A semidiscrete version of the Citti-Petitot-Sarti model as a plausible model for anthropomorphic image reconstruction and pattern recognition

Abstract : In his beautiful book [66], Jean Petitot proposes a sub-Riemannian model for the primary visual cortex of mammals. This model is neurophysiologically justified. Further developments of this theory lead to efficient algorithms for image reconstruction, based upon the consideration of an associated hypoelliptic diffusion. The sub-Riemannian model of Petitot and Citti-Sarti (or certain of its improvements) is a left-invariant structure over the group $SE(2)$ of rototranslations of the plane. Here, we propose a semi-discrete version of this theory, leading to a left-invariant structure over the group $SE(2,N)$, restricting to a finite number of rotations. This apparently very simple group is in fact quite atypical: it is maximally almost periodic, which leads to much simpler harmonic analysis compared to $SE(2).$ Based upon this semi-discrete model, we improve on previous image-reconstruction algorithms and we develop a pattern-recognition theory that leads also to very efficient algorithms in practice.
Type de document :
Ouvrage (y compris édition critique et traduction)
Springer International Publishing, 2018, SpringerBriefs in Mathematics, 978-3-319-78481-6. 〈10.1007/978-3-319-78482-3〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01681234
Contributeur : Dario Prandi <>
Soumis le : jeudi 11 janvier 2018 - 14:34:45
Dernière modification le : mercredi 12 septembre 2018 - 01:27:05

Lien texte intégral

Identifiants

Citation

Dario Prandi, Jean-Paul Gauthier. A semidiscrete version of the Citti-Petitot-Sarti model as a plausible model for anthropomorphic image reconstruction and pattern recognition. Springer International Publishing, 2018, SpringerBriefs in Mathematics, 978-3-319-78481-6. 〈10.1007/978-3-319-78482-3〉. 〈hal-01681234〉

Partager

Métriques

Consultations de la notice

245