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SAMM, Université Panthéon-Sorbonne (Paris I), 90 rue de Tolbiac, 75013 Paris, FRANCE

Abstract

This paper is devoted to the offline multiple changes detection for long-range dependence processes. The

observations are supposed to satisfy a semi-parametric long-range dependence assumption with distinct

memory parameters on each stage. A penalized local Whittle contrast is considered for estimating all the

parameters, notably the number of changes. The consistency as well as convergence rates are obtained.

Monte-Carlo experiments exhibit the accuracy of the estimators. They also show that the estimation of the

number of breaks is improved by using a data-driven slope heuristic procedure of choice of the penalization

parameter.
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1. Introduction

There exists now a very large literature devoted to long-range dependent processes. The most commonly

used definition of long-range dependency requires a second order stationary process X = (Xn)n∈Z with

spectral density f such as:

f(λ) = |λ|−2d L
(
|λ|
)

for any λ ∈ [−π, π], (1.1)

where L is a positive slow varying function, satisfying for any c > 0, limh→0
L(c |h|)
L(|h|) = 1, typically L is a

function with a positive limit or a logarithm.

From an observed trajectory (X1, . . . , Xn) of a long-range dependent process, the estimation of the pa-

rameter d is an interesting statistical question. The case of a parametric estimator for which the explicit

expression of the spectral density f is known, was successively solved in many cases using maximum likeli-

hood estimators (see for instance Dahlhaus, 1989) or Whittle estimators (see for instance Fox and Taqqu,

1987, Giraitis and Surgailis, 1990, or Giraitis and Taqqu, 1999).

However, with numerical applications in view, knowing the explicit form of the spectral density is not a

realistic framework. A semi-parametric estimation of d where only the behaviour (1.1) is assumed should

be preferred. Thus, numerous semi-parametric estimators of d were defined and studied, the main ones

being the log-periodogram (see Geweke and Porter Hudak, 1987, or Robinson, 1995a), the wavelet based
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(see Bardet et al., 2000) and the local Whittle estimators (see Robinson 1995b).

This last one is a version of the Whittle estimator for which only asymptotically small frequencies are

considered. It provides certainly the best trade-off between computation time and accuracy of the es-

timation (see for instance Bardet et al., 2003b). Its asymptotic normality was extended for numerous

kinds of long-memory processes (see Dalla et al., 2006) and also non-stationary processes (see Abadir et

al., 2006). However there is still not satisfactory adaptive method of choice of the bandwidth parameter

even if several interesting attempts have been developed (see for instance Henry and Robinson, 1998, or

Henry, 2007). Hence, the usual choice valid for FARIMA or Fractional Gaussian noise is commonly chosen.

In this paper we consider the classical framework of offline multiple change detection. It consists on

the observed trajectory (X1, . . . , Xn) of a process X whose trajectory is partitioned into K∗ + 1 subtra-

jectories on which it is a linear long memory process whose long memory parameters are distinct from

one area to another (see a more precise definition in (2.4)). Thus there is dependence between two sub-

trajectories since all the different linear processes are constructed from the same white noise. The aim of

this paper is to present a method for estimating from (X1, . . . , Xn) the number K∗ of abrupt changes, the

K∗ change-times (t∗1, . . . , t
∗
K∗) and the K∗+1 different long-memory parameters (d∗1, . . . , d

∗
K∗+1), which are

unknown.

The framework of “offline” multiple changes we chose, has to be distinguished from that of the “online”

one, for which a monitoring procedure is adopted and test of detection of change is successively applied

(such as CUSUM procedure). The book of Basseville and Nikiforov (1993) is a good reference for an

introduction on both online and offline methods. There exist several methods for building a sequential

detector of long-range memory, see for instance Giraitis et al. (2001), Kokoszka and Leipus (2003) or

Lavancier et al. (2013).

For our offline framework, following the previous purposes, we chose to build a penalized contrast based

on a sum successive local Whittle contrasts and to minimize it. The principle of this method, minimizing

a penalized contrast, provides very convincing results in many frameworks: in case of mean changes with

least squares contrast (see Bai, 1998), in case of linear models changes with least squares contrast (see Bai

and Perron, 1998, generalized by Lavielle, 1999, and Lavielle and Moulines, 2000) or least absolute devia-

tions (see Bai, 1998), in case of spectral densities changes with usual Whittle contrasts (see Lavielle and

Ludena, 2000), in case of time series changes with quasi-maximum likelihood (see Bardet et al., 2012),...

Clearly, the remarkable paper of Lavielle and Ludena (2000) was the model of this article except that we

used a semi-parametric version of their Whittle contrast with the local Whittle contrast, and this engen-

ders additional difficulties...

Restricting our paper to long-memory linear processes, we obtained several asymptotic results. First the

consistency of the estimator has been established under assumptions on the second order term of the

expansion of the spectral density close to 0. A convergence rate of the change times estimators is also

provided, but we are not able to reach the usual OP(1) converge rate, which is obtained for instance in
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the parametric case (see Lavielle and Ludena, 2000).

Monte-Carlo experiments illustrate the consistency of the estimators. When the number of changes is

known, the theoretical results concerning the consistencies of the estimator are satisfying and n = 5000

provides very convincing results while they are still mediocre for n = 2000 and bad for n = 500. This is not

surprising since we considered a semi-parametric statistical framework. When the number of changes is

unknown, although we chose an asymptotically consistent choice of penalization sequence, the consistency

is not satisfying even for large sample such as n = 5000. The accuracy of the number of changes estimator

is extremely dependent on the precise choice of the penalization sequence, even if this choice should not be

important asymptotically. Then we chose to use a data-driven procedure for computing “optimal” penalty,

the so-called “Slope Heuristic” procedure defined in Arlot and Massart (2009). It provides more accurate

results than with a fixed penalization sequence and it leads to very convincing results when n = 5000.

The following Section 2 is devoted to define the framework and the estimator. Its asymptotic proper-

ties are studied in Section 3. The concrete estimation procedure and numerical applications are presented

in Section 4. Finally, Section 5 contains the main proofs.

2. Definitions and assumptions

2.1. The multiple changes framework

We consider in the sequel the case of multiple change long-range dependent linear processes. First we

define a class L(d, β, c) of real sequences, where d ∈ [0, 1/2), β ∈ (0, 2] and c > 0:

Class L(d, β, c): A sequence (ai)i∈N ∈ RN belongs to the class L(d, β, c) if

• |an| = c nd−1 +O
(
nd−1−β

)
when n→∞;

• ∂
∂λ
α(λ) = O

(∣∣λ−1 α(λ)
∣∣) when λ→ 0+ with α(λ) =

∑∞
j=0 aje

ijλ.

Note that the class L(d, β, c) is included in `2(R), the Hilbert space of square summable sequences.

Now, for (ai)i∈N ∈ Rn a sequence of the class L(d, β, c), it is possible to define a second order linear

long-range dependent process. Indeed, with (εt)t∈Z a sequence of independent and identically distributed

random variables (iidrv) with zero mean and unit variance, we can define Y = (Yk)k∈Z such as

Yk =
∞∑
j=0

aj εk−j for k ∈ Z.

Note that Y is a zero mean stationary process, with autocovariance r(k) = E(Y0Yk) satisfying

r(n) = c2B(1− 2d, d)n2d−1 +O
(
n2d−2−β) when u→∞, (2.1)
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with B(u, v) the usual Beta function (see for instance Inoue, 1997). It is also possible to define the spectral

density f of Y in [−π, 0) ∪ (0, π] and it satisfies for d ∈ (0, 1/2)

f(λ) =
c2

π
B(1− 2d, d) Γ(2d) sin

(π
2
− πd

) ∣∣λ∣∣−2d +O
(
|λ|−2d+β

)
when λ→ 0, (2.2)

using the Tauberian Theorem in Zygmund (1968) and with Γ(u) the usual Gamma function. By the way,

we can also write that there exists c′ > 0 such as

f(λ) = c′
∣∣λ∣∣−2d +O

(
|λ|−2d+β

)
when λ→ 0, (2.3)

that is the classical assumption required for instance in Robinson (1995b).

Using these definitions, we are going to give the following assumption satisfied by the trajectory (X1, . . . , Xn)

of the process X from we study the changes:

Assumption A: Let (εt)t∈Z be a sequence of iidrv with zero mean and unit variance. Denote also:

• K∗ ∈ {0, . . . , n− 1}, τ ∗0 = 0 < τ ∗1 < · · · < τ ∗K∗ < 1 = τ ∗K∗+1;

• (d∗i )1≤i≤K∗+1 ∈ [0, 1/2)K
∗+1, (c∗i )1≤i≤K∗+1 ∈ (0,∞)K

∗+1 and (β∗i )1≤i≤K∗+1 ∈ (0, 2]K
∗+1

• K∗ + 1 sequences (a
(i)
t ) such as (a

(i)
t )t∈N belongs to the class L(d∗i , β

∗
i , c
∗
i ) for all i = 1, · · · , K∗ + 1.

Define the process X = (Xt)1≤t≤n such as

1. for i = 1, · · · , K∗ + 1,

Xt =
∞∑
j=0

a
(i)
j εt−j when [nτ ∗i−1] + 1 ≤ t ≤ [nτ ∗i ]. (2.4)

2. For i = 1, · · · , K∗, d∗i+1 − d∗i 6= 0 and denote

∆d = max
1≤i≤K∗

∣∣d∗i+1 − d∗i
∣∣ > 0. (2.5)

The first condition (2.4) is relative to the behavior (Xt) in each stage: it is a stationary linear long-range

process with a spectral density satisfying (2.3) (where d = d∗i ). Moreover there also exists a dependence for

(Xt) from one stage to another one (see for instance the proof of Lemma 5.2 where the covariance between

two subtrajectories of X is computed in (5.13)), which makes the model much more realistic than if the

independence of successive regimes had been assumed. The second condition (2.5) is the key condition

insuring that the framework is the one of multiple long-range dependence change.
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2.2. Definition of the estimator

First we will add other notation:

For X satisfying Assumption A, denote:

• t∗i = [nτ ∗i ], T ∗i =
{
t∗i−1 + 1, t∗i−1 + 2, · · · , t∗i

}
and n∗i = t∗i − t∗i−1 for i = 1, . . . , K∗ + 1.

More generally, for K ∈ {0, 1, · · · , n− 1} and t0 = 1 < t1 < · · · < tK < tK+1 = n,

• denote Ti =
{
ti−1 + 1, ti−1 + 2, · · · , ti

}
and ni = ti − ti−1 for i = 1, . . . , K + 1.

• denote Tij =
{
ti−1+1, ti−1+2, · · · , ti

}
∩
{
t∗j−1+1, t∗j−1+2, · · · , t∗j

}
and nij = #{Tij} for i = 1, . . . , K+1

and j = 1, . . . , K∗ + 1.

For K ∈ {0, . . . , n}, we will also use the following multidimensional notation:

• d = (d1, · · · , dK+1) and d∗ = (d∗1, · · · , d∗K∗+1),

• t = (t1, · · · , tK), t∗ = (t∗1, · · · , t∗K∗) and τ ∗ = (τ ∗1 , . . . , τ
∗
K∗).

From Assumption A, denote by IT the periodogram of X on the set T where T ⊂ {1, . . . , n}, and denote

|T | = #{T}:

IT (λ) =
1

2π |T |

∣∣∣∑
k∈T

Xke
−i k λ

∣∣∣2. (2.6)

Using the seminal papers of Kunsh (1987), Robinson (1995b) and Robinson and Henry (2003), we define

a local Whittle estimator of d. For this, define for T ⊂ {1, · · · , n}, d ∈ R and m ∈ {1, · · · , n},

Wn(T, d,m) = log
(
Sn(T, d,m)

)
− 2 d

m

m∑
k=1

log(k/m) (2.7)

with Sn(T, d,m) =
1

m

m∑
j=1

( j
m

)2d
IT (λ

(n)
j ) and λ

(n)
k = 2π

k

n
. (2.8)

The local Whittle objective function d → Wn(T, d,m) can be minimized for estimating d on the set T

providing the local Whittle estimator d̂ = arg mind∈[0,0.5)Wn(T, d,m) on T .

Remark 1. Note that we use Fourier frequencies λ
(n)
k = 2π k

n
in the definition of Wn(T, d,m), while its

common definition (see for instance Robinson, 1995b) consider the Fourier frequencies λk = 2π k
|T | . The

explanation of this choice stems from the fact that in the definition of the following contrast Ln(K, t,d,m)

on the whole trajectory (X1, . . . , Xn) we will sum the local contrasts Wn(Tk, dk,m). This choice is required

for allowing some simplifications in the proofs. But, as we assume that |T ∗i | = n∗i ∼ (τi − τ ∗i−1)n, we

asymptotically use almost the usual frequencies.

5



Under Assumption A, we expect to estimate the distinct d∗i on the different stages {t∗i + 1, . . . , t∗i+1} by

using several local Whittle contrasts. In addition we will obtaining a M -estimator for estimating d∗i but

also t∗i and even K∗. Hence, for m ∈ {1, . . . , n}, we consider now a penalized local Whittle contrast defined

by:

Jn(K, t,d,m) =
1

n

K+1∑
k=1

nkWn(Tk, dk,m) +K zn, (2.9)

where K ∈ N is a number of changes, d ∈ [0, 0.5)K+1, t ∈ TK(0) and (zn) is a sequence of positive real

numbers that will be specified in the sequel.

This contrast is therefore a sum of local Whittle objective functions on the K + 1 different stages Tk,

k = 1, . . . , K + 1, and a penalty term that is a linear function of the number of changes (and therefore of

the number of estimated parameters). Then, with Kmax ∈ N∗ a chosen integer number, we define:

(K̂n, t̂, d̂) = arg min
K∈{0,...,Kmax}, d∈[0,0.5)K+1, t∈TK(0)

Jn(K, t,d,m), (2.10)

with d̂ = (d̂1, · · · , d̂K̂n+1) and t̂ = (t̂1, · · · , t̂K̂n), and where for a ≥ 0,

TK(a) =
{

(t1, . . . , tK) ∈ {2, . . . , n− 1}K , ti+1 > ti and |ti − t∗i | ≥ a for all i = 1, . . . , K
}
. (2.11)

3. Asymptotic behaviors of the estimators

3.1. Case of a known number of changes

We study first the case of a known number K∗ of changes. In such a framework, let us define two partic-

ular cases of the minimization of the function Jn. First denote t̃ = (t̃1, · · · , t̃K∗) and d̃ = (d̃1, · · · , d̃K∗+1)

obtained when the number of changes is known and d̂∗ = (d̂∗i )1≤i≤K∗+1 obtained when the number of

changes and the change dates are known. They are defined by:

(̃t, d̃) = arg min
d∈[0,0.5)K∗+1, t∈TK∗ (0)

Jn(K∗, t,d,m) and d̂∗ = arg min
d∈[0,0.5)K∗+1,

Jn(K∗, t∗,d,m). (3.1)

Then, we can prove:

Theorem 3.1. For X satisfying Assumption A, with τ̃ = (τ̃1, . . . , τ̃K∗) where τ̃i = t̃i
n

for i = 1, · · · , K∗,
and if m = o(n),

(τ̃ , d̃)
P−→

n→∞
(τ ∗,d∗).

This first theorem, whose proof as well as all other proofs can be found in Section 5, can be improved for

specifying the rate of convergence of the estimators:

Theorem 3.2. For X satisfying Assumption A, if m = o
(
n2β∗/(1+2β∗)

)
where β∗ = min1≤i≤K∗+1 β

∗
i , then

for any δ > 0,

lim
δ→∞

lim
n→∞

P
(√m
n

∥∥t̃− t∗
∥∥ ≥ δ

)
= 0. (3.2)
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This result provides a bound of the “best” convergence rate of t̃ which is minimized by n(1+β∗)/(1+2β∗), i.e.

the “best” convergence rate for τ̃ is minimized by n−β
∗/(1+2β∗).

Remark 2. This rate of convergence could be compared to the result obtained in the parametric framework

of Lavielle and Ludena (2000) where the respective convergence rates (in probability) of t̃ and τ̃ are 1 and

n−1. This is the price to pay for going from the parametric to the semi-parametric framework. But also the

price to pay to the definition of local Whittle estimator which does not allow some simplifications as in the

proof of Theorem 3.4 of Lavielle and Ludena (2000, p. 860). Indeed the random term of their classical used

definition of Whittle contrast is
∫ π
π
IT (λ)/f(λ)dλ while our random term is log

(
1
m

∑m
j=1(j/m)2dIT (λ

(n)
j )
)
:

the logarithm term does not make possible their simplifications.

Another consequence of this result is that there is asymptotically a small lose on the convergence rates of

the long memerory parameter local Whittle estimators d̃i when the change dates are estimated instead of

being known. More formally, using the results of Robinson (1995b) improved by Dalla et al. (2006), we

know that under conditions of Theorem 3.2, d̂∗i satisfies

√
m
(
d̂∗i − d∗i

) D−→
n→∞

N
(
0 ,

1

4

)
. (3.3)

Unfortunately, the rate of convergence obtained for t̃i in Theorem 3.2 does not allow to keep this limit

theorem when d̂∗i is replaced by d̃i. We rather obtain:

Theorem 3.3. Under the assumptions of Theorem 3.2, for any i = 1, . . . , K∗ + 1,
√
m
∣∣d̃i − d∗i ∣∣ = OP (1). (3.4)

3.2. Case of an unknown number of changes

Here we consider the case where K∗ is unknown. For estimating K∗, the penalty term of penalized local

Whittle contrast Jn is now essantial. Indeed, we obtain:

Theorem 3.4. Under the assumptions and notations of Theorem 3.1, if Kmax ≥ K∗, with m = o
(
n2β∗/(1+2β∗)

)
where β∗ = min1≤i≤K∗+1 β

∗
i zn and max

(
zn ,

1
zn
√
m

)
−→
n→∞

0, using (K̂, t̂, d̂) defined in (2.10), then

(K̂, τ̂ , d̂)
P−→

n→∞
(K∗, τ ∗,d∗).

Note that the conditions we obtained on m and zn imply that n−β
∗/(1+2β∗) = o(zn), depending on β∗ that is

generally unknown. However, the choice zn = n−1/2 is a possible choice solving this problem. The provided

proof does not allow to establish the consistency of a typical BIC criterion, which should be zn = 2 log n/n

(and the forthcoming numerical results obtained using this BIC penalty are not surprisingly a disaster).

Corollary 1. Under the conditions of Theorem 3.4, the bounds (3.2) and (3.4) hold, i.e.,

lim
δ→∞

lim
n→∞

P
(√m
n

∥∥t̂− t∗
∥∥ ≥ δ

)
= 0 and

√
m
∥∥d̂− d∗

∥∥ = OP (1)

Then the convergence rates of the estimators obtained in the case where the number of changes is unknown

is the same as if the number of changes is known.
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4. Numerical experiments

In the sequel we first describe the concrete procedure for applying the new multiple changes estimator,

then we present the numerical results of Monte-Carlo experiments.

4.1. Concrete procedure of estimation

Several details require to be specified to concretely apply the multiple changes estimator. Indeed, we

have done:

1. The choice of meta-parameters: 1/ as we mainly studied the cases of FARIMA processes for which

β = 2, we chose m = n0.65; 2/ the number Kmax ≥ K∗ is crucial for the heuristic plot procedure (see

below) and was chosen such as Kmax = 2([log(n)]− 1), implying Kmax = 10, 12 and 14 respectively

for n = 500, 2000 and 5000.

2. As the choice of the sequence (zn) of the penalty term is not exactly specified but just has to satisfy

max
(
zn ,

1
zn
√
m

)
−→
n→∞

0. After many numerical simulations, we chose zn = 2
√
n that offers best

results among our choices.

3. The dynamic programming procedure is implemented for allowing a significant decrease of the time

consuming. Such procedure is very common in the offline multiple change context and has been

described with details in Kay (1998).

4. For improving the procedure of selection of the changes number K∗ for not too large samples, we

implemented a data-driven procedure so-called “the heuristic slop procedure”. This procedure was

introduced by Arlot and Massart (2009) in the framework of least squares estimation with fixed

design, but that can be extended in many statistical fields (see Baudry et al., 2012). Applications

in the multiple changes detection problem was already successfully done in Baudry et al. (2012) in

an i.i.d. context and also for dependent time series in Bardet et al. (2012). In a general framework,

it consists in computing −2 log(L̂IK(K)) where L̂IK(K) is the maximized likelihood for any K ∈
{0, 1, . . . , Kmax}. Here −2 log(L̂IK(K)) is replaced by 1

n

∑K+1
k=1 nkWn(T̃k, d̃k,m). Then for K > K∗,

the decreasing of this contrast with respect to K is almost linear with a slope s (see Figure 1 where

the linearity can be observed when K > K∗ = 4), which can be estimated for instance by a least-

squares estimator ŝ. Then K̂H is obtained by minimizing the penalized contrast Jn using ẑn = 2 ŝ,

i.e.

K̂H = arg min
0≤K≤Kmax

{ 1

n
(t̃k+1 − t̃k)

K+1∑
k=1

(Wn({t̃k + 1, . . . , t̃k+1}, d̃k,m) + 2 ŝ K
}
.

By construction, the procedure is sensitive to the choice of Kmax since a least squares regression is

realized for the “largest” values of K and we preferred to chose the largest reasonable value of Kmax.

A software was written with Octave software (also executable with Matlab software) and is available on

http://samm.univ-paris1.fr/IMG/zip/detectchange.zip.
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Figure 1: For n = 5000, K∗ = 4 and a FARIMA(0, d, 0) process, the graph of 2 × Jn(K, t̂, d̂,m) (in blue), and the one of

2× Jn(K, t̂, d̂,m) + 2× ŝ×K (in red).

4.2. Monte-Carlo experiments in case of known number of changes

In the sequel we first exhibit the consistency of the multiple breaks estimator when the number of

changes is known. Monte-Carlo experiments are realized in the following framework:

1. Three kinds of processes are considered: a FARIMA(0, d, 0) process, a FARIMA(1, d, 1) process with

a AR coefficient ψ = −0.7 and a MA coefficient θ = 0.3 (this refers to the familiar representation

(1−ψB)X = (1−B)−d(1+θ B)ε where B is the backward operator) and a linear stationary process

called X(d,1) belonging to Class L(d, 1, 1), since we chose a sequence (ak)k∈N satisfying

ak = (k + 1)d−1 + (k + 1)d−2 for all k ∈ N.

Note that both the FARIMA processes belongs to Class L(d, 2, c0).

2. For n = 500, 2000 and 5000, two cases are considered:

• Zero change, K∗ = 0 and d∗1 = 0.4, then d∗1 = 0.1, for obtaining a benchmark of the accuracy of

local Whittle estimator of the long-range dependence parameter;

• One change, K∗ = 1 and (d∗1, d
∗
2) = (0.4, 0.1) and τ ∗1 = 0.5;

• Three changes, K∗ = 3 and (d∗1, d
∗
2, d
∗
3, d
∗
4) = (0.4, 0.1, 0.4, 0.1) and (τ ∗1 , τ

∗
2 , τ

∗
3 ) = (0.25, 0.5, 0.75).
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Table 1: RMSE of the estimators from 500 independent replications of processes, when the number K∗ of changes is known.

FARIMA(0, d, 0) FARIMA(1, d, 1) X(d,1)

n 500 2000 5000 500 2000 5000 500 2000 5000

K∗ = 0 d̃1 (d1 = 0.4) 0.070 0.047 0.034 0.098 0.090 0.066 0.077 0.048 0.035

d̃1 (d1 = 0.1) 0.075 0.046 0.033 0.224 0.119 0.073 0.199 0.165 0.146

K∗ = 1 τ̃1 0.202 0.025 0.011 0.193 0.038 0.012 0.216 0.143 0.091

d̃1 0.178 0.055 0.043 0.099 0.096 0.082 0.189 0.130 0.092

d̃2 0.181 0.063 0.043 0.317 0.188 0.128 0.258 0.162 0.130

K∗ = 3 τ̃1 0.264 0.177 0.020 0.257 0.162 0.016 0.197 0.175 0.095

τ̃2 0.231 0.144 0.035 0.231 0.134 0.011 0.223 0.208 0.141

τ̃3 0.252 0.099 0.017 0.225 0.145 0.013 0.236 0.160 0.120

d̃1 0.182 0.075 0.047 0.117 0.095 0.087 0.283 0.200 0.103

d̃2 0.327 0.114 0.066 0.357 0.282 0.167 0.347 0.276 0.167

d̃3 0.414 0.206 0.055 0.165 0.097 0.088 0.470 0.257 0.105

d̃4 0.215 0.099 0.061 0.365 0.293 0.196 0.308 0.206 0.149

3. Each case is independently replicated 500 times and the RMSE, Root-Mean-Square Error, is com-

puted for each estimator of the parameter.

The results of Monte-Carlo experiments are detailed in Table 1.

4.3. Monte-Carlo experiments in case of unknown number of changes

In this subsection, we consider the result of the model selection using the penalized contrast for esti-

mating the number of changes K∗. We reply exactly the same framework that in the previous subsection

and notify the frequencies of the event ’K̂ = K∗’, for:

• K̂ = K̂n obtained directly by minimizing Jn with zn = 2/
√
n;

• K̂ = K̂BIC obtained directly by minimizing Jn with zn = 2 log n/n, following the usual BIC proce-

dure;

• K̂ = K̂H obtained from the “Heuristic Slope” procedure described previously.

We obtained the results detailed in Table 2:
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Table 2: Frequencies of recognition of the true number of changes with several criteria from 500 independent replications of

processes.

FARIMA(0, d, 0) FARIMA(1, d, 1) X(d,1)

n 500 2000 5000 500 2000 5000 500 2000 5000

K∗ = 1 K̂n 0.11 0.21 0.51 0.21 0.45 0.67 0.05 0.05 0.01

K̂BIC 0 0 0 0 0 0 0 0 0

K̂H 0.35 0.91 0.92 0.49 0.77 0.81 0.25 0.47 0.57

K∗ = 3 K̂n 0.13 0.12 0.32 0.12 0.21 0.52 0.16 0.07 0.02

K̂BIC 0 0 0 0 0 0 0 0 0

K̂H 0.02 0.16 0.85 0.03 0.21 0.80 0.07 0.16 0.32

4.4. Conclusions of Monte-Carlo experiments

From Tables 1 and 2, we may conclude that:

1. Even using the local Whittle estimator which is probably the most accurate in this framework, it

is easy to verify that if the behaviour of the spectral density in 0 is not smooth, then even with

a trajectory of size 5000, we keep a quadratic risk greater than 0.1 (see the case K∗ = 0 for a

FARIMA(1, d, 1) or for the X(d,1) process). We do not have to forget that the parameter d is relative

to the long memory behaviour of the process, in a semi-parameteric setting.

2. If the number of changes is known, the estimators of τi and di are consistent but their rates of

convergence are slightly impacted by the number of changes: as we could imagine, the largest K∗

the largest the RMSE of the estimators. But finally, the case n = 5000 provides extremely convincing

results in FARIMA framework concerning the estimation of τi, while the convergence rates for the

process X(d,1) are slow (since the asymptotic behavior of the spectral density around 0 is clearly

rougher than in FARIMA framework).

3. The estimators of number of changes K̂n and K̂H have a satisfying behavior, meaning that they seem

to converge to K∗ when the sample length increases in the FARIMA framework. Once again, the

consistencies are slightly better for small K∗ than for large K∗. The results obtained with the “Slope

Heuristic” procedure estimator K̂H are almost the most accurate and provides very convincing results

for n = 5000. Note also that the usual BIC penalty is not at all consistent, which can be explained

by the use of local Whittle contrast that is not an approximation of the Gaussian likelihood as the

usual Whittle contrast is. In case of process X(d,1), only K̂H seems to be consistent while K̂n is not

able to detect the number of changes: this is due to the fact that the bandwidth parameter m can

not be chosen as n0.65 for obtaining consistent estimators of long memory parameters.

Finally we could underline that our detector based on a local Whittle contrast added to a “slope heuristic”

data-driven penalization provides convincing results when n = 5000 and not too bad when n = 2000 (the
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case n = 500 gives not significant estimation).

5. Proofs

Following the expansion (2.2), we denote in the sequel for i = 1, . . . , K∗ + 1,

c∗0,i =
c∗2i
π
B(1− 2d∗i , d

∗
i ) Γ(2d∗i ) sin

(π
2
− πd∗i

) ∣∣λ∣∣−2d∗i . (5.1)

We first provide the statements and the proofs of two useful lemmas:

Lemma 5.1. Under the assumptions of Theorem 3.1 and with Sn(T, d,m) defined in (2.8), for any i ∈
{1, . . . , K∗ + 1} and T ⊂ T ∗i ,

sup
d∈[0,1/2)

min
(
T ,

n

m

)−2d∗i ∣∣∣Sn(T, d,m)−min
(
T ,

n

m

)2d∗i c∗0,i(2π)−2d
∗
i

1 + 2d− 2d∗i

∣∣∣
= OP

(
min

(
1 ,

n

m|T |

)1/2
+
(m
n

)β∗i
+m−2d

∗
i

)
. (5.2)

Proof. In the sequel, we will use intensively the notation and numerous proofs of Dalla et al. (2006).

However, the results obtained in this paper have to be established again since, we consider λ
(n)
j = 2π j

n

while they considered λj = 2π j
|T | .

We first define η∗j =
IT (λ

(n)
j )

c∗0,i (λ
(n)
j )−2d

∗
i

and prove:

E
∣∣∣ 1

m

m∑
j=1

(
η∗j − 1

)∣∣∣ ≤ C
((m

n

)β∗i
+
( n

|T |m

)1/2)
(5.3)

where C > 0 is a constant. For this we will go back to the proof of Proposition 5 in Dalla et al. (2006).

Indeed, with the same notation, we have:

E
∣∣∣ 1

m

m∑
j=1

η∗j

∣∣∣ ≤ 1

m

(
p|T |,1(m) + p|T |,2(m) +R|T |(m)

)

where p|T |,1(m) = 2π
m∑
j=1

Iε(λ
(n)
j ), p|T |,2(m) =

m∑
j=1

(
ηj − 2πIε(λ

(n)
j )
)

and R|T |(m) =
m∑
j=1

(η∗j − ηj) with

ηj =
IT (λ

(n)
j )

f(λ
(n)
j )

and Iε(λ
(n)
j ) =

1

2π|T |

∣∣∣ |T |∑
t=1

εte
itλ

(n)
j

∣∣∣2.
As in Proposition 5 of Dalla et al. (2006), we can write:

E|R|T |(m)| ≤
m∑
j=1

E
∣∣η∗j − ηj∣∣

≤ C m
(m
n

)β∗i
,
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and therefore

E
∣∣R|T |(m)− ER|T |(m)

∣∣ ≤ C m
(m
n

)β∗i
. (5.4)

Now, following also in Proposition 5 of Dalla et al. (2006), from Robinson (1995b, Relation (3.17)),

adapted with our problem, i.e. j ↔ jT/n we have:

E
∣∣ηj − 2πIε(λ

(n)
j )
∣∣ ≤ C

∣∣ log(1 + j|T |/n)
∣∣∣1/2 (j|T |/n)−1/2

=⇒ E
∣∣p|T |,2(m)| ≤ C

∣∣ log(1 + j|T |/n)
∣∣∣1/2 (m|T |/n)−1/2. (5.5)

Finally, we have to go back to the proof of (4.9) in Theorem 2 of Robinson (1995b) for bounding p|T |,1(m).

Indeed, in this proof and using its notation we have

E
∣∣p|T |,1(m)− E(p|T |,1(m))

∣∣ = E
∣∣∣∑
j=1

2π Iε(λ
(n)
j )− 1

∣∣∣ ≤ √2
(

Var
( m
|T |
∑
t∈T

(ε2t − 1)
)

+ Var
(∑
s<t

dt−sεtεs

))1/2
.

But ds =
2

|T |

m∑
j=1

cos
(
2πsj/n

)
and therefore we easily have |ds| ≤ 2m/|T |. Using the usual expression of

a sum of cosine functions, we also have |ds| ≤
2

|T |

∣∣∣sin(π sm/n)

sin(π s/n)

∣∣∣ ≤ 2n

πs|T |
. Therefore, using the variance

expansion, we deduce that:

Var
( m
|T |
∑
t∈T

(ε2t − 1)
)
≤ C

m2

|T |
,

while the variance of
∑

s<t dt−sεtεs is

O
(
|T |

|T |∑
s=1

d2s

)
= O

(
|T |

[n/m]∑
s=1

(2m

|T |

)2
+ |T |

∑
s≥[n/m]

( 2n

πs|T |

)2)
= O

(nm
|T |

+
nm

|T |

)
.

As a consequence we deduce:

E
∣∣p|T |,1(m)− E(p|T |,1(m))

∣∣ ≤ C
( m

|T |1/2
+
(nm
|T |

)1/2)
≤ C

(nm
|T |

)1/2
. (5.6)

Finally, using (5.4), (5.5) and (5.6), we deduce:

E
∣∣∣ 1

m

m∑
j=1

η∗j

∣∣∣ ≤ C

m

(
m
(m
n

)β∗i
+ log1/2(m|T |/n)

(
m|T |/n

)−1/2
+
(nm
|T |

)1/2)
and therefore (5.3) is established.

Now a straightforward application of Markov Inequality and Lemma 2 in Dalla et al. (2006) implies that
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for any d ∈ [0, 1/2),∣∣∣ 1

m

m∑
j=1

( j
m

)2d−2d∗i
η∗j −

1

m

m∑
j=1

( j
m

)2d−2d∗i ∣∣∣ = OP

((m
n

)β∗i
+
( n

m|T |

)1/2)
=⇒

∣∣∣ 1

m

m∑
j=1

( j
m

)2d−2d∗i
η∗j −

1

2d− 2d∗i + 1

∣∣∣ = OP

((m
n

)β∗i
+
( n

m|T |

)1/2
+m2d−2d∗i−1

)
. (5.7)

Since Sn(T, d,m) =
1

m

m∑
j=1

( j
m

)2d
IT (λ

(n)
j ) =

(2π)2d
∗
i

c∗0,i

( n
m

)2d∗i 1

m

m∑
j=1

( j
m

)2d−2d∗i
η∗j , we deduce that for any

N ≥ 1,

sup
|T |≥N

∣∣∣Sn(T, d,m) −
( n
m

)2d∗i c∗0,i(2π)−2d
∗
i

1 + 2d− 2d∗i

∣∣∣ =
( n
m

)2d∗i
OP

((m
n

)β∗i
+
( n

mN

)1/2
+ m2d−2d∗i−1

)
. (5.8)

For small N , for instance such as N = o(n/m), the random right side term is not bounded. However, for

any T ⊂ T ∗i , we have E
(
IT (λ

(n)
j )
)
≤ σ2

i

(
1 + 2C

∑|T |
k=1 k

2d∗i−1
)
≤ C |T |2d∗i . Thus, there exists Ci > 0 such

as for any δ > 0,

P
(

sup
d∈[0,1/2)

∣∣∣Sn(T, d,m)−
c∗0,i(2π)−2d

∗
i

1 + 2d− 2d∗i
|T |2d∗i

∣∣∣ ≥ δ
)
≤ Ci

δ
|T |2d∗i . (5.9)

Thus we deduce (5.2) and this achieves the proof of Lemma 5.1.

In the sequel, we define:

Rn(T, T ′, d,m) =
1

2π

∑
t∈T

∑
t′∈T ′

XtXt′ bn(t′ − t, d,m) with bn(k, d,m) =
1

m

m∑
j=1

( j
m

)2d
e−2π i

j k
n . (5.10)

Note that Sn(T, d,m), which is defined in (2.8) can also be written as:

Sn(T, d,m) =
1

m

m∑
j=1

( j
m

)2d
IT (λ

(n)
j ) =

1

2π |T |
∑
s∈T

∑
t∈T

XsXt bn(t− s, d,m). (5.11)

The following lemma establish an asymptotic bound for Rn when T and T ′ are included in distinct stages

of the process:

Lemma 5.2. Under the assumptions of Theorem 3.1, there exists C > 0 such that for any j, j′ ∈
{1, · · · , K∗ + 1} where j 6= j′, any T ⊂ T ∗j and T ′ ⊂ T ∗j′, and any N ∈ N∗,

sup
d∈[0,1/2)

max
min(|T |,|T ′|)≥N

(
min

(
|T |, |T ′|, n

m

))−d∗j−d∗j′ 1

min(|T |, |T ′|)
∣∣Rn(T, T ′, d,m)

∣∣ = OP

((
min

(
1,

n

mN

))1−d∗j−d∗j′)
.

(5.12)
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Proof. First, we can bound the covariance Cov(Xt, X
′
t) with t ∈ T ⊂ Tj and t′ ∈ T ′ ⊂ Tj′ , where j 6= j′.

Indeed, assuming t < t′,

Cov(Xt, Xt′) = E
( ∞∑
k=0

a
(j)
k εt−j

∞∑
k′=0

a
(j′)
k′ εt′−j′

)
=

∞∑
k=0

a
(j)
k a

(j′)
t′−t+k = ΓT,T ′(|t′ − t|),

since (εi) is supposed to be white noise with unit variance. Therefore, since a
(j)
k = c∗j k

d∗j−1 +O
(
kd
∗
j−1−β∗j

)
and a

(j′)
k = c∗j′ k

d∗
j′−1 +O

(
k
d∗
j′−1−β

∗
j′
)
, there exists C such as∣∣a(j)k a

(j′)
t′−t+k

∣∣ ≤ C kd
∗
j−1 (t′ − t+ k)

d∗
j′−1 for any k ∈ N∗.

As a consequence, there exist C ′ > 0 and C ′′ > 0 such that for t′ > t,

∣∣ΓT,T ′(|t′ − t|)∣∣ ≤ C ′
∞∑
k=1

kd
∗
j−1 (t′ − t+ k)

d∗
j′−1

≤ C ′

(t′ − t)1−d
∗
j−d∗j′

× 1

t′ − t

∞∑
k=1

( k

t′ − t

)d∗j−1 (
1 +

k

t′ − t

)d∗
j′−1

≤
(
C ′′
∫ ∞
0

1

x1−d
∗
j

1

(1 + x)
1−d∗

j′
dx
) 1

(t′ − t)1−d
∗
j−d∗j′

. (5.13)

Now, using (5.10) and (5.13), we have:

E
(
Rn(T, T ′, d,m)

)
=

1

2π

∑
t∈T

∑
t′∈T ′

Cov(Xt, Xt′
)
bn(t′ − t, d,m)

=⇒
∣∣E(Rn(T, T ′, d,m)

)∣∣ =
1

2π

∑
t∈T

∑
t′∈T ′

ΓT,T ′(t
′ − t) bn(t′ − t, d,m).

The right side term of the previous equality is only depending on (t′ − t). Therefore, using the notations

δ = −1 + min{|t − t′|, (t, t′) ∈ T × T ′} ≥ 0, µ = min{|T |, |T ′|} and ν = max{|T |, |T ′|}, it is possible to

detail this term in the following way:

E
(
Rn(T, T ′, d,m)

)
=

1

2π

( µ∑
k=1

k ΓT,T ′(δ + k) bn(δ + k, d,m) + µ

ν∑
k=µ+1

ΓT,T ′(δ + k) bn(δ + k, d,m)

+

ν+µ∑
k=ν+1

(ν + µ− k) ΓT,T ′(δ + k) bn(δ + k, d,m)
)
.

But from usual calculations, for any d ∈ [−1/2, 1/2), there exists C(d) > 0 such as we have

|bn(u, d,m)| ≤ C(d) min
{

1 ,
( n
m

)1+2d

|u|−1−2d
}

for u ∈ Z. (5.14)
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As a consequence, if µ+ ν ≤ n/m, we obtain:

∣∣E(Rn(T, T ′, d,m)
)∣∣ ≤ C

( µ∑
k=1

k
d∗j+d

∗
j′ + 2µ

ν+µ∑
k=µ+1

k
−1+d∗j+d∗j′

)
≤ C µν

d∗j+d
∗
j′ . (5.15)

And when µ ≥ n/m, we can write:

µ∑
k=1

k ΓT,T ′(δ + k) bn(δ + k, d,m) ≤ C

[n/m]∑
k=1

k
d∗j+d

∗
j′ + C

( n
m

)1+2d
µ∑

k=[n/m]

k
|δ + k|−1−2d

|δ + k|1−d
∗
j−d∗j′

≤ C
( n
m

)1+d∗j+d∗j′
+ C

( n
m

)1+2d
µ∑

k=[n/m]

k
−1+d∗j+d∗j′−2d

≤ C
( n
m

)d∗j+d∗j′
µ
( n

mµ

)1+min(0 , 2d−d∗j−dj′ ) (
log(µ)

)12d=d∗
j
+dj′ .

Finally, by performing the same type of calculations several times, we obtain:∣∣E(Rn(T, T ′, d,m)
)∣∣ ≤ C µ

(
min

( n
m
, ν
))d∗j+d∗j′(

min
(
1 ,

n

mµ

))1+min(0 , 2d−d∗j−dj′ ) (
log(µ)

)12d=d∗
j
+dj′
)

=⇒ sup
d∈[0,1/2)

∣∣E(Rn(T, T ′, d,m)
)∣∣ ≤ C µ

(
min

( n
m
, ν
))d∗j+d∗j′(

min
(
1 ,

n

mµ

))1−d∗j−dj′
. (5.16)

Now we are going to bound Var
(
Rn(T, T ′, d,m)

)
. We have:

Var
(
Rn(T, T ′, d,m)

)
=

1

4π2

∑
t∈T

∑
t′∈T ′

∑
s∈T

∑
s′∈T ′

Cov
(
XtXt′ , XsXs′

)
bn(t′ − t, d,m) bn(s′ − s, d,m).

Without loss of generality, set t ≤ s < t′ ≤ s′. We have:

Cov
(
XtXt′ , XsXs′

)
=

∞∑
k=0

∞∑
`=0

∞∑
k′=0

∞∑
`′=0

a
(j)
t−ka

(j)
s−`a

(j′)
t′−k′a

(j′)
s′−`′ Cov

(
εt−kεt′−k′ , εs−`εs′−`′

)
.

Only two cases implies Cov
(
εt−kεt′−k′ , εs−`εs′−`′

)
6= 0 since (εi) is a white noise. For the first one, it is

equal to µ4 − σ4 and is obtained when t− k = t′ − k′ = s− ` = s′ − `′. For the second one, it is equal to

σ4 and is obtained when (t− k = s− `) 6= (t′ − k′ = s′ − `′) or (t− k = s′ − `′) 6= (t′ − k′ = s− `). As a
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consequence,

Cov
(
XtXt′ , XsXs′

)
= (µ4 − σ4)

∞∑
k=0

a
(j)
k a

(j)
s−t+ka

(j′)
t′−t+ka

(j′)
s′−t+k + σ4

∞∑
k=0

∞∑
k′=0,k′ 6=k

a
(j)
k a

(j)
s−t+ka

(j′)
k′ a

(j′)
s′−t′+k′

+σ4

∞∑
k=0

∞∑
`=0,` 6=k

a
(j)
k a

(j′)
s′−t+ka

(j)
` a

(j′)
t′−s+`

=⇒
∣∣Cov

(
XtXt′ , XsXs′

)∣∣ ≤ C
∞∑
k=1

(
k(s− t+ k)

)d∗j−1((t′ − t+ k)(s′ − t+ k)
)d∗

j′−1

+C
( ∞∑
k=1

(
k(s− t+ k)

)d∗j−1)( ∞∑
k′=1

(
k′(s′ − t′ + k′)

)d∗
j′−1
)

+C
( ∞∑
k=1

kd
∗
j−1(s′ − t+ k)

d∗
j′−1
)( ∞∑

`=1

`d
∗
j−1(t′ − s+ `)

d∗
j′−1
)
.

Using the Cauchy-Schwarz Inequality, we have

∞∑
k=1

(
k(s−t+k)

)d∗j−1((t′−t+k)(s′−t+k)
)d∗

j′−1 ≤
( ∞∑
k=1

(
k(s−t+k)

)2d∗j−2)1/2( ∞∑
k=1

(
(t′−t+k)(s′−t+k)

)2d∗
j′−2
)1/2

Now we apply the same trick as in (5.13) and obtain since s′ > t′,

∞∑
k=1

(
k(s− t+ k)

)d∗j−1((t′ − t+ k)(s′ − t+ k)
)d∗

j′−1 ≤ C (s− t+ 1)2d
∗
j−3/2(t′ − t+ 1)

2d∗
j′−3/2,

and more generally,∣∣Cov
(
XtXt′ , XsXs′

)∣∣ ≤ C
(

(s− t+ 1)2d
∗
j−3/2(t′ − t+ 1)

2d∗
j′−3/2

+(s− t+ 1)2d
∗
j−1(s′ − t′ + 1)

2d∗
j′−1 +

(
(s′ − t)(t′ − s)

)d∗j+d∗j′−1). (5.17)

Var
(
Rn(T, T ′, d,m)

)
≤ C

∑
t∈T

∑
s∈T

∑
t′∈T ′

∑
s′∈T ′

∣∣Cov
(
XtXt′ , XsXs′

)
bn(t− t′, d,m)bn(s− s′, d,m)

∣∣
≤ C

(
J1 + J2 + J3

)
, (5.18)

with



J1 =
∑
t∈T

∑
s∈T

∑
t′∈T ′

∑
s′∈T ′

(|t− s|+ 1)2d
∗
j−3/2(|t′ − t|+ 1)

2d∗
j′−3/2

∣∣bn(t− t′, d,m)bn(s− s′, d,m)
∣∣

J2 =
∑
t∈T

∑
s∈T

∑
t′∈T ′

∑
s′∈T ′

(1 + |t− s|)2d∗j−1(1 + |t′ − s′|)2d
∗
j′−1

∣∣bn(t− t′, d,m)bn(s− s′, d,m)
∣∣

J3 =
∑
t∈T

∑
s∈T

∑
t′∈T ′

∑
s′∈T ′

(
(s′ − t)(t′ − s)

)d∗j+d∗j′−1 ∣∣bn(t− t′, d,m)bn(s− s′, d,m)
∣∣ .

As a consequence, we can easily see that J1 is negligible with respect to J2 since 2d − 3/2 < 2d − 1.

17



Concerning J2 we use the same arguments than in Lavielle and Ludena (2000). Then,

J2 ≤ C
∑
t∈T

∑
s∈T

(1 + |t− s|)2d∗j−1
∑
t′∈T ′

∑
s′∈T ′

(1 + |t′ − s′|)2d
∗
j′−1
∣∣bn(t− t′, d,m)bn(s− s′, d,m)

∣∣
≤ C |T |2d∗j+1

( |T |+|T ′|∑
u=0

|bn(u, d,m)|2 + 2

|T |+|T ′|∑
u=0

|bn(u, d,m)|
|T |+|T ′|∑
v=u+1

|bn(v, d,m)| |v − u|2d
∗
j′−1
)
.

As a consequence, using (5.14),

|T |+|T ′|∑
u=0

|bn(u, d,m)|2 ≤ C
(min(|T |+|T ′|,n/m)∑

u=0

1 +

|T |+|T ′|∑
u=min(|T |+|T ′|,n/m)

(
n/m

)1+2d|u|−1−2d
)

≤ C(d) min
(
|T |+ |T ′|, n

m

)
. (5.19)

Moreover,

|T |+|T ′|∑
u=0

|bn(u, d,m)|
|T |+|T ′|∑
v=u+1

|bn(v, d,m)| |u− v|2d
∗
j′−1

≤ C
{min(|T |+|T ′|,n/m)∑

u=0

(min(|T |+|T ′|,n/m)∑
v=u+1

(v − u)
2d∗
j′−1 +

( n
m

)1+2d
|T |+|T ′|∑

v=min(|T |+|T ′|,n/m)

v−1−2d(v − u)
2d∗
j′−1
)

+
( n
m

)2+4d
|T |+|T ′|∑

u=min(|T |+|T ′|,n/m)

|T |+|T ′|∑
v=u+1

(uv)−1−2d(v − u)
2d∗
j′−1
}

≤ C(d)
(

min
(
|T |+ |T ′|, n

m

))1+2d∗
j′

(5.20)

after classical computations. From (5.19) and (5.20), we obtain:

J2 ≤ C(d) |T |2d∗j+1
(

min
(
|T |+ |T ′|, n

m

))1+2d∗
j′
. (5.21)

Using the same decomposition of J2 but beginning with s′, t′ ∈ T ′ instead of s, t ∈ T , we can also replace

T by T ′ in the previous bound. As a consequence, we obtain:

J2 ≤ C(d) min{µ2d∗j+1
(

min
(
ν,
n

m

))1+2d∗
j′
, µ

2d∗
j′+1

(
min

(
ν,
n

m

))1+2d∗j
}
. (5.22)

Finally using symmetry reasons we also have J3 =
(
E
(
Rn(T, T ′, d,m)

))2
and therefore:

J3 ≤ C µ2
(

min
( n
m
, ν
))2d∗j+2d∗

j′
(

min
(
1 ,

n

mµ

))2−2d∗j−2d∗j′
. (5.23)

As a consequence, using (5.32), (5.33), (5.35) and (5.22), (5.23), we obtain that there exists C > 0 such

as:

sup
d∈[0,1/2)

Var
(
Rn(T, T ′, d,m)

)
≤ C µ2

(
min

( n
m
, ν
))2d∗j+2d∗

j′
(

min
(
1 ,

n

mµ

))2−2d∗j−2d∗j′
. (5.24)
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Therefore, with E
(
R2
n(T, T ′, d,m)

)
= Var

(
Rn(T, T ′, d,m)

)
+ E2

(
Rn(T, T ′, d,m)

)
, we have for any N ≤ n,

sup
d∈[0,1/2)

max
min(|T |,|T ′|)≥N

(
min

(
|T |, |T ′| , n

m

))−d∗j−d∗j′ 1

min(|T |, |T ′|)2
E
(
R2
n(T, T ′, d,m)

)
≤ C

(
min

(
1 ,

n

mN

))2−2d∗j−2d∗j′
(5.25)

with C > 0 that achieves the proof of (5.12) using Lemma 2.2 and 2.4 in Lavielle and Ludena (2000).

Now the proof of the consistency of τ̂ can be established:

Proof of Theorem 3.1. Mutatis mutandis, we follow here a similar proof than in Lavielle and Ludena

(2000). Denote

Un(t,d,m) = Jn(K∗, t,d,m)− Jn(K∗, t∗,d∗,m), (5.26)

where Jn is defined in (2.9). Then, using (5.11), we can write that for any d and t,

Un(t,d,m) =
1

n

[K∗+1∑
k=1

(
nk log

(
Sn(Tk, dk,m)

)
− n∗k log

(
Sn(T ∗k , d

∗
k,m)

))]
− `m

n

K∗+1∑
k=1

2 (nkdk − n∗kd∗k).

Now using a decomposition of each Sn on the ‘true’ periods, we can write:

Sn(Tk, dk,m) =
K∗+1∑
j=1

nkj
nk

Sn(Tkj, dk,m) +
2

nk

K∗+1∑
j=1

K∗∑
j′=1, j 6=j

Rn(Tkj, Tkj′ , dk,m),

with Rn defined in (5.10). As a consequence,

Un(d, t,m) =
1

n

K∗+1∑
k=1

[
nk log

(K∗+1∑
j=1

nkj
nk

(
Sn(Tkj, dk,m) +

K∗+1∑
j′=1, j 6=j

2

nkj
Rn(Tkj, Tkj′ , dk,m)

))

−n∗k log
(
Sn(T ∗k , d

∗
k,m)

)]
+
`(m)

n

K∗+1∑
k=1

2 (nkdk − n∗kd∗k)

≥ 1

n

K∗+1∑
k=1

K∗+1∑
j=1

nkj log
(
Sn(Tkj, dk,m) +

K∗+1∑
j′=1, j 6=j

2

nkj
Rn(Tkj, Tkj′ , dk,m)

)
− n∗k log

(
Sn(T ∗k , d

∗
k,m)

)]

+
`(m)

n

K∗+1∑
k=1

2 (nkdk − n∗kd∗k)

≥ 1

n

K∗+1∑
k=1

K∗+1∑
j=1

nkj

[
log
(
Sn(Tkj, dk,m) +

K∗+1∑
j′=1, j 6=j

2

nkj
Rn(Tkj, Tkj′ , dk,m)

)
+ 2 dk`(m)

]

− 1

n

K∗+1∑
k=1

n∗k

(
log
(
Sn(T ∗k , d

∗
k,m)

)
+ 2 d∗k`(m)

)
(5.27)
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using the concavity of x 7→ log(x) and with nk =
∑K∗+1

j=1 nkj. Now we are going to use Lemma 5.1 and

5.2. Therefore:( n
m

)−2d∗j(
Sn(Tkj, dk,m) +

K∗+1∑
j′=1, j 6=j

2

nkj
Rn(Tkj, Tkj′ , dk,m)

)
=

c∗0,j(2π)−2d
∗
j

1 + 2dk − 2d∗j
+ εkj,

with εkj = OP (1) when nkj = O(n/m) and εkj = oP (1) for n = o(nkjm). As a consequence, from (5.27),

Lemma 5.1 and 5.2, we deduce that there exists a random variable D(m,n) such as D(m,n)
P−→

n,m, n/m→∞
0

satisfying for any t and d,

Un(t,d,m) ≥
K∗+1∑
k=1

K∗+1∑
j=1

nkj
n

(
s(d∗j , dk)− s(d∗j , d∗j)

)
− |D(m,n)|

where for d ∈ [0, 1/2),

s(d∗j , d) = 2d∗j log
(
n/m

)
+ log

(
c∗0,j(2π)−2d

∗
j
)
− log

(
1 + 2d− 2d∗j

)
− 2d. (5.28)

Now, simple computations also imply

Un(t,d,m) ≥
K∗+1∑
k=1

K∗+1∑
j=1

nkj
n

(
u(d∗j , dk)− u(d∗j , d

∗
j)
)
− |D(m,n)| (5.29)

with u(d∗j , d) = − log
(
1 + 2d − 2d∗j

)
+ 2d. Remark that u(d∗j , dk) − u(d∗j , d

∗
j) > 0 for any d∗j 6= dk and of

course u(d∗j , d
∗
j)− u(d∗j , d

∗
j) = 0. Now we could use Lemma 2.3 of Lavielle (1999, p.88), adapted in Lemma

3.3 of Lavielle and Ludena (2000, p.858) and we obtain that there exists C∗ > 0 depending only on d∗

such as

K∗+1∑
k=1

K∗+1∑
j=1

nkj
n

(
u(d∗j , dk)− u(d∗j , d

∗
j)
)
≥ C

n
‖t− t∗‖∞, (5.30)

and ‖t− t∗‖∞ = max1≤k≤K∗
{
|tk − t∗k|

}
.

Therefore, it is also possible to write that for any δ > 0,

P
(
‖τ̂ − τ ∗‖∞ > δ

)
≤ P

(
inf

d∈[0,1/2)K∗+1
min

t∈TK∗ (nδ)
Un(t,d,m) < 0

)
≤ P

(
inf

d∈[0,1/2)K∗+1
min

t∈TK∗ (nδ)

K∗+1∑
k=1

K∗+1∑
j=1

nkj
n

(
u(d∗j , dk)− u(d∗j , d

∗
j)
)
− |D(m,n)| < 0

)
≤ P

(
δ − |D(m,n)| < 0

)
−→

n,m, n/m→∞
0,

since for t ∈ TK∗(nδ) we have ‖t− t∗‖∞ ≥ δ n and for any k ∈ {1, · · · , K∗}. This achieves the proof.
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Proof of Theorem 3.2. Assume with no loss of generality that K∗ = 1. From Theorem 3.1, there exists

(un)n a sequence of real numbers satisfying un
√
m/n −→

n→∞
∞, un/n −→

n→∞
0 and P

(
|t̃1−t∗1| > un

)
−→
n→∞

0.

For δ > 0, as we have

P
(
|t̃1 − t∗1| > δ

n√
m

)
≤ P

(
δ

n√
m
< |t̃1 − t∗1| ≤ un

)
+ P

(
|t̃1 − t∗1| > un

)
As a consequence, it is sufficient to show that P

(
δ n/
√
m < |t̃1 − t∗1| ≤ un

)
−→
n→∞

0.

Denote Vδ,n,m = { t ∈ Z/ δ n/
√
m < |t1 − t∗1| ≤ un }. Then,

P
(
δ

n√
m
< |t̃1 − t∗1| ≤ un

)
≤ P

(
min

t1∈Vδ,n,m

(
Jn(K∗, t1, (d̃1, d̃2),m)− Jn(K∗, t∗1, (d̂

∗
1, d̂
∗
2),m)

)
≤ 0
)
, (5.31)

where d̂∗i are defined in (3.1).

Let t1 ∈ Vδ,n,m and with no loss of generality chose t1 > t∗1. Then n1 = t1, n2 = n − t1, n11 = t∗1,

n12 = t1 − t∗1, n21 = 0 and n22 = n− t1. Then T ∗1 = {1, . . . , t∗1}, T ∗2 = {t∗1 + 1 + 1, . . . , n}, T1 = {1, . . . , t1},
T11 = T ∗1 = {1, . . . , t∗1}, T12 = {t∗1 + 1, . . . , t1}, T2 = {t1 + 1, . . . , n} = T22.

On the one hand, using results of Lemma 5.1 and 5.2, since t1/n −→
n→∞

τ1 and (t1 − t∗1)/n −→
n→∞

0, we can

write

1
t1−t∗1

Rn(T11, T12, d̃1,m)

Sn(T ∗1 , d̃1,m)
=
( n
m

)1−2d∗1
OP

( 1

(t1 − t∗1)1−d
∗
1−d∗2

)
. Therefore, using again the concavity of

the logarithm function, we have:

Jn(K∗, t1, (d̃1, d̃2),m)=
1

n

{
t1 log

(t∗1
t1
Sn(T ∗1 , d̃1,m) +

t1 − t∗1
t1

Sn(T12, d̃1,m) +
2

t1
Rn(T11, T12, d̃1,m)

)
+(n− t1) log

(
Sn(T22, d̃2,m)

)
+ 2 `(m)

(
t1d̃1 + (n− t1)d̃2

)}
≥ 1

n

{
t∗1 log

(
Sn(T ∗1 , d̃1,m)

)
+ (t1 − t∗1) log

(
Sn(T12, d̃1,m)

)
+ (n− t1) log

(
Sn(T22, d̃2,m)

)
+2 `(m)

(
t1d̃1 + (n− t1)d̃2

)
+
( n
m

)1−2d∗1
OP

( 1

(t1 − t∗1)1−d
∗
1−d∗2

)}
≥ 1

n

{
t∗1Wn(T ∗1 , d̃1,m) + (t1 − t∗1)Wn(T12, d̃1,m) + (n− t1)Wn(T22, d̃2,m)

+
( n
m

)1−2d∗1
OP

( 1

(t1 − t∗1)1−d
∗
1−d∗2

)}
.

On the other hand, we also have:

Jn(K∗, t∗1, (d̂
∗
1, d̂
∗
2),m) =

1

n

{
t∗1Wn(T ∗1 , d̂

∗
1,m) + (n− t∗1)Wn(T ∗2 , d̂

∗
2,m)

}
.

First we remark that from the definition of d̂∗1,

Wn(T ∗1 , d̂
∗
1,m) ≤ Wn(T ∗1 , d̃1,m).
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Therefore,

n

t1 − t∗1

{
Jn(K∗, t1, (d̃1, d̃2),m)− Jn(K∗, t∗1, (d̂

∗
1, d̂
∗
2),m)

}
≥ 1

t1 − t∗1

{
(t1 − t∗1)Wn(T12, d̃1,m) + (n− t1)Wn(T22, d̃2,m)

−(n− t∗1)Wn(T ∗2 , d̂
∗
2,m) +

( n
m

)1−2d∗1
OP

( 1

(t1 − t∗1)1−d
∗
1−d∗2

)}
. (5.32)

Since t1 ∈ Vδ,n,m, implying |T ∗2 |/n
P−→

m,n/m→∞
(1− τ ∗1 ) and |T22|/n

P−→
m,n/m→∞

(1− τ ∗1 ), Lemma 5.1 and more

precisely inequality (5.8) can be applied. Then, conditionally to d̃1, d̃2 and d̂∗2, we obtain:

Wn(T12, d̃1,m) = 2d∗2 log
(
n/m

)
+ log

(
c∗0,2(2π)−2d

∗
2
)
− log

(
1 + 2d̃1 − 2d∗2

)
− 2d̃1

+OP

[(m
n

)β∗2 +
( n

m(t1 − t∗1)
)1/2

+m2d̃1−2d∗2−1
]

Wn(T22, d̃2,m) = 2d∗2 log
(
n/m

)
+ log

(
c∗0,2(2π)−2d

∗
2
)
− log

(
1 + 2d̃2 − 2d∗2

)
− 2d̃2

+OP

[(m
n

)β∗2 +m−1/2 +m2d̃2−2d∗2−1
]

Wn(T ∗2 , d̂
∗
2,m) = 2d∗2 log

(
n/m

)
+ log

(
c∗0,2(2π)−2d

∗
2
)
− log

(
1 + 2d̂∗2 − 2d∗2

)
− 2d̂∗2

+OP

[(m
n

)β∗2 +m−1/2 +m2d̂∗2−2d∗2−1
]
,

since `(m) = 1
m

∑m
j=1 log(j/m) = −1 +O(m−1) which is negligible with respect to OP

(
m−1/2

)
. Therefore,

(5.32) becomes:

n

t1 − t∗1

{
Jn(K∗, t1, (d̃1, d̃2),m)− Jn(K∗, t∗1, (d̂

∗
1, d̂
∗
2),m)

}
≥ 1

t1 − t∗1

{
− (t1 − t∗1)

(
log
(
1 + 2d̃1 + 2d∗2

)
− 2d̃1

)
− (n− t1)

(
log
(
1 + 2d̃2 − 2d∗2

)
+ 2d̃2

)
+
n

m
OP

(mβ∗2+1

nβ
∗
2

+m1/2 +m2d̃2−2d∗2 +m2d̂∗2−2d∗2 +
n

t1 − t∗1
m2d̂∗1−2d∗2 +

n−2d
∗
1

m−2d
∗
1(t1 − t∗1)1−d

∗
1−d∗2

)
+(n− t∗1)

(
log
(
1 + 2d̂∗2 − 2d∗2

)
+ 2d̂∗2

)}
. (5.33)

t1 is supposed to belong to Vδ,n,m and therefore t1 ≥ t∗1 + δn/
√
m. Moreover, from Dalla et al. (2006, p.

221), when m is such as m = o
(
n2β∗2/(1+2β∗2 )

)
, then:

d̃2 = d∗2 +OP

(
m−1/2

)
and d̂∗2 = d∗2 +OP

(
m−1/2

)
. (5.34)

Then, from (5.33), we obtain after computations,

n

t1 − t∗1

{
Jn(K∗, t1, (d̃1, d̃2),m)− Jn(K∗, t∗1, (d̂

∗
1, d̂
∗
2),m)

}
≥ 2(d∗1 − d∗2)− log

(
1 + 2(d∗1 − d∗2)

)
+

n

m(t1 − t∗)
OP

(m1+β∗2

nβ
∗
2

+
√
m
)

≥ 2(d∗1 − d∗2)− log
(
1 + 2(d∗1 − d∗2)

)
+OP

(1

δ
+

√
m

δ

(m
n

)β∗2).
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As m = o
(
n2β∗2/(1+2β∗2 )

)
then

√
m
(
m
n

)β∗2 = o(1). As a consequence, we finally obtain:

n

t1 − t∗1

{
Jn(K∗, t1, (d̃1, d̃2),m)−Jn(K∗, t∗1, (d̂

∗
1, d̂
∗
2),m)

}
≥ 2(d∗1−d∗2)−log

(
1+2(d∗1−d∗2)

)
+OP

(1

δ

)
. (5.35)

As log(1 + x) < x for any x ∈ (−1, 0) ∪ (0, 1), and since d∗1 − d∗2 6= 0, we obtain that

lim
δ→∞

P
( n

t1 − t∗1

{
Jn(K∗, t1, (d̃1, d̃2),m)− Jn(K∗, t∗1, (d̂

∗
1, d̂
∗
2),m)

}
< 0
)

= 0

and therefore from (5.31) we deduce (3.2) and therefore the proof of Theorem 3.2 is achieved.

Proof of Theorem 3.3. Using Theorem 3.2, we can establish that d̃i = d̂∗i + OP

(
m−1/2

)
. Indeed, once

again without lose of generality, we can consider the case of one change. Using the notation and proof of

Theorem 3.2, if we assume t̃1 > t∗1, knowing t̃1 − t∗1 ≤ C n√
m

, then T2 ⊂ T ∗2 and therefore we can again

write (5.34) and then |d̃2 − d̂∗2| = OP

(
m−1/2

)
.

Concerning d̃1 and with the knowledge that t̃1 is such as 0 ≤ t̃1 − t∗1 ≤ C n√
m

, we can write that d̃1 =

arg mind∈[0,0.5)Wn({1, . . . , t̃1}, d,m). But using computations of Theorem 3.2, we have

Wn({1, . . . , t̃1}, d,m) = log
(t∗1
t̃1
Sn
(
T ∗1 , d,m

)
+
t̃1 − t∗1
t̃1

Sn
(
{t∗1 + 1, . . . , t̃1}, d,m

)
+

2

t̃1
Rn

(
{1, . . . , t∗1}, {t∗1 + 1, . . . , t̃1}, d,m

))
+ 2d `(m)

= log
(
Sn
(
T ∗1 , d,m

))
+Dm,n,d

( t̃1 − t∗1
t∗1

)
+ 2d `(m) + log(t∗1/t̃1)

= Wn(T ∗1 , d,m) +Dm,n,d

( t̃1 − t∗1
n

)
,

where supd∈[0,1/2) |Dm,n,d| = OP (1) using Lemmas 5.1 and 5.2 and because we have t∗1 = [nτ ∗1 ]. Now, since

d̂∗1 = arg mind∈[0,0.5)Wn(T ∗1 , d,m) and d ∈ [0, 1/2) 7→ Wn(T, d,m) is a C1([0, 1/2)) function, we deduce that

d̃1 = d̂∗1 + 1
n
OP

(
|t̃1 − t∗1|

)
= d̂∗1 +OP

(
m−1/2

)
. This achieves the proof of Theorem 3.3.

Proof of Theorem 3.4. Obiously, the proof is established if for any K ∈
{

0, . . . , K∗− 1, K∗+ 1, . . . , Kmax

}
the following consistency holds:

P
(
Jn(K, t,d,m)− Jn(K∗, t∗,d∗,m) < 0

)
−→
n→∞

0, (5.36)

for any t and d, with Jn defined as in (2.9). Indeed, as Jn(K∗, t̂∗, d̂∗,m) ≤ Jn(K∗, t∗,d∗,m) by definition,

(5.36) is also satisfied by replacing Jn(K∗, t∗,d∗,m) by Jn(K∗, t̂∗, d̂∗,m). We decompose the proof in two

parts, K < K∗ and K > K∗.
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Assume K < K∗. Then, for any t and d, and using (5.27),

Jn(K, t,d,m)− Jn(K∗, t∗,d∗,m)

=
1

n

K+1∑
k=1

nk log
(K∗+1∑

j=1

nkj
nk

Sn(Tkj, dk,m) +
2

nk

K∗+1∑
j=1

K∗+1∑
j′=1, j 6=j

Rn(Tkj, Tkj′ , dk,m)
)

− 1

n

K+1∑
j=1

n∗j log
(
Sn(T ∗j , d

∗
j ,m)

)
+ 2

`(m)

n

(K+1∑
k=1

nkdk −
K∗+1∑
j=1

n∗jd
∗
j

)
+ (K −K∗)zn

≥
K+1∑
k=1

K∗+1∑
j=1

nkj
n

(
s(d∗j , dk)− s(d∗j , d∗j)

)
− |D(m,n)|+ (K −K∗)zn

≥
K+1∑
k=1

K∗+1∑
j=1

nkj
n

(
u(d∗j , dk)− u(d∗j , d

∗
j)
)
− |D(m,n)|+ (K −K∗)zn

since
∑K∗+1

j=1 nkj = nk and
∑K+1

k=1 nkj = n∗j and using (5.28) with D(m,n)
P−→

n,m, n/m→∞
0 and u(d∗j , d) =

− log
(
1 + 2d− 2d∗j

)
+ 2d ≥ 2d∗j .

Now, we use again Lemma 2.3 of Lavielle (1999, p. 88). This Lemma was obtained when K = K∗ and we

obtain that there exist Cd > 0 such as

sup
d∈,t∈

K∗+1∑
k=1

K∗+1∑
j=1

nkj
n

(
u(d∗j , dk)− u(d∗j , d

∗
j)
)
≥ Cd

1

n
‖t− t∗‖∞

where ‖t−t∗‖∞ = max1≤j≤K∗ |tj−t∗j |. However this result is still valide when K∗ is replaced by K < K∗ in

the first sum, since it is sufficient to add K∗−K fictive times and consider tK+1 = tK+2 = · · · = tK∗ = tK

(and therefore nkj = 0 for k = K + 2, . . . , K∗ + 1. Therefore we obtain:

Jn(K, t,d,m)− Jn(K∗, t∗,d∗,m) ≥ 1

3
min

1≤i≤K∗
|τ ∗i+1 − τ ∗i | − |D(m,n)|+ (K −K∗)zn (5.37)

since K < K∗ and therefore ‖t− t∗‖∞ ≥ 1
2

min1≤i≤K∗ |t∗i+1 − t∗i | ≥ n
3

min1≤i≤K∗ |τ ∗i+1 − τ ∗i | when n is large

enough. Therefore, if zn −→
n→∞

0 then (5.36) is satisfied and therefore P
(
K̂ < K∗) −→

n→∞
0.

Assume K∗ < K ≤ Kmax. With t̂ = (t̂1, . . . , t̂K), there exists some subset {kj , 1 ≤ j ≤ K∗} of {1, . . . , K}
such that for any j = 1, . . . , K∗,

∣∣ t̂kj
n
− τ ∗j

∣∣ = OP

(
1√
m

)
. To see this, consider the (t̂kj) as the closest times

among (t̂1, . . . , t̂K) to the (t∗1, . . . , t
∗
K∗). The other K − K∗ change dates t̂i could be consider exactly as

additional “false” changes (since the parameters d do not change at these times) and therefore the t̂kj
minimize Jn(K, t,d,m) conditionally to those t̂i with i /∈ {k1, . . . , kK∗ as if the number of changes is

known and is K∗. And therefore Theorem 3.2 holds for those t̂kj .
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Then using the previous expansions detailed in the previous proofs, we obtain

Jn(K, t̂, d̂,m)− Jn(K∗, t∗,d∗,m)

=
1

n

K∗+1∑
j=1

( kj+1∑
k=kj+1

n̂k log
(
Sn(T̂k, d̂k,m)

)
− n∗j log

(
Sn(T ∗j , d

∗
j ,m)

))

+2
`(m)

n

(K+1∑
i=1

n̂id̂i −
K∗+1∑
j=1

n∗jd
∗
j

)
+ (K −K∗)zn

≥ 1

n

K∗+1∑
j=1

( kj+1∑
k=kj+1

n̂k s(d
∗
j , d̂k)− n∗j s(d∗j , d∗j)

)
− |D(m,n)|

+2
`(m)

n

(K+1∑
i=1

n̂id̂i −
K∗+1∑
j=1

n∗jd
∗
j

)
+ (K −K∗)zn

≥ 1

n

K∗+1∑
j=1

( kj+1∑
k=kj+1

n̂k s(d
∗
j , d̂k)− n∗j s(d∗j , d∗j)

)
− |D(m,n)|

+2
`(m)

n

(K+1∑
i=1

n̂id̂i −
K∗+1∑
j=1

n∗jd
∗
j

)
+ (K −K∗)zn

with s defined in (5.28). Now, since T̂k ⊂
{
t̂kj+1, . . . , t̂kj+1

}
, we have from Theorem 3.4, d̂k = d∗j +O

(
1√
m

)
.

As a consequence, for k = kj + 1, . . . , kj+1 then s(d∗j , d̂k) = s(d∗j , d
∗
j) +OP

(
1√
m

)
. Then,

Jn(K, t̂, d̂,m)− Jn(K∗, t∗,d∗,m)

≥ 1

n

K∗+1∑
j=1

(
s(d∗j , d

∗
j) + 2 d∗j

`(m)

n

)( kj+1∑
k=kj+1

n̂k − n∗j
)
− |D(m,n)| − |E(m,n)|+ (K −K∗)zn

≥ −|D(m,n)| − |E ′(m,n)|+ (K −K∗)zn,

with D(m,n) = OP

(
1√
m

)
under condition m = o

(
n2β∗/(1+2β∗

)
from the proof of Theorem 3.2, E(m,n) =

OP

(
1√
m

)
and therefore E ′(m,n) = OP

(
1√
m

)
since

∣∣∣∑kj+1

k=kj+1 n̂k − n∗j
∣∣∣ = OP

(
n√
m

)
.

As a consequence if (zn) is such that zn
√
m −→

n→∞
∞ then for any K > K∗,

P
(
Jn(K, t̂, d̂,m)− Jn(K∗, t∗,d∗,m) < 0

)
−→
n→∞

0.

This achieves the proof.

Proof of Corollary 1. The results are easily obtained by considering conditional probability with respect

to the event K̂ = K∗.
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