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RÉSUMÉ. Dans ce travail, nous étudions l’existence des solutions positives pour un problème aux

limites en plusieurs points pour une équation différentielle du second ordre avec retard. Sous cer-

taines conditions de croissance sur la non-linéarité, et moyennant le théorème du point fixe de Leray-

Schauder, on obtient des conditions suffisantes pour l’existence d’une solution non triviale, ce qui

améliorent les résultats de J. Chen et al. [3].

ABSTRACT. In this work, we investigate the existence of positive solutions for a multi-point boundary

value problem for a second order delay differential equation. Under certain growth conditions on the

nonlinearity, and by the mean of Leray-Schauder fixed point theorem, sufficient conditions for the

existence of nontrivial solution are obtained, which improve the results of J. Chen et al. [3].
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1. Introduction

The boundary value problems for delay differential equations arise in a variety of

areas of applied mathematics, physics and variational problems of control theory [4].

Recently, many researchers have done a great deal of research works upon boundary value

problems of lower order differential equations with delay, and some interesting results

were produced, see for example [1], [2] and [6]-[9].

In this work, we study the existence of positive solutions of the following nonlinear multi-

point boundary value problem with delay

u
′′

(t) + λa(t)f(t, u(t− τ)) = 0, t ∈ [0, 1],
u(t) = βu(η), −τ ≤ t ≤ 0,
u(1) = αu(η)

[1]

where 0 < τ < 1, 0 < η < 1, 0 < α < 1
η and 0 < β < 1−αη

1−η are constants, and λ is a

positive real parameter.

The paper is organized as follows, in section tow we give definitions and preliminaries,

and in section there we give our main results.

2. Preliminaries

In this section we give some preliminary results.

Definition 1

u(t) is called a positive solution of (1) if u ∈ C[−τ, 1]∩C2(0, 1), u(t) ≥ 0 for t ∈ (0, 1)
and satisfies (1).

Lemma 1

Let β 6= 1−αη
1−η . Then for y ∈ C([0, T ], R), the boundary value problem

u′′(t) + y(t) = 0, t ∈ [0, T ], [2]

u(0) = βu(η), u(1) = αu(η) [3]

has a unique solution

u(t) =

∫ 1

0

G(t, s)y(s)ds [4]

where

G(t, s) = g(t, s) +
β + (α− β)t

(1− αη)− β(1− η)
g(η, s) [5]

and

g(t, s) =

{

s(1 − t), 0 ≤ s ≤ t ≤ 1,
t(1 − s), 0 ≤ t ≤ s ≤ 1.



PROOF. — From equation (2), we have

u(t) = u(0) + u′(0)t−

∫ t

0

(t− s)y(s)ds := A+Bt−

∫ t

0

(t− s)y(s)ds

with
u(0) = A,
u(η) = A+Bη −

∫ η

0 (η − s)y(s)ds

and

u(1) = A+B −

∫ 1

0

(1 − s)y(s)ds.

From u(0) = βu(η), we have

(1− β)A −Bβη = −β

∫ η

0

(η − s)y(s)ds.

From u(1) = αu(η), we have

(1− α)A+B(1 − αη) =

∫ 1

0

(1− s)y(s)ds− α

∫ η

0

(η − s)y(s)ds.

Therefore,

A =
βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)y(s)ds−
β

(1 − αη)− β(1 − η)

∫ η

0

(η − s)y(s)ds

and

B =
1− β

(1− αη)− β(1 − η)

∫ 1

0

(1− s)y(s)ds−
α− β

(1− αη)− β(1 − η)

∫ η

0

(η− s)y(s)ds.

From which it follows that

u(t) =
βη

(1− αη)− β(1 − η)

∫ 1

0

(1 − s)y(s)ds−
β

(1− αη)− β(1 − η)

∫ η

0

(η − s)y(s)ds

+
(1− β)t

(1− αη) − β(1− η)

∫ 1

0

(1− s)y(s)ds−
(α− β)t

(1− αη) − β(1− η)

∫ η

0

(η − s)y(s)ds

−

∫ t

0

(t− s)y(s)ds

= −

∫ t

0

(t− s)y(s)ds+
(β − α)t− β

(1− αη) − β(1− η)

∫ η

0

(η − s)y(s)ds

+
(1− β)t+ βη

(1− αη) − β(1− η)

∫ 1

0

(1− s)y(s)ds

=

∫ 1

0

g(t, s)y(s)ds+
β + (α− β)t

(1 − αη)− β(1 − η)

∫ 1

0

g(η, s)y(s)ds.



Then, u(t) =
∫ 1

0 G(t, s)y(s)ds. The function u presented above is the unique solution to

the problem (2), (3).

Lemma 2

Let 0 < α < 1
η and 0 ≤ β < 1−αη

1−η . If y ∈ C([0, 1], [0,∞)), then the unique solution u
of the problem (2), (3) satisfies

u(t) ≥ 0, t ∈ [0, 1].

PROOF. — We know that if u′′(t) = −y(t) ≤ 0 for t ∈ (0, 1), u(0) ≥ 0 and u(1) ≥ 0,
then u(t) ≥ 0 for t ∈ [0, 1]. We have

u(0) =
−β

(1− αη)− β(1 − η)

∫ η

0

(η − s)y(s)ds+
βη

(1− αη)− β(1 − η)

∫ 1

0

(1 − s)y(s)ds

=
β

(1− αη)− β(1 − η)
[−

∫ η

0

(η − s)y(s)ds+ η

∫ η

0

(1− s)y(s)ds]

+
βη

(1− αη) − β(1− η)

∫ 1

η

(1− s)y(s)ds

=
β

(1− αη)− β(1 − η)
[

∫ η

0

s(1− η)y(s)ds] +
βη

(1− αη) − β(1− η)

∫ 1

η

(1− s)y(s)ds ≥ 0

and

u(1) = −

∫ 1

0

(1− s)y(s)ds+
(β − α)− β

(1− αη) − β(1− η)

∫ η

0

(η − s)y(s)ds

+
(1− β) + βη

(1− αη)− β(1 − η)

∫ 1

0

(1− s)y(s)ds

=
α

(1− αη) − β(1− η)
[η

∫ 1

0

(1− s)y(s)ds+

∫ η

0

(η − s)y(s)ds]

≥
α

(1− αη) − β(1− η)
[η

∫ η

0

(1 − s)y(s)ds+

∫ η

0

(η − s)y(s)ds]

=
α

(1− αη) − β(1− η)

∫ η

0

s(1− η)y(s)ds ≥ 0.

Then, u(t) ≥ 0 ∀t ∈ [0, 1].

Lemma 3 The function g has the following properties

(i) 0 ≤ g(t, s) ≤ s(1 − s) = g(s, s) ∀t, s ∈ [0, 1].

(ii) Let θ ∈ [0, 12 ]. Then, for t ∈ [θ, 1− θ] and s ∈ [0, 1], we have

g(t, s) ≥ min{t, 1− t}g(s, s) ≥ θg(s, s).



PROOF. — For 0 ≤ s ≤ t ≤ 1, we have

0 ≤ g(t, s) = s(1− t) ≤ s(1− s) = g(s, s).

And for 0 ≤ t ≤ s ≤ 1, we have

g(t, s) = t(1− s) ≤ s(1− s) = g(s, s).

Thus (i) holds.

If s = 0 or s = 1, we show that (ii) holds.

For 0 < s ≤ t ≤ 1 and s 6= 1 we have

g(t, s)

g(s, s)
=

t(1 − s)

s(1− s)
=

t

s
≥ t ∀t ∈ [0, 1].

For 0 ≤ t ≤ s < 1 and s 6= 0 we have

g(t, s)

g(s, s)
=

s(1− t)

s(1 − s)
=

(1− t)

(1 − s)
≥ (1 − t) ∀t ∈ [0, 1].

Then

g(t, s) ≥ min{t, 1− t}g(s, s).

Thus, there exist θ ∈]0, 1
2 ] such that

g(t, s)

g(s, s)
≥ θ, ∀t ∈ [θ, 1− θ]

Thus (ii) holds.

Lemma 4 The function G has the following properties

(i) G(t, s) ≥ 0 ∀t, s ∈ [0, 1],

(ii) G(t, s) ≤ k1g(s, s) ∀t, s ∈ [0, 1] and k1 = 1 +
max{α, β}

(1− αη)− β(1 − η)
,

(iii) min
θ≤t≤1−θ

G(t, s) ≥ k2g(s, s) ∀t, s ∈ [0, 1] where θ ∈ (0, 12 ) and

k2 = θ

[

1 +
β +min{(α− β)θ, (α − β)(1 − θ)}

(1− αη) − β(1− η)

]

PROOF. —

(i) From equation (5) and (i) of Lemma 3, we get

G(t, s) ≥ 0 ∀t, s ∈ [0, 1].



(ii) By equation (5) and (i) of Lemma 3, we have

G(t, s) = g(t, s) +
β + (α− β)t

(1− αη)− β(1− η)
g(η, s)

≤ g(s, s) +
max(α, β)

(1− αη) − β(1− η)
g(s, s) = k1g(s, s).

(iii) From (ii) of Lemma 3, for t ∈ [θ, 1− θ] we have

G(t, s) = g(t, s) +
β + (α− β)t

(1− αη)− β(1 − η)
g(η, s)

≥ θg(s, s) +
β +min{(α− β)θ, (α − β)(1 − θ)}

(1 − αη)− β(1 − η)
θg(s, s)

≥ θ

[

1 +
β +min{(α− β)θ, (α − β)(1 − θ)}

(1− αη)− β(1 − η)

]

g(s, s) = k2g(s, s).

Lemma 5 If y ∈ C([0, 1]) and y ≥ 0, then the unique solution u of the boundary value

problem (2), (3) satisfies min
θ≤t≤1−θ

u(t) ≥ γ‖u‖1 where ‖u‖1 := sup{|u(t)|; 0 ≤ t ≤ 1}

and γ :=
k2
k1

.

PROOF. — For any t ∈ [0, 1], by Lemma 4 we have

u(t) =

∫ 1

0

G(t, s)y(s)ds ≤ k1

∫ 1

0

g(s, s)y(s)ds,

thus ||u||1 ≤ k1
∫ 1

0
g(s, s)y(s)ds. Moreover, from (iii) of Lemma 4 for t ∈ [θ, 1− θ], we

have

u(t) =

∫ 1

0

G(t, s)y(s)ds ≥ k2

∫ 1

0

g(s, s)y(s)ds ≥
k2
k1

||u||1.

Therefore min
θ≤t≤1−θ

u(t) ≥ γ‖u‖1.

By Lemma 1, we can show that the BVP (2), (3) has a solution u = u(t) if and only if u

is a solution of the operator equation u = Tu, where

Tu(t) =







βu(η), −τ ≤ t ≤ 0,

λ

∫ 1

0

G(t, s)a(s)f(s, u(s− τ))ds, 0 ≤ t ≤ 1.

We assume the following hypothesis :



(H1) f ∈ C([0, 1]× [0,∞); [0,∞)),

(H2) a ∈ C([0, 1]; [0,∞)) and there exists t0 ∈ (0, 1) such that a(t0) > 0,
Let define,

f0 := lim sup
u→0

max
t∈[0,1]

f(t, u)

u
, f∞ := lim sup

u→∞
max
t∈[0,1]

f(t, u)

u
,

M1 := β

∫ τ

0

g(s, s)a(s)ds+

∫ 1

τ

g(s, s)a(s)ds and M2 :=

∫ 1

0

g(s, s)a(s)ds.

The proof of our main results is based upon an application of the following Leray-Schauder

fixed point theorem.

Theorem 2.1 ([5])

Let Ω be a convex subset of a Banach space X , 0 ∈ Ω and Φ : Ω → Ω be a completely

continuous operator. Then either

1) Φ has at least one fixed point in Ω, or

2) the set {x ∈ Ω/x = µΦx, 0 < µ < 1} is unbounded.

3. Main results

Let X = C[−τ, 1] be a Banach space with norm ||u|| = sup{|u(t)| : −τ ≤ t ≤ 1}.

Theorem 3.1

Assume (H1) and (H2) hold. If f0 < ∞, then the boundary value problem (1) has at

least one positive solution.

PROOF. — Choose ǫ > 0 such that (f0+ ǫ)λk1M1 ≤ 1. Since f0 < ∞, then there exists

constant B > 0, such that f(s, u) < (f0 + ǫ)u for 0 < u ≤ B.

Let

Ω = {u /u ∈ C([−τ, 1]), u ≥ 0, ‖u‖ ≤ B, min
θ≤t≤1−θ

u(t) ≥ γ‖u‖}.

Then Ω is a convex subset of X.
For u ∈ Ω, by Lemmas 2 and 5, we know that Tu(t) ≥ 0 and min

θ≤t≤1−θ
(Tu)(t) ≥ γ‖Tu‖.

Moreover,

Tu ≤ λk1

∫ 1

0

g(s, s)a(s)f(s, u(s− τ))ds

≤ λ(f0 + ǫ)k1

∫ 1

0

g(s, s)a(s)u(s− τ)

= λ(f0 + ǫ)k1

(∫ τ

0

g(s, s)a(s)βu(η)ds +

∫ 1

τ

g(s, s)a(s)u(s− τ)ds

)



≤ λ(f0 + ǫ)k1

(

β

∫ τ

0

g(s, s)a(s)ds+

∫ 1

τ

g(s, s)a(s)ds

)

‖u‖

≤ ‖u‖ ≤ B.

Thus, ‖Tu‖ ≤ B. Hence, TΩ ⊂ Ω.
We shall show that T is completely continuous.

Suppose un → u (n → ∞) and un ∈ Ω ∀n ∈ N, then there exists M > 0 such that

‖un‖ ≤ M.
Since f is continuous on [0, 1]× [0,M ], it is uniformly continuous.

Therefore, ∀ε > 0 there exists δ > 0 such that |x − y| < δ implies |f(s, x)− f(s, y)| <
ǫ ∀s ∈ [0, 1], x, y ∈ [0,M ] and there exists N such that ‖un − u‖ < δ for n > N, so

|f(s, un(s− τ)) − f(s, u(s− τ))| < ε, for n > N and s ∈ [0, 1].
This implies

|Tun(t)− Tu(t)| ≤ λk1

∫ 1

0

g(s, s)a(s)|f(s, un(s− τ)) − f(s, u(s− τ)|ds

≤ λǫk1

∫ 1

0

g(s, s)a(s)ds.

Therefore T is continuous.

Let D be any bounded subset of Ω, then there exists γ > 0 such that ||u|| ≤ γ for all

u ∈ D.
Since f is continuous on [0, 1]× [0, γ] there exists L > 0 such that |f(t, v)| < L ∀(t, v) ∈
[0, 1]× [0, γ].
Consequently, for all u ∈ D and t ∈ [0.1] we have

|Tu(t)| ≤

∣

∣

∣

∣

λk1

∫ 1

0

g(s, s)a(s)f(s, u(s− τ))ds

∣

∣

∣

∣

≤ λk1L
∫ 1

0
g(s, s)a(s)ds.

Which implies the boundedness of TD.
Since G is continuous on [0, 1]× [0, 1], it is uniformly continuous.

Then ∀ǫ > 0 there exists δ > 0 such that |t1 − t2| < δ implies that |G(t1, s) −

G(t2, s)| < ǫ ∀s ∈ [0, 1]. So, if u ∈ D, |Tu(t1) − Tu(t2)| ≤ λ

∫ 1

0

|G(t1, s) −

G(t2, s)|a(s)f(s, un(s− τ))ds ≤ λLǫ

∫ 1

0

a(s)ds.

From the arbitrariness of ǫ, we get the equicontinuity of TD.

The operator T is completely continuous by the mean of the Ascoli-Arzela theorem.

For u ∈ Ω and u = µTu, 0 < µ < 1, we have u(t) = µTu(t) < Tu(t) < B, which

implies ‖u‖ ≤ B. So, {x ∈ Ω/x = µΦx, 0 < µ < 1} is bounded.

By theorem 2.1, we deduce that operator T has at least one fixed point in Ω. Thus the



boundary value problem (1) has at least one positive solution.

REMARK. —

The conditions of Theorem 3.1 are weaker than those of Theorem 3.1 in [3].

Theorem 3.2

Assume (H1)− (H2) hold. If f∞ < ∞ is satisfied, then the boundary value problem (1)

has at least one positive solution.

PROOF. — Choose ǫ > 0 such that (f∞ + ǫ)λk1M1 ≤
1

2
. Since f∞ < ∞, then there

exists constant N > 0, such that f(s, u) < (f∞ + ǫ)u for u > N .

Let B > 0 such that

B ≥ N + 1+ 2λk1M2 max
0 ≤ s ≤ 1
0 ≤ u ≤ N

f(s, u).

Let

Ω = {u/u ∈ C[−τ, 1], u ≥ 0, ‖u‖ ≤ B, min
θ≤t≤1−θ

u(t) ≥ γ‖u‖}.

Then Ω is a convex subset of X.
For u ∈ Ω, by Lemmas 2 and 5, we have Tu(t) ≥ 0 and min

θ≤t≤1−θ
(Tu)(t) ≥ γ‖Tu‖.

Moreover, for u ∈ Ω, we have

Tu(t) = λ

∫ 1

0

G(t, s)a(s)f(s, u(s− τ))ds

≤ λk1

∫ 1

0

g(s, s)a(s) f(s, u(s− τ))ds

= λk1

(

∫

J1={s∈[0,1]/u>N}

g(s, s)a(s)f(s, u(s− τ))ds

+

∫

J2={s∈[0,1]/u≤N}

g(s, s)a(s)f(s, u(s− τ))ds

)

≤ λk1











∫ 1

0

g(s, s)a(s)(f∞ + ǫ)u(s− τ)ds+

∫ 1

0

g(s, s)a(s) max
0 ≤ s ≤ 1
0 ≤ u ≤ N

f(s, u(s− τ))ds











≤ λk1

(

(f∞ + ǫ)

[

β

∫ τ

0

g(s, s)a(s)ds+

∫ 1

τ

g(s, s)a(s)ds

]

‖u‖

+

∫ 1

0

g(s, s)a(s) max
0 ≤ s ≤ 1
0 ≤ u ≤ N

f(s, u(s− τ))ds













≤ λ(f∞ + ǫ)k1M1B + λk1M2 max
0 ≤ s ≤ 1
0 ≤ u ≤ N

f(s, u(s− τ)) ≤
B

2
+

B

2
= B.

Thus, ‖Tu‖ ≤ B. Hence, TΩ ⊂ Ω.
We can show that T : Ω → Ω is completely continuous.

For u ∈ Ω and u = µTu, 0 < µ < 1, we have u(t) = µTu(t) < Tu(t) < B, which

implies ‖u‖ ≤ B. So, {x ∈ Ω/x = µΦx, 0 < µ < 1} is bounded.

By theorem 2.1, we show that the operator T has at least one fixed point in Ω.

Thus, the boundary value problem (1) has at least one positive solution.

REMARK. —

The conditions of Theorem 3.2 are weaker than those of Theorem 3.2 in [3].
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