Recommender System Through Sentiment Analysis

Abstract : —Customer product reviews play an important role in the customer's decision to purchase a product or use a service. Customer preferences and opinions are affected by other customers' reviews online, on blogs or over social networking platforms. We propose a multilingual recommender system based on sentiment analysis to help Algerian users decide on products, restaurants, movies and other services using online product reviews. The main goal of this work is to combine both recommendation system and sentiment analysis in order to generate the most accurate recommendations for users. Because both domains suffer from the lack of labeled data, to overcome that, this paper detects the opinions polarity score using the semi-supervised SVM. The experimental results suggested very high precision and a recall of 100%. The results analysis evaluation provides interesting findings on the impact of integrating sentiment analysis into a recommendation technique based on collaborative filtering.
Type de document :
Communication dans un congrès
2nd International Conference on Automatic Control, Telecommunications and Signals, Dec 2017, Annaba, Algeria
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01683511
Contributeur : Didier Schwab <>
Soumis le : samedi 13 janvier 2018 - 21:01:57
Dernière modification le : jeudi 11 octobre 2018 - 08:48:03
Document(s) archivé(s) le : lundi 7 mai 2018 - 00:45:00

Fichier

final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01683511, version 1

Collections

Citation

Amel Ziani, Nabiha Azizi, Didier Schwab, Monther Aldwairi, Nassira Chekkai, et al.. Recommender System Through Sentiment Analysis. 2nd International Conference on Automatic Control, Telecommunications and Signals, Dec 2017, Annaba, Algeria. 〈hal-01683511〉

Partager

Métriques

Consultations de la notice

206

Téléchargements de fichiers

904