A. T. Bender and J. A. Beavo, Cyclic Nucleotide Phosphodiesterases: Molecular Regulation to Clinical Use, Pharmacological Reviews, vol.58, issue.3, pp.488-520, 2006.
DOI : 10.1124/pr.58.3.5

URL : http://pharmrev.aspetjournals.org/content/pharmrev/58/3/488.full.pdf

H. Nguyen and A. M. Amanullah, Therapeutic potentials of phosphodiesterase-5 inhibitors in cardiovascular disease, Rev. Cardiovasc. Med, vol.15, pp.158-167, 2014.

R. M. Wallis, J. D. Corbin, S. H. Francis, and P. Ellis, Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro, The American Journal of Cardiology, vol.83, issue.5, pp.3-12, 1999.
DOI : 10.1016/S0002-9149(99)00042-9

J. D. Corbin and S. H. Francis, Pharmacology of phosphodiesterase-5 inhibitors, Int. J. Clin. Pract, vol.56, pp.453-459, 2002.

J. Yuan, R. Zhang, Z. Yang, J. Lee, Y. Liu et al., Comparative Effectiveness and Safety of Oral Phosphodiesterase Type 5 Inhibitors for Erectile Dysfunction: A Systematic Review and Network Meta-analysis, European Urology, vol.63, issue.5, pp.902-912, 2013.
DOI : 10.1016/j.eururo.2013.01.012

H. Zhang, Y. Xu, and J. Donnell, Chapter 7: Inhibition of Cyclic Nucleotide Phosphodiesterases to Regulate Memory, Cyclic-Nucleotide Phosphodiesterases In The Central Nervous System: From Biology to Drug Discovery, pp.2014-171

J. Kotera, K. Fujishige, and K. Omori, Immunohistochemical Localization of cGMP-binding cGMP-specific Phosphodiesterase (PDE5) in Rat Tissues, Journal of Histochemistry & Cytochemistry, vol.7, issue.5, pp.685-693, 2000.
DOI : 10.1046/j.1432-1327.1998.2550391.x

A. T. Bender and J. A. Beavo, Specific localized expression of cGMP PDEs in Purkinje neurons and macrophages, Neurochemistry International, vol.45, issue.6, pp.853-857, 2004.
DOI : 10.1016/j.neuint.2004.03.015

D. Giordano, M. E. De-stefano, G. Citro, A. Modica, M. Giorgi et al., Expression of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in mouse tissues and cell lines using an antibody against the enzyme amino-terminal domain Species differences in the localization of cGMP-producing and NO-responsive elements in the mouse and rat hippocampus using cGMP immunocytochemistry, Boess, F.G. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues, pp.16-27, 2001.

K. Loughney, T. R. Hill, V. A. Florio, L. Uher, G. J. Rosman et al., Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3???,5???-cyclic nucleotide phosphodiesterase, Gene, vol.216, issue.1, pp.139-147, 1998.
DOI : 10.1016/S0378-1119(98)00303-5

C. A. Peixoto, A. K. Nunes, and A. Garcia-osta, Phosphodiesterase-5 Inhibitors: Action on the Signaling Pathways of Neuroinflammation, Neurodegeneration, and Cognition, Mediators of Inflammation, vol.35, issue.1???3, p.940207, 2015.
DOI : 10.1016/j.mad.2015.07.002

A. Ugarte, F. Gil-bea, C. Garcia-barroso, A. Cedazo-minguez, M. J. Ramirez et al., Decreased levels of guanosine 3???, 5???-monophosphate (cGMP) in cerebrospinal fluid (CSF) are associated with cognitive decline and amyloid pathology in Alzheimer's disease, Neuropathology and Applied Neurobiology, vol.55, issue.4, pp.471-482, 2015.
DOI : 10.1021/jm3009635

T. Umar and N. Hoda, Selective inhibitors of phosphodiesterases: therapeutic promise for neurodegenerative disorders, MedChemComm, vol.123, issue.12, pp.2063-2080
DOI : 10.1016/j.neuroscience.2003.11.009

D. Puzzo, A. Staniszewski, S. X. Deng, L. Privitera, E. Leznik et al., Phosphodiesterase 5 Inhibition Improves Synaptic Function, Memory, and Amyloid-?? Load in an Alzheimer's Disease Mouse Model, Journal of Neuroscience, vol.29, issue.25, pp.8075-8086, 2009.
DOI : 10.1523/JNEUROSCI.0864-09.2009

A. Palmeri, L. Privitera, S. Giunta, C. Loreto, and D. Puzzo, Inhibition of phosphodiesterase-5 rescues age-related impairment of synaptic plasticity and memory, Behavioural Brain Research, vol.240, pp.11-20, 2013.
DOI : 10.1016/j.bbr.2012.10.060

J. Zhang, J. Guo, X. Zhao, Z. Chen, G. Wang et al., Phosphodiesterase-5 inhibitor sildenafil prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in APP/PS1 transgenic mice, Behavioural Brain Research, vol.250, pp.230-237
DOI : 10.1016/j.bbr.2013.05.017

D. Puzzo, C. Loreto, S. Giunta, G. Musumeci, G. Frasca et al., Effect of phosphodiesterase-5 inhibition on apoptosis and beta amyloid load in aged mice, Neurobiology of Aging, vol.35, issue.3, pp.520-531, 2014.
DOI : 10.1016/j.neurobiolaging.2013.09.002

S. Jakobsen, G. M. Kodahl, A. K. Olsen, and P. Cumming, Synthesis, radiolabeling and in vivo evaluation of [11C]RAL-01, a potential phosphodiesterase 5 radioligand, Nuclear Medicine and Biology, vol.33, issue.5, pp.593-597, 2006.
DOI : 10.1016/j.nucmedbio.2006.04.006

R. Chekol, O. Gheysens, J. Cleynhens, P. Pokreisz, G. Vanhoof et al., Evaluation of PET radioligands for in vivo visualization of phosphodiesterase 5 (PDE5), Nuclear Medicine and Biology, vol.41, issue.2, pp.155-162, 2014.
DOI : 10.1016/j.nucmedbio.2013.10.007

I. G. Dopeso-reyes, J. L. Lanciego, A. Garcia-osta, J. Llop, J. Oyarzabal et al., Pharmacokinetic investigation of sildenafil using positron emission tomography and determination of its effect on cerebrospinal fluid cGMP levels, J. Neurochem, vol.136, issue.23, pp.403-415, 2016.

J. Liu, A. Besset, B. Wenzel, D. Canitrot, A. Baufond et al., Development of new PET neuroimaging probes: fluorinated quinoline derivatives with high affinity for PDE5
URL : https://hal.archives-ouvertes.fr/hal-01671041

Y. Bi, P. Stoy, L. Adam, B. He, J. Krupinski et al., Quinolines as extremely potent and selective PDE5 inhibitors as potential agents for treatment of erectile dysfunction, Bioorganic & Medicinal Chemistry Letters, vol.14, issue.6, pp.1577-1580, 2004.
DOI : 10.1016/j.bmcl.2003.12.090

S. X. Deng, D. W. Landry, and O. Arancio, Synthesis of quinoline derivatives: discovery of a potent and selective phosphodiesterase 5 inhibitor for the treatment of Alzheimer's disease, Eur. J. Med. Chem, vol.60, pp.285-294, 2013.

K. Omori and J. Kotera, Overview of PDEs and their regulation Cumming, P. A business of some heat: molecular imaging of phosphodiesterase 5 Direct plasma metabolite analysis of positron emission tomography radioligands by micellar liquid chromatography with radiometric detection, Circ. Res. J. Neurochem. Nakao, R Anal. Chem, vol.100, issue.84, pp.309-327, 2007.

S. Schröder, B. Wenzel, W. Deuther-conrad, R. Teodoro, U. Egerland et al., Synthesis, 18F-Radiolabelling and Biological Characterization of Novel Fluoroalkylated Triazine Derivatives for in Vivo Imaging of Phosphodiesterase 2A in Brain via Positron Emission Tomography, Molecules, vol.47, issue.6, pp.9591-9615, 2015.
DOI : 10.1021/jo0003044

M. Rambla-alegre, Basic Principles of MLC, Chromatography Research International, vol.1217, issue.11, pp.1-6, 2012.
DOI : 10.1016/j.chroma.2010.01.041

M. J. Ruiz-angel, S. Carda-broch, J. R. Torres-lapasio, and M. C. Garcia-alvarez-coque, Retention mechanisms in micellar liquid chromatography, Journal of Chromatography A, vol.1216, issue.10, pp.1798-1814, 2009.
DOI : 10.1016/j.chroma.2008.09.053

B. Testa and S. D. Krämer, The Biochemistry of Drug Metabolism - An Introduction, Chemistry & Biodiversity, vol.4, issue.3, pp.257-405, 2007.
DOI : 10.1002/cbdv.200790032

M. Kuchar and C. Mamat, Methods to Increase the Metabolic Stability of 18F-Radiotracers, Molecules, vol.21, issue.9, pp.16186-16220, 2015.
DOI : 10.1002/ange.201107957

S. S. Zoghbi, H. U. Shetty, M. Ichise, M. Fujita, M. Imaizumi et al., PET imaging of the dopamine transporter with [ 18 F]FECNT: A polar radiometabolite confounds brain radioligand measurements, J. Nucl. Med, vol.47, pp.520-527, 2006.

T. J. Tewson and M. J. Welch, Preparation and preliminary biodistribution of no carrier added F-18 fluoroethanol, J. Nucl. Med, vol.21, pp.559-564, 1980.

S. D. Krämer, S. M. Ametamey, and M. J. Welch, Synthesis, radiolabelling and in vitro and in vivo evaluation of a novel fluorinated ABP688 derivative for the PET imaging of metabotropic glutamate receptor subtype 5, Am. J. Nucl. Med. Mol. Imaging, vol.2, pp.14-28, 2012.

J. A. Katzenellenbogen, N. Hundal, J. Lau, F. Benard, S. Dedhar et al., The interaction of resonance and inductive effects may be a fundamental determinant in the metabolic liability of fluorine-substituted compoundsS. 2- [ 18 F]Fluoroethanol and 3-[ 18 F]fluoropropanol: facile preparation, biodistribution in mice, and their application as nucleophiles in the synthesis of [ 18 F]fluoroalkyl aryl ester and ether PET tracers, metabolic defluorination vitro and in vivo evaluation of fluorine-18 labelled FE-GW405833 as a PET tracer for type 2 cannabinoid receptor imaging, pp.431-433, 1991.

J. Joossens, K. Augustyns, and S. Stroobants, Staelens, S. Synthesis and preclinical evaluation of an 18 F labeled PDE7 inhibitor for PET neuroimaging, Nucl. Med. Biol, vol.42, pp.975-981, 2015.

A. Hiller, D. Briel, and P. Brust, Radiosynthesis and radiotracer properties of a 7-(2- [ 18 F]fluoroethoxy)-6-methoxypyrrolidinylquinazoline for imaging of phosphodiesterase 10A with PET, pp.169-188
URL : https://hal.archives-ouvertes.fr/hal-01677646

K. J. Langen, Whole-body distribution and dosimetry of O-(2-[ 18 F]fluoroethyl)-L-tyrosine, Eur. J. Nucl. Med. Mol. Imaging, vol.30, pp.519-524, 2003.