M. I. Hood and E. P. Skaar, Nutritional immunity: transition metals at the pathogen???host interface, Nature Reviews Microbiology, vol.72, issue.8, pp.525-537, 2012.
DOI : 10.1111/j.1365-2958.2009.06698.x

URL : http://europepmc.org/articles/pmc3875331?pdf=render

E. D. Weinberg, Nutritional Immunity, JAMA, vol.231, issue.1, pp.39-41, 1975.
DOI : 10.1001/jama.1975.03240130021018

A. G. Budzikiewicz, Siderophores from bacteria and from fungi In Iron uptake and homeostasis in microorganisms, pp.1-16, 2010.

C. N. Cornelissen and A. Hollander, TonB-Dependent Transporters Expressed by Neisseria gonorrhoeae, Frontiers in Microbiology, vol.2, p.117, 2011.
DOI : 10.3389/fmicb.2011.00117

URL : https://www.frontiersin.org/articles/10.3389/fmicb.2011.00117/pdf

O. Cunrath, V. A. Geoffroy, and I. J. Schalk, : a role for siderophores, Environmental Microbiology, vol.24, issue.Part 10, pp.3258-3267, 2016.
DOI : 10.1007/s10534-010-9399-9

I. J. Schalk, M. Hannauer, and A. Braud, New roles for bacterial siderophores in metal transport and tolerance, Environmental Microbiology, vol.10, issue.11, pp.2844-2854, 2011.
DOI : 10.1186/1471-2164-10-78

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-2920.2011.02556.x/pdf

F. Minandri, Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection, Infection and Immunity, vol.84, issue.8, pp.2324-2335, 2016.
DOI : 10.1128/IAI.00098-16

URL : http://iai.asm.org/content/84/8/2324.full.pdf

H. J. Kim, Methanobactin, a Copper-Acquisition Compound from Methane-Oxidizing Bacteria, Science, vol.305, issue.5690, pp.1612-1615, 2004.
DOI : 10.1126/science.1098322

L. M. Dassama, G. E. Kenney, S. Y. Ro, E. L. Zielazinski, and A. Rosenzweig, Methanobactin transport machinery, Proc. Natl. Acad. Sci. USA, pp.13027-13032, 2016.
DOI : 10.1021/cb2003913

URL : http://www.pnas.org/content/113/46/13027.full.pdf

M. Si, Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis, Proc. Natl. Acad. Sci. USA, pp.2233-2242, 2017.
DOI : 10.1073/pnas.1614902114

URL : http://www.pnas.org/content/114/11/E2233.full.pdf

M. V. Cherrier, C. Cavazza, C. Bochot, D. Lemaire, and J. C. Fontecilla-camps, Biochemistry, vol.47, issue.38, pp.9937-9943, 2008.
DOI : 10.1021/bi801051y

H. Lebrette, Novel insights into nickel import in Staphylococcus aureus: the positive role of free histidine and structural characterization of a new thiazolidine-type nickel chelator, Metallomics, vol.20, issue.4, pp.4-00295, 2015.
DOI : 10.1007/s10534-006-9073-4

URL : https://hal.archives-ouvertes.fr/hal-01149525

M. M. Shaik, L. Cendron, M. Salamina, M. Ruzzene, and G. Zanotti, periplasmic receptor CeuE (HP1561) modulates its nickel affinity via organic metallophores, Molecular Microbiology, vol.106, issue.4, pp.724-735, 2014.
DOI : 10.1073/pnas.0904793106

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/mmi.12487

A. G. Bobrov, The Yersinia pestis Siderophore, Yersiniabactin, and the ZnuABC system both contribute to Zinc acquisition and the development of lethal septicemic plague in mice, Mol. Microbiol, 2014.

, SCIENtIFIC REPORTS |, vol.7

A. G. Bobrov, Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice, Metallomics, vol.23, issue.6, pp.757-772, 2017.
DOI : 10.1007/s10534-009-9286-4

D. Kallifidas, The Zinc-Responsive Regulator Zur Controls Expression of the Coelibactin Gene Cluster in Streptomyces coelicolor, Journal of Bacteriology, vol.192, issue.2, pp.608-611, 2010.
DOI : 10.1128/JB.01022-09

G. Ghssein, Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus, Science, vol.39, issue.3, pp.1105-1109, 2016.
DOI : 10.1007/BF01955293

URL : https://hal.archives-ouvertes.fr/hal-01495438

L. Remy, Opp1 ABC transporter imports nickel and cobalt in zinc-depleted conditions and contributes to virulence, Molecular Microbiology, vol.72, issue.4, pp.730-743, 2013.
DOI : 10.1128/IAI.72.9.5522-5525.2004

URL : https://hal.archives-ouvertes.fr/hal-01001590

Y. Ding, Y. Fu, J. C. Lee, and D. C. Hooper, Staphylococcus aureus NorD, a Putative Efflux Pump Coregulated with the Opp1 Oligopeptide Permease, Contributes Selectively to Fitness In Vivo, Journal of Bacteriology, vol.194, issue.23, pp.6586-6593, 2012.
DOI : 10.1128/JB.01414-12

P. Bielecki, In-Vivo Expression Profiling of Pseudomonas aeruginosa Infections Reveals Niche-Specific and Strain-Independent Transcriptional Programs, PLoS ONE, vol.1, issue.9, p.24235, 2011.
DOI : 10.1371/journal.pone.0024235.s017

URL : http://doi.org/10.1371/journal.pone.0024235

M. Gi, A novel siderophore system is essential for the growth of Pseudomonas aeruginosa in airway mucus, Scientific Reports, vol.58, p.14644, 2015.
DOI : 10.1128/AAC.03063-14

V. G. Pederick, ZnuA and zinc homeostasis in Pseudomonas aeruginosa, Scientific Reports, vol.14, issue.1, p.13139, 2015.
DOI : 10.1101/gr.849004

URL : http://www.nature.com/articles/srep13139.pdf

V. Solovyev and A. Salamov, Automatic Annotation of Microbial Genomes and Metagenomic Sequences, Metagenomics and its Applications in Agriculture, pp.61-78, 2011.

M. Pawlik, The Zinc-Responsive Regulon of Neisseria meningitidis Comprises 17 Genes under Control of a Zur Element, Journal of Bacteriology, vol.194, issue.23, pp.6594-6603, 2012.
DOI : 10.1128/JB.01091-12

S. I. Patzer and K. Hantke, Journal of Biological Chemistry, vol.33, issue.32, pp.24321-24332, 2000.
DOI : 10.1016/0378-1119(85)90120-9

M. L. Ellison, The Transcriptional Regulator Np20 Is the Zinc Uptake Regulator in Pseudomonas aeruginosa, PLoS ONE, vol.193, issue.9, p.75389, 2013.
DOI : 10.1371/journal.pone.0075389.s003

J. Thompson and J. A. Donkersloot, N-(Carboxyalkyl)Amino Acids: Occurrence Synthesis and Functions, Annual Review of Biochemistry, vol.61, issue.1, pp.517-557, 1992.
DOI : 10.1146/annurev.bi.61.070192.002505

M. F. Barber and N. C. Elde, Buried Treasure: Evolutionary Perspectives on Microbial Iron Piracy, Trends in Genetics, vol.31, issue.11, pp.627-636, 2015.
DOI : 10.1016/j.tig.2015.09.001

URL : http://europepmc.org/articles/pmc4639441?pdf=render

D. Orazio and M. , The capability of Pseudomonas aeruginosa to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter, Metallomics, vol.101, issue.6, pp.1023-1035, 2015.
DOI : 10.1073/pnas.0304622101

T. G. Nakashige, The Hexahistidine Motif of Host-Defense Protein Human Calprotectin Contributes to Zinc Withholding and Its Functional Versatility, Journal of the American Chemical Society, vol.138, issue.37, pp.12243-12251, 2016.
DOI : 10.1021/jacs.6b06845

S. Vignesh, K. Deepe, and G. S. , Immunological orchestration of zinc homeostasis: The battle between host mechanisms and pathogen defenses, Archives of Biochemistry and Biophysics, vol.611, pp.66-78, 2016.
DOI : 10.1016/j.abb.2016.02.020

G. Ganne, Involves Three New Actors: FpvC, FpvG, and FpvH, ACS Chemical Biology, vol.12, issue.4, pp.1056-1065, 2017.
DOI : 10.1021/acschembio.6b01077

M. C. Mastropasqua, in zinc poor environments is promoted by a nicotianamine-related metallophore, Molecular Microbiology, vol.290, issue.4, p.13834, 2017.
DOI : 10.1074/jbc.R115.645085

A. Braud, M. Hannauer, G. L. Mislin, and I. J. Schalk, The Pseudomonas aeruginosa Pyochelin-Iron Uptake Pathway and Its Metal Specificity, Journal of Bacteriology, vol.191, issue.11, pp.3517-3525, 2009.
DOI : 10.1128/JB.00010-09

URL : https://jb.asm.org/content/191/11/3517.full.pdf

J. Jeong, ABSTRACT, Applied and Environmental Microbiology, vol.78, issue.15, pp.5440-5443, 2012.
DOI : 10.1128/AEM.00844-12

V. Viarre, HxcQ Liposecretin Is Self-piloted to the Outer Membrane by Its N-terminal Lipid Anchor, Journal of Biological Chemistry, vol.247, issue.49, pp.33815-33823, 2009.
DOI : 10.1016/0378-1119(86)90358-6

URL : http://www.jbc.org/content/284/49/33815.full.pdf