Controllability of the Navier-Stokes equation in a rectangle with a little help of a distributed phantom force

Abstract : We consider the 2D incompressible Navier-Stokes equation in a rectangle with the usual no-slip boundary condition prescribed on the upper and lower boundaries. We prove that for any positive time, for any finite energy initial data, there exist controls on the left and right boundaries and a distributed force, which can be chosen arbitrarily small in any Sobolev norm in space, such that the corresponding solution is at rest at the given final time. Our work improves earlier results where the distributed force is small only in a negative Sobolev space. It is a further step towards an answer to Jacques-Louis Lions' question about the small-time global exact boundary controllability of the Navier-Stokes equation with the no-slip boundary condition, for which no distributed force is allowed. Our analysis relies on the well-prepared dissipation method already used for Burgers and for Navier-Stokes in the case of the Navier slip-with-friction boundary condition. In order to handle the larger boundary layers associated with the no-slip boundary condition, we perform a preliminary regularization into analytic functions with arbitrarily large analytic radius and prove a long-time nonlin-ear Cauchy-Kovalevskaya estimate relying only on horizontal analyticity.
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01676663
Contributeur : Frédéric Marbach <>
Soumis le : jeudi 1 février 2018 - 16:27:13
Dernière modification le : mercredi 16 mai 2018 - 11:22:31

Fichier

Phantom_NS2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01676663, version 2
  • ARXIV : 1801.01860

Citation

Jean-Michel Coron, Frédéric Marbach, Franck Sueur, Ping Zhang. Controllability of the Navier-Stokes equation in a rectangle with a little help of a distributed phantom force. 2018. 〈hal-01676663v2〉

Partager

Métriques

Consultations de la notice

288

Téléchargements de fichiers

40