simple similarity transformations can be considered over large image sub-portions.  The second 

isotropic hypothesis implies that in such sub-portions, the rotation-translation-scale identification scheme described earlier 

can be applied. Finally, the hypothesis on limited translation amplitude means that matching sub-portions between the two 

images can be easily defined. 

As a consequence, the following scheme can be implemented for complete large size image registration (Figure 7): 

- Image partitioning in a set of p small rectangular regions Ri 

- Rotation-Translation-Scale identification on each region Ri   

- Definition of a set of p matching points (C1i, C2i), where C1i and C2i are respectively the center of region Ri in 

image I1, and the corresponding point in image I2 using the Rotation-Translation-Scale transformation model obtained for 

this region Ri. 

- Identification of the global homographic matrix H from the set of points (C1i, C2i). 
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3. Material and methods 

 Image acquisition  

Aerial images of wheat were acquired using a couple of Sigma DP2 Merril still cameras (Sigma, Kawasaki, Japan) 

mounted on a UAV AR 200 (AirRobot® GmbH, Arnsberg, Germany) (see Figure 9). The images were acquired in 

Arganda, Madrid, May 2013 (40.315421° N, 3.483774 E). Late wheat was specially prepared to be at early stage at this 

period, for experimentation purposes. One of the cameras was modified for NIR acquisition, i.e. internal NIR blocking 

filter was removed and replaced by an external NIR band-pass filter. Image size was 4704x3136 pixels. Two kinds of flight 

have been considered: 60 m and 120 m altitudes, leading respectively to spatial resolutions of 10 mm per pixel and 20 mm 

per pixel. 

 

 

 

Figure 9. Two Sigma DP2 Merril cameras mounted on a UAV 

 

Images were shot in manual exposure mode with the following parameters: 

- Speed 1/800 ,  aperture F5.0, 100 ISO for visible images 

- Speed 1/800, aperture F7.1, 100 ISO for NIR images 

Images were then converted from raw image format X3F to TIFF Adobe RGB 16 bits, using Sigma proprietary software 

(SIGMA Photo Pro 5.0). Green channel of the visible TIFF image and red channel of the near infrared TIFF image were 

respectively selected as 16 bits grey level images for registration input. 

 For practical reasons, all image pairs are referred to in the following according to the original names of images I1 and 

I2. As an example, SDIM0861_C2__SDIM0989_C1 indicates the 2nd channel (green) of the visible image SDIM0861.tif 

and the 1st channel (red) of the NIR image SDIM0989.tif. 

 Image registration 

All the registration processes have been implemented according to the theory of operation described above with the 

following features: 

- Before each image matching, the NIR image was rotated by 180° (to compensate for the opposite mounting of the 

cameras as shown in Figure 9). 

- Before every Fourier transform, a hanning window (Blackman et Tukey, 1959) was applied to both images, in 

order to remove image edge artefacts. 
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- Before every inverse Fourier transform for maximum peak search, a Gaussian filtering envelop was introduced in 

order to smooth the peak and allow its sub-pixel location. 

- For every peak search, the peak amplitude was compared to the average amplitude of the whole spectrum, and 

rejected if the ratio was lower than a threshold (set equal to 10). 

- In order to overcome sub-image identification failures due to large initial translations in the images (typically more 

than 100 pixels), the identification process was organized in three steps: 

i) an initial FMT registration applied to entire images, after reducing them by a factor of 10, leading to a rough 

similarity transformation,  

ii) an initial partitioning in sub-regions of 600x600 pixels, leading to a first set of about 40 matching points, 

according to the procedure described in the previous section 

iii) a second partitioning in sub-regions of 200x200 pixels, leading to a second set of about 300 to 340  

matching points, according to the procedure described in the previous section 

 In the 2nd and 3rd steps, the partitioning was made according to the transformation model obtained in the previous 

step: centers of sub-regions in image I1 were regularly distributed, and centers of the sub-regions in image I2, were defined 

as the transformation of centers of the sub-regions in image I1. 

- In the 2nd and 3rd steps, the homographic matrix was computed from the set of matching points using a RANSAC 

algorithm (Fischler and Bolles, 1981) with 5000 iterations and an error tolerance of respectively 20 pixels on the 2nd step 

and 5 pixels on the 3rd step. Images with a number of inliers less than 50% of the number of matching points were rejected. 

- The distortion model was limited to one distortion parameter (n=1), and a loop of 10 iterations of the Gauss-

Newton minimization was systematically applied. 

As the final result of the whole process, a complete transformation model P = (D1, H, D2) was provided (see previous 

section). This model was then used to geometrically transform the original NIR image, so that it can be exactly matched 

with the visible one as a new layer. 

 

CUDA implementation 

All computations related to Fourier transform and spatial spectrum analyses have been implemented on NVIDIA® GPU 

using CUDA (Compute Unified Device Architecture) C++ extension language, and the FFT computation library provided 

in the CUDA package. 

 

Results and discussion 

The procedure described above has been successfully applied to the two sets of wheat crop images: 39 image pairs with 

10 mm spatial resolution (60 m elevation), and 20 image couples with 20 mm spatial resolution (120 m elevation). No 

parameter tuning has been made from one set to the other, or within a given set. For illustration, the detailed results 

obtained on a typical pair of visible and NIR images are first presented. More general results for all image pairs are then 

provided.  Finally, a different example with a stronger homographic transformation is also presented. 

 

Detailed results for one image pair 
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Figure 11. Transformation disparity for image pair SDIM0861_C2__SDIM0989_C1. 

Segments indicate the 308 difference vectors (T12 – T12c) in the visible image, where T12 is the translation vector 

between matching point co-ordinates in NIR and visible images, and T12c is the T12 value closest to the image center. 

Segments are magnified (x10) for visibility. 

 

Transformation model computation 

 

In the 3rd step, using the 308 pairs of matching points, a new homographic matrix has been computed by the RANSAC 

algorithm with a 5 pixel tolerance, giving no outliers. Then the distortion parameters have been adjusted as described 

earlier.  

For each couple (C1i , C2i), where C1i and C2i are matching points respectively in visible and NIR images, the error of a 

transformation model TM has been defined as the distance in the NIR image between C2i and its estimated position CEst2i = 

TM(C1i). In the present case, the following error figures have been obtained: 

 

Number of links  RMS error Maximal error 

Step 2 (200x200 windows)  308   1.2626  3.1953 

Step 3 (distortion adjustment)  308   0.205765 1.01606 

 

As expected from Figure 11, the distortion adjustment dramatically reduces the root mean square (RMS) error. In 

Figure 12, the residual error for every matching point has been plotted as a function of the distance to the image center. It 

shows that the largest errors only concern a few points at the borders of the image, while for others the error remains below 

0.4 pixels.  

 

 

Figure 12. Final registration error repartition for image pair SDIM0861_C2__SDIM0989_C1 

 

The final transformation parameters for the image pair SDIM0861_C2__SDIM0989_C1 are given below: 
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a  b  

Figure 15: false color representation of registration results 

a) Feature point approach  b) FMT approach 

 

a  b  

Figure 16: NDVI computation results 

a) Feature point approach    b) FMT approach 

 

a  b  

Figure 17: NDVI thresholding 

a) Feature point approach   b) FMT approach 

General results for all image pairs 

The more significant figures obtained for the two sets of images are reported in Table 2 and Table 3 respectively. These 

figures are: 
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- The number of 200x200 windows (NbW) that have been used for the second step of identification. Because the 

window distribution in the second image depends on the homographic computation issued from the first step, this number 

can vary from one image pair to another. It ranges between 294 and 345. 

- The number of inliers after RANSAC computation of the homographic matrix in step 3.  

- The root mean square error (RMS) and maximal error obtained at the end of the registration process. These values 

are computed considering all the inliers. 

- The translation between visible and NIR images according to the transformation model (terms Tx and Ty of the 

homographic matrix) 

 

The set of images at 10 mm resolution provides particularly good results. Only two sub-window identifications have 

failed (for SDIM0873_C2__SDIM1001_C1 and SDIM0898_C2__SDIM1025_C1) over about 12000 (39 image pairs). 

RMS error remains between 0.2 and 0.44 pixels. Maximal error is up to 1.81 pixel (as seen before, it corresponds to the 

borders of the images). 

It is worth noticing that translation values Tx and Ty are very different from one image pair to the other. It means that 

most of the translations observed are due to random shooting latency of the two cameras combined with UAV attitude 

instability, rather than to their mechanical positioning. 

 
Table 2. Main results for 10 mm resolution image set 

 

Couple  NbW  Inliers  RMS 
(pixels) 

Max error 
(pixels) 

Tx  Ty 

SDIM0861_C2__SDIM0989_C1  308  308  0.205765  1.01606  141.304  ‐8.84906 

SDIM0862_C2__SDIM0990_C1  310  310  0.268648  1.61977  206.65  7.2018 

SDIM0863_C2__SDIM0991_C1  309  309  0.248254  1.75487  179.991  6.23115 

SDIM0864_C2__SDIM0992_C1  308  308  0.213607  1.03461  134.235  ‐70.6822 

SDIM0865_C2__SDIM0993_C1  330  330  0.246042  1.55204  164.918  35.8471 

SDIM0866_C2__SDIM0994_C1  308  308  0.260177  1.01122  216.79  ‐23.4694 

SDIM0867_C2__SDIM0995_C1  308  308  0.205254  1.08457  127.934  ‐56.9324 

SDIM0868_C2__SDIM0996_C1  308  308  0.199852  0.993497  135.468  ‐19.6565 

SDIM0869_C2__SDIM0997_C1  330  330  0.245332  1.49931  172.553  12.098 

SDIM0870_C2__SDIM0998_C1  345  345  0.225745  1.63805  74.4094  21.4359 

SDIM0871_C2__SDIM0999_C1  329  329  0.253018  1.78237  167.997  26.0862 

SDIM0872_C2__SDIM1000_C1  308  308  0.201389  1.01772  112.148  ‐2.6374 

SDIM0873_C2__SDIM1001_C1  308  307  0.277907  1.20625  190.863  ‐51.4321 

SDIM0874_C2__SDIM1002_C1  308  308  0.203207  1.13215  140.025  ‐3.1145 

SDIM0875_C2__SDIM1003_C1  308  308  0.202374  0.657403  ‐99.231  ‐2.28731 

SDIM0876_C2__SDIM1004_C1  330  330  0.343585  1.32893  ‐121.629  20.3692 

SDIM0877_C2__SDIM1005_C1  330  330  0.293634  1.18788  ‐139.211  0.988007 

SDIM0878_C2__SDIM1006_C1  330  330  0.364554  1.64644  ‐94.0046  20.0194 

SDIM0879_C2__SDIM1007_C1  308  308  0.263832  1.00428  ‐195.768  ‐51.1397 

SDIM0880_C2__SDIM1008_C1  313  313  0.255508  0.869559  ‐170.886  ‐28.6676 

SDIM0881_C2__SDIM1009_C1  294  294  0.280621  1.02383  ‐228.698  ‐130.32 

SDIM0882_C2__SDIM1010_C1  308  308  0.246351  1  ‐164.136  ‐83.1163 

SDIM0883_C2__SDIM1011_C1  325  325  0.282107  1.19546  ‐154.086  ‐13.6132 

SDIM0884_C2__SDIM1012_C1  330  330  0.415529  1.70528  ‐60.063  25.6828 

SDIM0886_C2__SDIM1013_C1  330  330  0.233672  1.6979  106.579  23.3675 

SDIM0887_C2__SDIM1014_C1  330  330  0.235286  1.64073  130.636  42.0943 

SDIM0888_C2__SDIM1015_C1  330  330  0.24275  1.64965  147.942  63.0498 

SDIM0889_C2__SDIM1016_C1  330  330  0.256439  1.75686  151.126  13.9706 

SDIM0890_C2__SDIM1017_C1  330  330  0.239517  1.47383  126.01  105.774 

SDIM0891_C2__SDIM1018_C1  330  330  0.250685  1.69992  109.195  42.9601 
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SDIM0892_C2__SDIM1019_C1  312  312  0.443181  1.63157  121.565  7.33859 

SDIM0893_C2__SDIM1020_C1  330  330  0.270487  1.68809  110.432  67.1179 

SDIM0894_C2__SDIM1021_C1  343  343  0.246417  1.81263  78.996  40.0072 

SDIM0895_C2__SDIM1022_C1  308  308  0.37076  1.37542  128.205  227.749 

SDIM0896_C2__SDIM1023_C1  330  330  0.247288  1.74025  155.986  26.5518 

SDIM0897_C2__SDIM1024_C1  316  316  0.261298  1.77994  176.179  6.57355 

SDIM0898_C2__SDIM1025_C1  335  334  0.227009  1.73867  91.7082  29.1066 

SDIM0899_C2__SDIM1026_C1  345  345  0.235825  1.72096  40.737  61.905 

SDIM0900_C2__SDIM1027_C1  330  330  0.309022  1.4055  144.271  59.9648 

 

The set of images at 20 mm resolution provides comparable results except in two cases (pairs 

SDIM0904_C2__SDIM1031_C1 and SDIM0907_C2__SDIM1034_C1) where respectively 53 and 59 sub-window 

identifications have failed. For these pairs, maximal errors are up to 5 pixels. When examining the corresponding images, it 

can be observed that these images are blurred due to camera motion (Figure 18). 

 

Table 3. Main results for 20 mm resolution image set 

 
Couple  NbW  Inliers  RMS 

(pixels) 
Max error 
(pixels) 

Tx  Ty 

SDIM0901_C2__SDIM1028_C1  345  345  0.238231 1.62974 19.837 33.0571 

SDIM0902_C2__SDIM1029_C1  340  340  0.252882 1.81972 17.4474 54.3257 

SDIM0903_C2__SDIM1030_C1  320  320  0.232668 1.29357 ‐84.5478 ‐10.915 

SDIM0904_C2__SDIM1031_C1  345  292  0.449388 5.40087 19.6816 17.9849 

SDIM0905_C2__SDIM1032_C1  345  345  0.236375 1.70266 15.3072 38.9054 

SDIM0906_C2__SDIM1033_C1  332  332  0.219682 1.55367 2.05891 11.721 

SDIM0907_C2__SDIM1034_C1  330  271  0.877862 5.55471 ‐64.2983 27.52 

SDIM0908_C2__SDIM1035_C1  330  330  0.209042 0.938976 1.72416 8.94636 

SDIM0909_C2__SDIM1036_C1  341  341  0.214602 1.52815 10.616 25.1422 

SDIM0910_C2__SDIM1037_C1  336  336  0.212402 1.60552 12.199 45.3367 

SDIM0911_C2__SDIM1038_C1  315  315  0.375712 1.21472 ‐16.1354 ‐15.9621 

SDIM0912_C2__SDIM1039_C1  330  330  0.193718 1.15938 2.19996 36.8913 

SDIM0913_C2__SDIM1040_C1  345  345  0.21571 1.55553 32.6721 49.4492 

SDIM0914_C2__SDIM1041_C1  330  329  0.254166 1.14625 ‐13.2549 30.7771 

SDIM0915_C2__SDIM1042_C1  330  330  0.358858 1.44805 ‐55.6044 38.0781 

SDIM0916_C2__SDIM1043_C1  345  344  0.33042 1.84099 15.7268 50.7469 

SDIM0917_C2__SDIM1044_C1  340  340  0.714914 2.1673 8.88959 21.606 

SDIM0918_C2__SDIM1045_C1  330  330  0.276748 1.28785 ‐28.2551 36.5391 

SDIM0919_C2__SDIM1046_C1  329  329  0.273745 1.60227 ‐27.7507 ‐2.04273 

SDIM0920_C2__SDIM1047_C1  308  308  0.223654 1.38067 ‐26.9073 ‐45.8858 
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The main limitation, compared to feature point approaches, is related to some geometric assumptions that are 

mandatory, i.e. large camera-scene distance and camera orientation close to the nadir. Nevertheless, these assumptions are 

usually reached in the context of aerial imagery. 

 

Because it is well adapted to images of different nature, beyond the acquisition of high quality NDVI data, the proposed 

approach could certainly be used in many other registration problem involving several image acquisitions in different 

optical bands, either simultaneously (multi-sensor cameras) or sequentially (multiple flights). 

 

The registration of thermal and optical images is a particular case that could also be investigated. It would require some 

software adaptations, in order to deal with images of different native size and resolution. 
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