E. Zuccato, D. Calamari, M. Natangelo, and R. Fanelli, Presence of therapeutic drugs in the environment, The Lancet, pp.1789-1790, 2000.

X. Chang, M. T. Meyer, X. Liu, Q. Zhao, H. Chen et al., Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China, Environmental Pollution, vol.158, issue.5, pp.158-1444, 2010.
DOI : 10.1016/j.envpol.2009.12.034

K. S. Le-corre, C. Ort, D. Kateley, B. Allen, B. I. Escher et al., Consumptionbased approach for assessing the contribution of hospitals towards the load of pharmaceutical residues in municipal wastewater, Environ. Int, pp.45-99, 2012.

K. Kümmerer, Significance of antibiotics in the environment, Journal of Antimicrobial Chemotherapy, vol.52, issue.1, pp.5-7, 2003.
DOI : 10.1093/jac/dkg293

G. M. Bruce, R. C. Pleus, and S. A. Snyder, Toxicological Relevance of Pharmaceuticals in Drinking Water, Environmental Science & Technology, vol.44, issue.14, pp.5619-5626, 2010.
DOI : 10.1021/es1004895

A. J. Watkinson, E. J. Murby, D. W. Kolpin, and S. D. Costanzo, The occurrence of antibiotics in an urban watershed: From wastewater to drinking water, Science of The Total Environment, vol.407, issue.8, pp.2711-2723, 2009.
DOI : 10.1016/j.scitotenv.2008.11.059

M. Clara, N. Kreuzinger, B. Strenn, O. Gans, and H. Kroiss, The solids retention time???a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants, Water Research, vol.39, issue.1, pp.97-106, 2005.
DOI : 10.1016/j.watres.2004.08.036

S. Rodriguez-mozaz, S. Chamorro, E. Marti, B. Huerta, M. Gros et al., Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river, Water Research, vol.69, pp.69-234, 2015.
DOI : 10.1016/j.watres.2014.11.021

L. Kovalova, H. Siegrist, H. Singer, A. Wittmer, and C. S. , Hospital Wastewater Treatment by Membrane Bioreactor: Performance and Efficiency for Organic Micropollutant Elimination, Environmental Science & Technology, vol.46, issue.3, pp.46-1536, 2012.
DOI : 10.1021/es203495d

I. Sires and E. Brillas, Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review, Environment International, vol.40, pp.212-229, 2012.
DOI : 10.1016/j.envint.2011.07.012

R. Tenne, K. Patel, K. Hashimoto, and A. Fujishima, An International Journal Devoted to all Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological ElectrochemistryEfficient electrochemical reduction of nitrate to ammonia using conductive diamond film electrodes, J. Electroanal. Chem, pp.347-409, 1993.

M. Murugananthan, S. Yoshihara, T. Rakuma, N. Uehara, and T. Shirakashi, Electrochemical degradation of 17??-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode, Electrochimica Acta, vol.52, issue.9, pp.3242-3249, 2007.
DOI : 10.1016/j.electacta.2006.09.073

R. F. Brocenschi, R. C. Rocha-filho, N. Bocchi, and S. R. Biaggio, Electrochemical degradation of estrone using a boron-doped diamond anode in a filter-press reactor, Electrochimica Acta, vol.197, pp.186-193, 2016.
DOI : 10.1016/j.electacta.2015.09.170

E. Brillas, I. Sirés, C. Arias, P. L. Cabot, F. Centellas et al., Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode, Chemosphere, vol.58, issue.4, pp.58-399, 2005.
DOI : 10.1016/j.chemosphere.2004.09.028

J. Boudreau, D. Bejan, S. Li, and N. J. Bunce, Competition between Electrochemical Advanced Oxidation and Electrochemical Hypochlorination of Sulfamethoxazole at a Boron-Doped Diamond Anode, Industrial & Engineering Chemistry Research, vol.49, issue.6, pp.49-2537, 2010.
DOI : 10.1021/ie900614d

K. P. De-amorim, L. L. Romualdo, and L. S. Andrade, Electrochemical degradation of sulfamethoxazole and trimethoprim at boron-doped diamond electrode: Performance, kinetics and reaction pathway, Separation and Purification Technology, vol.120, pp.319-327, 2013.
DOI : 10.1016/j.seppur.2013.10.010

M. Murugananthan, S. S. Latha, G. Bhaskar-raju, and S. Yoshihara, Role of electrolyte on anodic mineralization of atenolol at boron doped diamond and Pt electrodes, Separation and Purification Technology, vol.79, issue.1, pp.79-56, 2011.
DOI : 10.1016/j.seppur.2011.03.011

G. Perez, A. R. Fernandez-alba, A. M. Urtiaga, and I. Ortiz, Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment, Water Research, vol.44, issue.9, pp.2763-2772, 2010.
DOI : 10.1016/j.watres.2010.02.017

A. M. Urtiaga, G. Pérez, R. Ibáñez, and I. Ortiz, Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate, Desalination, vol.331, pp.331-357, 2013.
DOI : 10.1016/j.desal.2013.10.010

Y. Lan, C. Coetsier, C. Causserand, and K. G. Serrano, Abstract, International Journal of Chemical Reactor Engineering, vol.13, issue.2, pp.13-153, 2015.
DOI : 10.1515/ijcre-2014-0136

K. Serrano, P. A. Michaud, C. Comninellis, and A. Savall, Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes, Electrochimica Acta, vol.48, issue.4, pp.431-436, 2002.
DOI : 10.1016/S0013-4686(02)00688-6

M. Murugananthan, S. S. Latha, G. Bhaskar-raju, and S. Yoshihara, Anodic oxidation of ketoprofen???An anti-inflammatory drug using boron doped diamond and platinum electrodes, Journal of Hazardous Materials, vol.180, issue.1-3, pp.180-753, 2010.
DOI : 10.1016/j.jhazmat.2010.05.007

M. E. Bergmann, J. Rollin, and T. Iourtchouk, The occurrence of perchlorate during drinking water electrolysis using BDD anodes, Electrochimica Acta, vol.54, issue.7, pp.2102-2107, 2009.
DOI : 10.1016/j.electacta.2008.09.040

C. R. Costa, F. Montilla, E. Morallón, and P. Olivi, Electrochemical oxidation of acid black 210 dye on the boron-doped diamond electrode in the presence of phosphate ions: Effect of current density, pH, and chloride ions, Electrochimica Acta, vol.54, issue.27, pp.7048-7055, 2009.
DOI : 10.1016/j.electacta.2009.07.027

V. Schmalz, T. Dittmar, D. Haaken, and E. Worch, Electrochemical disinfection of biologically treated wastewater from small treatment systems by using borondoped diamond (BDD) electrodes ? Contribution for direct reuse of domestic wastewater, Water Res, pp.43-5260, 2009.

O. Scialdone, S. Randazzo, A. Galia, and G. Silvestri, Electrochemical oxidation of organics in water: Role of operative parameters in the absence and in the presence of NaCl, Water Research, vol.43, issue.8, pp.43-2260, 2009.
DOI : 10.1016/j.watres.2009.02.014

Á. Anglada, A. Urtiaga, I. Ortiz, D. Mantzavinos, and E. Diamadopoulos, Borondoped diamond anodic treatment of landfill leachate: Evaluation of operating variables and formation of oxidation by-products, Water Res, pp.45-828, 2011.

E. T. Urbansky and M. R. Schock, Issues in managing the risks associated with perchlorate in drinking water, Journal of Environmental Management, vol.56, issue.2, pp.79-95, 1999.
DOI : 10.1006/jema.1999.0274

B. P. Chaplin, Critical review of electrochemical advanced oxidation processes for water treatment applications, Environ. Sci.: Processes Impacts, vol.13, issue.6, pp.1182-1203, 2014.
DOI : 10.1016/j.elecom.2011.08.027

K. Viswanathan and B. V. Tilak, Chemical, Electrochemical, and Technological Aspects of Sodium Chlorate Manufacture, Journal of The Electrochemical Society, vol.131, issue.7, pp.1551-1559, 1984.
DOI : 10.1149/1.2115908

M. S. Siddiqui, Chlorine-ozone interactions: Formation of chlorate, Water Research, vol.30, issue.9, pp.2160-2170, 1996.
DOI : 10.1016/0043-1354(96)00071-1

L. R. Czarnetzki and L. J. Janssen, Formation of hypochlorite, chlorate and oxygen during NaCl electrolysis from alkaline solutions at an RuO2/TiO2 anode, Journal of Applied Electrochemistry, vol.128, issue.4, pp.22-315, 1992.
DOI : 10.1007/978-3-642-86547-3

Y. J. Jung, K. W. Baek, B. S. Oh, and J. Kang, An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: The effects of pH and reactive oxygen species and the results of kinetic studies, Water Research, vol.44, issue.18, pp.44-5345, 2010.
DOI : 10.1016/j.watres.2010.06.029

A. M. Polcaro, A. Vacca, M. Mascia, S. Palmas, and J. R. Ruiz, Electrochemical treatment of waters with BDD anodes: kinetics of the reactions involving chlorides, Journal of Applied Electrochemistry, vol.81, issue.8, pp.39-2083, 2009.
DOI : 10.1590/S0103-50532006000200003

M. E. Bergmann and J. Rollin, Product and by-product formation in laboratory studies on disinfection electrolysis of water using boron-doped diamond anodes, Catalysis Today, vol.124, issue.3-4, pp.198-203, 2007.
DOI : 10.1016/j.cattod.2007.03.038

]. O. Azizi, D. Hubler, G. Schrader, J. Farrell, and B. P. Chaplin, Mechanism of Perchlorate Formation on Boron-Doped Diamond Film Anodes, Environmental Science & Technology, vol.45, issue.24, pp.45-10582, 2011.
DOI : 10.1021/es202534w

C. Do, N. Brito, D. M. De-araújo, C. A. Martínez-huitle, and M. A. Rodrigo, Understanding active chlorine species production using boron doped diamond films with lower and higher sp3/sp2 ratio, Electrochem. Commun, pp.55-89, 2015.

S. Ferro, A. D. Battisti, I. Duo, C. Comninellis, W. Haenni et al., Chlorine Evolution at Highly Boron-Doped Diamond Electrodes, Journal of The Electrochemical Society, vol.147, issue.7, pp.2614-2619, 2000.
DOI : 10.1149/1.1393578

Y. Yang, J. J. Pignatello, J. Ma, and W. A. Mitch, Comparison of Halide Impacts on the Efficiency of Contaminant Degradation by Sulfate and Hydroxyl Radical-Based Advanced Oxidation Processes (AOPs), Environmental Science & Technology, vol.48, issue.4, pp.2344-2351, 2014.
DOI : 10.1021/es404118q

A. Donaghue and B. P. Chaplin, Effect of Select Organic Compounds on Perchlorate Formation at Boron-doped Diamond Film Anodes, Environmental Science & Technology, vol.47, issue.21, pp.47-2013
DOI : 10.1021/es4031672

I. Quesada, Y. Gonzalez, S. Schetrite, H. Budzinski, K. Le-menach et al., PANACEE??: Evaluation of the Functioning of a Membrane Bioreactor Treating Hospital Oncological Effluent, Revue des sciences de l'eau, vol.28, issue.1, p.28, 2015.
DOI : 10.7202/1030001ar

C. Racaud, A. Savall, P. Rondet, N. Bertrand, and K. G. Serrano, New electrodes for silver(II) electrogeneration: Comparison between Ti/Pt, Nb/Pt, and Nb/BDD, Chemical Engineering Journal, vol.211, issue.212, pp.211-212
DOI : 10.1016/j.cej.2012.09.010

URL : https://hal.archives-ouvertes.fr/hal-00906378

M. Panizza, P. A. Michaud, G. Cerisola, and C. Comninellis, Anodic oxidation of 2-naphthol at boron-doped diamond electrodes, Journal of Electroanalytical Chemistry, vol.507, issue.1-2, pp.206-214, 2001.
DOI : 10.1016/S0022-0728(01)00398-9

C. Sonntag and U. Von-gunten, Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications, Water Intelligence Online, vol.11, 2012.
DOI : 10.2166/9781780400839

H. Lutze, Sulfate radical based oxidation in water treatment, 2013.

P. Neta, V. Madhavan, H. Zemel, and R. W. Fessenden, Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds, Journal of the American Chemical Society, vol.99, issue.1, pp.99-163, 1977.
DOI : 10.1021/ja00443a030

I. T. Osgerby, ISCO Technology Overview: Do You Really Understand the Chemistry?, Contam. Soils Sediments Water, pp.287-308, 2006.
DOI : 10.1007/0-387-28324-2_19

Y. Ji, C. Ferronato, A. Salvador, X. Yang, and J. Chovelon, Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics, Science of The Total Environment, vol.472, pp.472-800, 2014.
DOI : 10.1016/j.scitotenv.2013.11.008

URL : https://hal.archives-ouvertes.fr/hal-00967478

M. M. Ahmed, S. Barbati, P. Doumenq, and S. Chiron, Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination, Chemical Engineering Journal, vol.197, pp.440-447, 2012.
DOI : 10.1016/j.cej.2012.05.040

URL : https://hal.archives-ouvertes.fr/hal-01456673

C. Liang, Z. Wang, and C. J. Bruell, Influence of pH on persulfate oxidation of TCE at ambient temperatures, Chemosphere, vol.66, issue.1, pp.66-106, 2007.
DOI : 10.1016/j.chemosphere.2006.05.026

F. Minisci, A. Citterio, and C. Giordano, Electron-transfer processes: peroxydisulfate, a useful and versatile reagent in organic chemistry, Accounts of Chemical Research, vol.16, issue.1, pp.16-27, 1983.
DOI : 10.1021/ar00085a005

G. R. Malpass, D. W. Miwa, S. A. Machado, P. Olivi, and A. J. Motheo, Oxidation of the pesticide atrazine at DSA?? electrodes, Journal of Hazardous Materials, vol.137, issue.1, pp.565-572, 2006.
DOI : 10.1016/j.jhazmat.2006.02.045

M. Panizza and G. Cerisola, Application of diamond electrodes to electrochemical processes, Electrochimica Acta, vol.51, issue.2, pp.191-199, 2005.
DOI : 10.1016/j.electacta.2005.04.023

T. N. Das, Radical in Aqueous Medium Chain Oxidation of Sulfite to Sulfate and Atmospheric Sulfuric Acid Generation, The Journal of Physical Chemistry A, vol.105, issue.40, pp.9142-9155, 2001.
DOI : 10.1021/jp011255h

H. Li and J. Ni, Electrogeneration of disinfection byproducts at a boron-doped diamond anode with resorcinol as a model substance, Electrochimica Acta, vol.69, pp.268-274, 2012.
DOI : 10.1016/j.electacta.2012.02.098

C. Flox, E. Brillas, A. Savall, and K. Groenen-serrano, Kinetic Study of the Electrochemical Mineralization of m-Cresol on a Boron-Doped Diamond Anode, Current Organic Chemistry, vol.16, issue.17, pp.16-1960, 2012.
DOI : 10.2174/138527212803251712

R. Castagna, J. P. Eiserich, M. S. Budamagunta, P. Stipa, C. E. Cross et al., Hydroxyl radical from the reaction between hypochlorite and hydrogen peroxide, Atmospheric Environment, vol.42, issue.26, pp.42-6551, 2008.
DOI : 10.1016/j.atmosenv.2008.04.029

A. Kraft, M. Stadelmann, M. Blaschke, D. Kreysig, B. Sandt et al., Electrochemical water disinfection Part I: Hypochlorite production from very dilute chloride solutions, J. Appl. Electrochem, pp.29-859, 1999.