Scalable and Fast Root Cause Analysis Using Inter Cluster Inference

L. Bennacer 1, 2 L. Ciavaglia 3 S. Ghamri‐doudane 3 A. Chibani 1 Yacine Amirat 1 A. Mellouk 2
1 SIRIUS
LISSI - Laboratoire Images, Signaux et Systèmes Intelligents
2 CIR
LISSI - Laboratoire Images, Signaux et Systèmes Intelligents
Abstract : The capability to diagnose the root cause of an observed problem precisely and quickly is a desirable feature for large communication networks. However, the design of a technique that is at the same time fast, scalable and accurate is a challenging task. In this paper, we propose a novel method based on inter-cluster inference to overcome the usual limits of fault diagnosis techniques. The approach is based on two important concepts: a cluster decomposition of the dependency graph in order to ensure scalability, and the introduction of duplicated nodes aiming at preserving the end-to-end network view. The evaluation of the proposed approach has demonstrated a significant reduction in the complexity and the computation time of the root cause analysis, since it is based on a set of small-scale dependency graphs.
Type de document :
Communication dans un congrès
Proc. Of the IEEE International Conference on Communications, ICC 2013, Jun 2013, Budapest, Hungary. pp.1-6, 2013
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01676592
Contributeur : Lab Lissi <>
Soumis le : vendredi 5 janvier 2018 - 17:44:42
Dernière modification le : jeudi 14 février 2019 - 11:16:04

Identifiants

  • HAL Id : hal-01676592, version 1

Collections

Citation

L. Bennacer, L. Ciavaglia, S. Ghamri‐doudane, A. Chibani, Yacine Amirat, et al.. Scalable and Fast Root Cause Analysis Using Inter Cluster Inference. Proc. Of the IEEE International Conference on Communications, ICC 2013, Jun 2013, Budapest, Hungary. pp.1-6, 2013. 〈hal-01676592〉

Partager

Métriques

Consultations de la notice

35