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Abstract

The fields of control and robotics are working toward the development of bipedal robots that can realize walking motions with
the stability and agility of a human being. Dynamic models for bipeds are hybrid in nature. They contain both continuous and
discrete elements, with switching events that are governed by a combination of unilateral constraints and impulse-like forces
that occur at foot touchdown. Control laws for these machines must be hybrid as well. The goals of this paper are fourfold:
highlight certain properties of the models which greatly influence the control law design; overview the literature; present two
control design approaches in depth; and indicate some of the many open problems.

Key words: Bipedal robotic locomotion; Feedback control methods; Geometric approaches; Hybrid modes; Nonlinear control
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1 Introduction

This paper seeks to provide control researchers with
an entry point into the area of bipedal locomotion,
more specifically, 3D bipedal walking. The emphasis is
on models and control laws for achieving the simplest
possible behavior, namely, asymptotically stable, pe-
riodic, walking on flat ground. This is already a very
challenging and rich problem due to the multi-phase,
hybrid nature of legged locomotion and the unilateral
constraints that must be satisfied by the forces and
torques at the foot-ground interface. Any researcher
mastering this basic problem can be assured that there
is plenty more to do in terms of investigating aperiodic
gaits, non-flat ground, maneuvering, running, energy
efficiency, autonomy, and much more.

Section 2 presents a class of hybrid models that are ubiq-
uitous in controlled bipedal locomotion. The emphasis
here is on closed-loop systems, periodic orbits, which
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will correspond to periodic walking gaits, and their sta-
bility. The method of Poincaré for establishing stabil-
ity properties of periodic orbits of hybrid systems is de-
veloped with an aim at being able to apply it to high-
dimensional models. One of the great advantages of the
method of Lyapunov for analyzing the stability proper-
ties of equilibria in nonlinear systems is that one does
not need to compute a solution of the model. In the case
of periodic orbits, computing solutions seems to be un-
avoidable and hence taking advantage of invariance and
time-scale properties to simplify the analysis becomes
even more essential.

Section 3 on modeling is perhaps the most important
part of the paper for a control engineer. The model of
a bipedal robot differs from the model of a robotic ma-
nipulator precisely because the latter is bolted to the
ground while the former is not. A foot remains flat on the
ground without slipping only when the reaction forces
and torques at the interface satisfy strict inequalities; in
particular, the normal component of the ground reac-
tion force must be positive, as the ground cannot “pull”
against a foot as a bolt will for a manipulator; in addi-
tion, tangential forces must lie in a friction cone. These
restrictions are obvious, but are nevertheless ignored in
many publications. Getting the dynamic models right is
crucial if a proposed control solution is to be taken seri-
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ously by the robotics community. Other interesting and
challenging features of bipedal models depend on the
gait that is being studied. A human gait, for example,
has phases where the foot is in rotation about one of its
edges. This occurs because foot-ground contact is typ-
ically initiated with a heel strike, followed by the foot
rotating about the heel until the sole of the foot is flat
on the ground. The end of the step is typically initiated
by the foot rolling up on the toe prior to being lifted
from the ground to begin the swing phase. The nature
of the foot-ground interface also determines the degree
of actuation (or underactuation) of the corresponding
dynamic model. A foot in rotation necessarily leads to
underactuation, while if the foot is flat on the ground
and all joints of the robot are independently actuated,
the model is typically fully actuated. Most of the well-
known humanoid robots use large feet and a flat-footed
walking gait in order to avoid the control complications
arising from underactuation; on the other hand, their
control systems are meeting all of the unilateral con-
straints required to keep the foot flat on the ground and
not slipping.

Section 4 summarizes many of the control approaches
being pursued in the field of bipedal robotics. An at-
tempt is made to categorize each control method by the
modeling features used in its design. Does it use the
full dynamical model or a simplified model? If the lat-
ter, what is it? Are hybrid aspects, such as impacts, ex-
plicitly taken into account? Are underactuated models
allowed? A good sampling of the range of ideas is pro-
vided, but the summary is not exhaustive. The large and
very interesting literature addressing monopedal robots,
polypedal robots, and planar bipedal robots is barely
touched upon, and even the presentation of 3D bipedal
flat-footed walking using simplified models is not com-
plete. The focus instead in this paper is on control meth-
ods that make use of the full-dimensional dynamic mod-
els described in Sect. 3 and for which formal statements
can be made on the stability properties of solutions of
the closed-loop system.

Sections 5–7 summarize two control design methods that
are being pursued by subsets of the authors. The pri-
mary aim of the work in Sect. 5 is to confront the issue
of underactuation. A model is studied where the foot is
replaced with a point contact. This can be thought of as
walking on stilts or as walking with very small feet so
that foot rotation, and hence underactuation, is unavoid-
able. This study is important precisely because dealing
with underactuation has been a stumbling block in the
formal development of control laws with provable sta-
bility properties for bipedal robots. Section 6 addresses
more advanced aspects of the theory presented in Sect. 5;
it is much less tutorial in nature.

The primary objective of work presented in Sect. 7 is to
develop control techniques which naturally deal with the
multi-phase nature of bipedal locomotion, with the early

emphasis on gaits which have only fully actuated phases.
Extensions to address underactuation are currently be-
ing considered and are summarized here. An important
idea is that in the fully actuated domains the sagittal
and coronal 1 dynamics of a 3D biped can be decoupled
using a variant of geometric reduction termed functional
Routhian reduction. It is then only necessary to con-
trol the sagittal dynamics of the biped which is achieved
through controlled symmetries—this shapes the poten-
tial energy of the system to mimic a passive biped walk-
ing down a shallow slope. Since both of these control
laws require full actuation they are implemented on the
fully actuated domains and “local” control laws, moti-
vated by ideas similar to those presented in Sect. 5, are
implemented on the underactuated domains to achieve
the transitions through these domains.

The paper is concluded in Sect. 8 with a discussion of
open problems.

2 Preliminaries on HybridModels, Periodic So-
lutions, and Poincaré Maps

This section overviews two types of hybrid models which
occur frequently in models of bipedal locomotion. The
dynamic models described in Sect. 3 for bipedal loco-
motion naturally lead to hybrid systems as given here.
The section also introduces two primary tools of stabil-
ity analysis for periodic orbits in such models, namely
the method of Poincaré sections and the notion of a hy-
brid invariant manifold.

2.1 Systems with Impulse Effects or Single-Domain Hy-
brid Models

To define a C1 system with impulse effects, consider

ẋ = f(x), (1)

where the state manifold X is an open connected subset
of IRn, and f is a C1 vector field on X . A switching
surface S is a co-dimension one C1 submanifold with
S = {x ∈ X | H(x) = 0, Ḣ(x) = LfH(x) < 0}, where
H : X → IR isC1 and S 6= ∅; because ∀x ∈ S,LfH(x) <

0, it follows that ∂H∂x (x) 6= 0. A transition or reset 2 map
is a C1 function ∆ : S → X , where S∩∆(S) = ∅, that is,

1 The sagittal plane divides the body into left and right
halves; planar robots typically evolve in the sagittal plane.
The frontal plane divides the body into front and back halves;
hip sway takes place in the frontal plane. The frontal plane
is also called the coronal plane.
2 When the reset map corresponds to the swing leg impact-
ing the ground, it is commonly called an impact map instead
of a reset map.

2



the image of the reset map is disjoint from its domain. A
C1 autonomous system with impulse effects is written as

Σ̄ :

{
ẋ = f(x) x− 6∈ S
x+ = ∆(x−) x− ∈ S,

(2)

where x−(t) = limτ↗t x(τ) and x+(t) = limτ↘t x(τ) are
the left and right limits of a trajectory, x(t). For com-
pactness of notation, an autonomous system with im-
pulse effects (2) will sometimes be denoted as a 4-tuple,
Σ̄ = (X ,S,∆, f).

In simple terms, a solution of (2) is specified by the dif-
ferential equation (1) until its state “impacts” the hyper
surface S at some time tI . At tI , the reset map ∆ com-
presses the impact event into an instantaneous moment
of time, resulting in a discontinuity in the state trajec-
tory. The reset map provides the new initial condition
from which the solution of the differential equation con-
tinues until the next impact with S. In order to avoid the
state having to take on two values at the “impact time”
tI , the impact event is, roughly speaking, described in
terms of the values of the state “just prior to impact” at
time “t−I ”, and “just after impact” at time “t+I ”. These
values are represented by x− and x+, respectively. A for-
mal definition of a solution can be written down by piec-
ing together appropriately initialized solutions of (1).
A choice must be made whether the solution is a left-
or a right-continuous function of time at each impact
event; here, solutions are assumed to be right continu-
ous. Other useful notions of a solution can be found in
Filippov [1960], Ye et al. [1998], Haddad et al. [2006],
Goebel et al. [2009], Lygeros et al. [2003]. Because we
are interested in the local stability properties of periodic
orbits, we will exclude Zeno and other complex behavior
from the systems under study; see Or and Ames [2008,
2009], Lamperski and Ames [2008], Goebel et al. [2009].

2.2 Periodic Orbits and the Poincaré Return Map for
Single-Domain Models

Cyclic behaviors such as walking are represented as pe-
riodic orbits of systems with impulse effects. A solu-
tion ϕ(t, t0, x0) of an autonomous system Σ̄ is periodic
if there exists a finite T > 0 such that ϕ(t+ T, t0, x0) =
ϕ(t, t0, x0) for all t ∈ [t0,∞). A set O ⊂ X is a peri-
odic orbit if O = {ϕ(t, t0, x0) | t ≥ t0} for some peri-
odic solution ϕ(t, t0, x0). If a periodic solution has an
impact event, then the corresponding periodic orbitO is
not closed; see Grizzle et al. [2001], Morris and Grizzle
[2005]. Let Ō denote its set closure. Notions of stabil-
ity in the sense of Lyapunov, asymptotic stability, and
exponential stability of orbits follow the standard defi-
nitions of orbital stability as in [Khalil, 1996, pp. 302],
Grizzle et al. [2001], Nersesov et al. [2002].

The method of Poincaré sections is widely used to

∆(x−)

x−

S∆(S)

x+

φ(t,∆(x−))

P (x−)

Fig. 1. Geometric interpretation of a Poincaré return map
P : S → S for a system with impulse effects. The Poincaré
section is selected as the switching surface, S. A periodic
orbit exists when P (x−) = x−. If solutions are assumed to
be right continuous, then x− is not an element of the orbit;
with left-continuous solutions, ∆(x−) is not an element of
the orbit.

determine the existence and stability of periodic or-
bits in a broad range of system models, such as time-
invariant and periodically-time-varying ordinary differ-
ential equations Parker and Chua [1989], Guckenheimer
and Holmes [1996], hybrid systems consisting of several
time-invariant ordinary differential equations linked by
event-based switching mechanisms and re-initialization
rules Grizzle et al. [2001], Nersesov et al. [2002], Roup
et al. [2003], differential-algebraic equations Hiskens
[2001], and relay systems with hysteresis Goncalves et al.
[2001], to name just a few. The analytical details may
vary significantly from one class of models to another,
but, despite these sometimes subtle differences, on a
conceptual level the method of Poincaré is consistent
and straightforward: sample the solution of a system
according to an event-based or time-based rule and then
evaluate the stability properties of equilibrium points
(also called fixed points) of the sampled system. The
sampled values give rise to the Poincaré return map; see
Fig. 1. Fixed points of the Poincaré map correspond to
periodic orbits (limit cycles) of the underlying system.

When using the method of Poincaré to study the sys-
tem[p with impulse effects (2), it is natural to select S
as the Poincaré section. To define the return map, let
φ(t, x0) be the maximal solution of (1) with initial con-
dition x0 at time t0 = 0. The time-to-impact function,
TI : X → IR, is the time from initialization to the first
intersection with the set S and is in general a partial
map [Westervelt et al., 2007a, pp. 90]

TI(x0) := inf{t ≥ 0|φ(t, x0) ∈ S} if ∃ t such that

φ(t, x0) ∈ S.
(3)

The Poincaré return map, P : S → S, is then the partial
map

P (x) = φ(TI ◦∆(x),∆(x)).

A periodic orbitO is period-one if its closure intersects S
at exactly one point, x∗ = Ō∩S; because x∗ = P (x∗), it
is called a fixed point. A period-one orbit is transversal to
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S if LfH(x∗) = ∂H
∂x (x∗)f(x∗) 6= 0 (in words, the vector

field f is not tangent to S at the point x∗). For conve-
nience, define the partial function φTI (x) = φ(TI(x), x)
so that the Poincaré return map can be written as

P (x) = φTI ◦∆(x).

For the case of autonomous systems with impulse effects,
the method of Poincaré sections is formalized in the fol-
lowing theorem.

Theorem 1 (Morris and Grizzle [2009], Method of
Poincaré Sections) If the C1 autonomous system with
impulse effects Σ̄ = (X ,S,∆, f) has a periodic orbit O
that is transversal to S, then the following are equivalent:

i) x∗ is an exponentially stable (respectively, asymp-
totically stable, or stable in the sense of Lyapunov)
fixed point of P ;

ii) O is an exponentially stable (respectively, asymp-
totically stable, or stable in the sense of Lyapunov)
periodic orbit.

2

Remark 2 All of the stability notions above are local.
Results in [Westervelt et al., 2007a, Sect. 4.2.2] show
that if O is transversal to S and Σ̄ = (X ,S,∆, f) is C1,
then the partial map P is well-defined and differentiable
at a fixed point x∗, and hence exponential stability can be
checked by evaluating eigenvalues of the Jacobian of P at
x∗.

2.3 Multi-domain Hybrid Models

This section will address systems with Np ≥ 2 contin-
uous domains and discrete transitions between the do-
mains. Such models frequently occur in bipedal locomo-
tion. We will assume phases are executed in a fixed or-
der 1 → 2 → · · · → Np → 1. We will use the notation
Np + 1 = 1 (addition modulo Np).

For each 1 ≤ i ≤ Np, let Xi be an open connected subset
of Rni upon which is defined an autonomous differential
equation Fi. Let S i+1

i be an embedded submanifold of
co-dimension one in the state space Xi that determines
when a transition from Xi to Xi+1 takes place according
to the reset map ∆i+1

i : S i+1
i → Xi+1.

The corresponding hybrid model is written using the no-

tation in Guckenheimer and Johnson [1995] as

Σ̄ :



X = {Xi}Npi=1 : Xi ⊂ Rni

F = {fi}Npi=1 : ẋi = fi(xi)

S = {S i+1
i }Npi=1 : S i+1

i = {xi ∈ Xi | H i+1
i (xi) = 0,

Ḣ i+1
i (xi) < 0}

∆ = {∆i+1
i }

Np
i=1 : x+

i+1 = ∆i+1
i (x−i ).

(4)
Under assumptions analogous to those for the single-
domain model, a unique, maximal solution of the multi-
domain model can be constructed by piecing together
trajectories of the flowsFi in such a way that a transition
occurs when a flow intersects a switching hyper-surface,
S i+1

i , and at each transition, the new initial condition is
determined by the reset maps ∆i+1

i . To avoid chattering,
it is assumed that ∆i+1

i

(
S i+1

i

)
∩ S i+2

i+1 = ∅, so that a so-
lution through a domain must have a non-zero duration.

Remark 3 Note that the hybrid model Σ̄ introduced in
(4) is equivalent to the definition of a hybrid system on a
cycle (as studied in Lamperski and Ames [2008]), which
is typically stated as a tuple,

H = Σ̄ = (Γ,X ,S,∆,F),

where Γ is the directed graph with vertices {1, 2, . . . , Np}
and edges connecting vertex i to vertex i+ 1.

2.4 Periodic Orbits and the Poincaré Return Map for
Multi-Domain Models

Let X = X1∪X2 · · ·∪XNp . A solution φ(t) of (4) is peri-
odic if there exists a finite T > 0 such that φ(t+T ) = φ(t)
for all t ∈ [t0,∞). A set O ⊂ X is a periodic orbit of
(4) if O = {φ(t) | t ≥ t0} for some periodic solution
φ(t). The definitions of orbital stability in the sense of
Lyapunov, orbital asymptotic stability, and orbital expo-
nential stability are analogous to those for systems with
impulse effects. A periodic orbit O is transversal to S i+1

i

if its closure intersects S i+1
i in exactly one point, and for

x∗i := Ō ∩ S i+1
i , Lfi

H i+1
i (x∗i ) :=

∂Hi+1
i

∂xi
(x∗i )fi(x

∗
i ) 6= 0.

A periodic orbit O is transversal if it is transversal to
S i+1

i for all i. In the case of a bipedal robot, a nontriv-
ial, transversal, periodic orbit will also be referred to as
periodic locomotion.

The Poincaré return map remains the mathematical
tool of choice for determining the existence and stabil-
ity properties of periodic orbits. As in (3), define the
phase-i time-to-impact function, TI,i : Xi → R as the
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partial map

TI,i(x0) := inf{t ≥ 0|φi(t, x0) ∈ S i+1
i } if ∃t such that

φi(t, x0) ∈ S i+1
i ,

(5)
where φi(t, x0) is an integral curve of (4) corresponding
to φi(0, x0) = x0. The generalized Poincaré phase-i map
Pi : S i

i−1 → S i+1
i is the partial map

Pi(xi−1) := φi(TI,i(∆
i
i−1(xi−1)),∆i

i−1(xi−1)). (6)

The Poincaré return map can be defined as the compo-
sition of the generalized Poincaré phase-imaps, starting
at any point in the cycle 1→ 2→ · · · → Np → 1. Here,
for convenience, we start it at i = 1, so that

P := PNp ◦ · · · ◦ P1. (7)

Proposition 4 (Connecting Multi-Phase Models
to Single-Phase Models) Let P be the Poincaré return
map defined in (7) for the multi-phase model in (4). P is
also the Poincaré return map for the system with impulse
effects (2), where X = X1, f = f1, S := S2

1 and ∆ :=
∆1
Np
◦ PNp ◦ · · · ◦ P2.

PROOF. This follows immediately from the construc-
tion of the Poincaré return maps in (4) and (7).

Remark 5 It is emphasized that this observation is im-
portant because it allows results developed for single-
domain models of the form (2) to be applied to models
with multiple phases, as in (4). In particular, suppose
that the multi-domain hybrid model (4) is C1 in each
phase and has a transversal periodic orbit O. Then, re-
sults in [Westervelt et al., 2007a, Sect. 4.2.2] show that
∆ := ∆1

Np
◦ PNp ◦ · · · ◦ P2 is C1 in a neighborhood of

x∗ = O ∩ S, and thus P is C1 in a neighborhood of x∗.
Exponential stability can therefore be checked by evaluat-
ing eigenvalues of the Jacobian of P at x∗.

2.5 Determining Orbital Stability on the Basis of a Re-
striction Dynamics

This section identifies properties of the autonomous hy-
brid system (2) under which the exponential stability
of a periodic orbit can be determined on the basis of a
hybrid restriction dynamics. The key hypothesis will be
the existence of an embedded submanifold that is invari-
ant under both the continuous and discrete portions of
the hybrid model (2). The design of static and dynamic
state variable feedbacks that create invariant submani-
folds for systems modeled by ordinary differential equa-
tions is a well-studied problem and plays a prominent

role in the notion of the zero dynamics. How to design
feedbacks that achieve invariance under the reset map is
treated in Sect. 5.3.

The following definitions formalize notions of hybrid in-
variance and restriction dynamics.

Definition 6 For an autonomous system with impulse
effects Σ̄ = (X ,S,∆, f), a submanifoldZ ⊂ X is forward
invariant if for each point x in Z, f(x) ∈ TxZ where
TxZ is the tangent space of the manifold Z at the point x.
A submanifold Z is impact invariant in an autonomous
system with impulse effects Σ̄, if for each point x in S∩Z,
∆(x) ∈ Z. A submanifold Z is hybrid invariant if it is
both forward invariant and impact invariant.

It follows that if Z is hybrid invariant, solutions that
start in Z, remain in Z, even after a switching (or reset)
event.

Definition 7 If a C1 embedded submanifold Z is hybrid
invariant and S ∩ Z is C1 with dimension one less than
that of Z, then

Σ̄
∣∣
Z

:

{
ż = f |Z (z) z− 6∈ S ∩ Z
z+ = ∆|S∩Z (z−) z− ∈ S ∩ Z,

(8)

is called a hybrid restriction dynamics of the au-
tonomous system Σ̄, where f |Z and ∆|S∩Z are the
restrictions of f and ∆ to Z and S ∩ Z, respec-
tively. The hybrid restriction system (8) is denoted as
Σ̄
∣∣
Z

= (Z,S ∩ Z,∆|S∩Z , f |Z).

If a system Σ̄ has a periodic orbit O lying in a hybrid
invariant manifold Z, then O is a periodic orbit of the
resulting hybrid restriction dynamics. In this case hybrid
invariance of Z is reflected in the Poincaré map as

P (S ∩ Z) ⊂ S ∩ Z. (9)

On the basis of (9), the restricted Poincaré map,

ρ : S ∩ Z → S ∩ Z, (10)

is defined as ρ = P |Z .

The following result shows that if the invariant manifold
is sufficiently rapidly attractive, then stability of the pe-
riodic orbit in the complete model can be deduced on
the basis of the restricted Poincaré map.

Theorem 8 (Morris and Grizzle [2009], Reduced Di-
mensional Stability Test) Consider a family of C1

autonomous systems with impulse effects with the vec-
tor field of each member depending on a real parameter
ε > 0, Σ̄ε = (X ,S,∆, f ε). Let Z be a k-dimensional C1

embedded submanifold of X , with k ≥ 1. Suppose in ad-
dition that:

5



(a) S ∩ Z is a C1, (k − 1)-dimensional embedded sub-
manifold of S;

(b) f ε restricted to Z is independent of ε, so that f |Z =
f ε|Z for any ε ∈ (0,∞);

(c) Z is hybrid invariant;
(d) there exists a periodic orbit O of Σ̄ε = (X ,S,∆, f ε)

that is contained in Z and with the corresponding
fixed-point denoted by x∗; and

(e) there exists a function K : (0,∞) → [0,∞) such
that limε↘0K(ε) = 0, and ∀ ε > 0, ∃ δ > 0
such that 3 ∀ x0 ∈ Bδ(∆(x∗)), dist(φTI

ε(x0), Z) ≤
K(ε) dist(x0, Z).

Then the restriction dynamics Σ̄ε
∣∣
Z
and fixed point are

both independent of ε. In addition, there exists ε̄ > 0 such
that for 0 < ε < ε̄, the following are equivalent:

i) x∗ is an exponentially stable fixed point of P ε, and
ii) x∗ is an exponentially stable fixed point of ρ,

where P ε = φTI
ε ◦∆ and ρ = P ε|Z .

2

3 Dynamic Models

Robotic legged locomotion is characterized by the fact
that the contact between the robot and its environ-
ment (the ground) is unilateral and intermittent. Uni-
lateral constraints entail “complementarity conditions”,
that is, conditions requiring that the product of two non-
negative quantities be zero. For example, when the dis-
tance from a contact point to the ground is greater than
zero (i.e., non-contact), the ground cannot exert a force
(i.e., force must be zero). The distance cannot be nega-
tive since the foot cannot penetrate the ground (ground
and foot are modeled as rigid bodies). When the foot is
in contact with the ground (i.e., distance is zero), then
the ground reaction force must be positive or zero since
the ground can push, but cannot pull, on the robot. Ad-
ditional constraints to avoid (or to allow) slipping also
exist.

While the dynamic models developed in Moreau [1966]
and Hürmüzlü et al. [2004] on the basis of complemen-
tarity conditions are very general, effective means to de-
sign controllers for models of this form are not known at
this time. For the purposes of control design, an actuated
version of the multi-phase hybrid models in (4) are used,
where each phase corresponds to a specific combination
of complementarity conditions being either zero or non-
zero. For periodic walking, the sequence of complemen-
tarity conditions gives rise to distinct phases, each cor-
responding to different modeling constraints. Enumer-
ating these constraints leads to a natural way of struc-

3 Br(x) denoted the open ball of radius r about the point x .

turing a walking gait as a directed graph, thereby moti-
vating the application of hybrid systems theory.

In the following, Sect. 3.1 presents a biped model in
terms of complementarity conditions. The detailed cal-
culation of the dynamic models for different phases of a
walking gait are developed systematically in Sect. 3.2 to
3.6. The overall hybrid model of a walking gait is assem-
bled in Sect. 3.7.

3.1 Generalities

The robot itself is classically modeled as a tree struc-
ture composed of rigid links. When contact occurs be-
tween the feet and the ground, it is assumed to be a rigid
contact. With these assumptions, one way to obtain a
model for the various phases of a walking gait is to first
construct a floating-base Lagrangian model of the robot
(i.e., no assumptions on ground contact), and then add
in ground contact forces via D’Alembert’s principle.

To begin this modeling approach, let R0 be a fixed in-
ertial (or world) frame and let Rb be a reference frame
attached to some point on the robot, as in Fig. 2. Let
pb ∈ IR3 be the Cartesian position of Rb with respect to
R0 and let φb ∈ SO(3) be the orientation. Where con-
venient, we identify an open subset of SO(3) with an
open subset of IR3 using Euler angles 4 . Next, let q ∈ Q
be an N -dimensional vector of body (or shape) coordi-
nates 5 for the robot. Then qe = (p′b, φ

′
b, q)

′ ∈ Qe =
IR3 × SO(3) × Q is a set of generalized coordinates for
the robot.

R0

Rb

Rst

Fig. 2. A frame Rb is attached to the body. The position and
orientation of the robot are expressed with respect to a fixed
inertial frame R0. A frame Rst attached to the stance foot
is useful for expressing the contact conditions.

4 While singular configurations exist in this identification,
they are not relevant for upright configurations of the torso
that occur in normal walking.
5 These are coordinates tied to the reference frame Rb on
the body of the robot. If the robot consists of rigid links
connected through one-dimensional revolute joints, then the
relative joint angles constitute a set of body coordinates.
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Following standard techniques, the robot’s Lagrangian
is computed as a functional acting on TQe. The La-
grangian is defined to be the difference between the ki-
netic and potential energies

Le(qe, q̇e) := Ke(qe, q̇e)− Ve(qe). (11)

From Hamilton’s principle, the equations of motion can
be calculated directly from the Lagrangian as

d

dt

∂Le
∂q̇e
− ∂Le
∂qe

= Γ(qe, q̇e) +Be(qe)u, (12)

where Be(q)u is the vector of actuator torques and
Γ(qe, q̇e) represents other nonconservative forces (such
as joint friction) [Goldstein et al., 2002, pp. 34–45].
The effect of gravity is accounted for in the potential
energy. The torque distribution matrix Be(q) depends
only on the body coordinates; its columns are assumed
involutive and (point-wise) linearly independent so that
in appropriate coordinates the matrix is constant, with
rank equal to the number of actuators, Na. The ki-
netic energy is a quadratic, positive definite function of
the generalized velocities, and hence (12) leads to the
standard robot equations

De(qe)q̈e + Ce(qe, q̇e)q̇e +Ge(qe)− Γ(qe, q̇e) = Be(q)u.
(13)

From here on out, for simplicity, the termΓ(qe, q̇e)will be
dropped; it is very easy to add it back in when required.
De(qe) is the (N+6)×(N+6) inertia matrix,Ce(qe, q̇e)q̇e
is the vector of Coriolis and centrifugal effects, Ge(qe) is
the gravitational force, u is the vector of inputs (i.e, the
actuator torques). Sometimes, to simplify notation, the
Coriolis, centrifugal and gravity terms are grouped into
a single vector He(qe, q̇e) = Ce(qe, q̇e)q̇e +Ge(qe).

At this point, the model (13) assumes no contact with
the ground. A general form of the dynamic model of the
biped withm points belonging to the feet that can be in
contact with the environment (for example the 8 corners
of the two feet), is called a complementarity dynamical
system in Hürmüzlü et al. [2004]. It can be written as

De(qe)q̈e +He(qe, q̇e) = Be(q)u+∇F (qe)λn +Pt(qe, q̇e)
(14)

λTnF (qe) = 0;λn ≥ 0;F (qe) ≥ 0 (15)
Dry Friction Amontons–Coulomb’s model (16)

Restitution law + shock dynamics, (17)
where F (qe) is a vector composed of the m vertical dis-
tances between the possible points of contact of the feet
and the ground; λn is a vector composed of them normal
forces exerted by the ground on these points of contact;
and Pt(qe, q̇e) captures the tangential forces exerted by
the ground. This latter term depends on the model of
friction (16) and while the consideration of both sliding
and sticking phenomena can be expressed through com-
plementarity conditions, these are not detailed here.

The orthogonality condition λTnF (qe) = 0 means that
for each point 1 ≤ i ≤ m, if F (qe)(i) > 0, i.e., there is
no contact, then the normal force is λn(i) = 0, whereas
a non-zero but positive contact force λn(i) > 0 is possi-
ble only if there is contact, i.e., F (qe)(i) = 0. The model
(14) clearly shows the possible intermittence of the con-
tact. When a contact is lost, the corresponding contact
force switches from a positive to a zero value and this
is taken into the model without problem. When a con-
tact occurs, F (qe)(i) decreases to zero and cannot be
negative. If the derivative Ḟ (qe)(i) is different from zero
when F (qe)(i) = 0, then a discontinuity will appear and
it must be treated with a restitution law, as in (17).

Complementarity Lagrangian systems as in (14)–(17)
were first introduced by Moreau [1966]. Models of this
form are very useful for simulating bipedal robot loco-
motion because of the possibility to detect changes in
ground contact, even unexpected changes such as foot
scuffing or a foot rolling on an edge. In Posa et al. [2014],
complementarity Lagrangian models have been used for
trajectory optimization, without a priori enumeration of
the type and order of the contact events. In the context
of control law design, however, to the best of our knowl-
edge, the first step is to define the sequence and type of
contact with the environment, leading to hybrid mod-
els of the form used in Sect. 2.3 and illustrated later in
Fig. 12. Defining the contact sequence means defining for
each phase of a gait whether λn(i) = 0 or F (qe)(i) = 0.
Thus, for control law design, the general form (14)–(17)
is primarily useful as a conceptual tool. Complementar-
ity models highlight the importance of checking the pos-
itivity of the normal force when a contact is assumed. In
the development of a control law, preference is given to
the definition of specialized models that include a mini-
mal set of state variables.

In following sections we will develop models for three
types of contact, namely, the stance foot is flat on the
ground, the foot is rotating about an axis corresponding
to the heel or the toe, and the limiting case of a stance
foot reduced to a point contact. The term single support
(SS) means that one foot is in contact with the ground,
flat or otherwise, and double support (DS) means that
both feet are in contact with the ground. The same ter-
minology is used when a leg is terminated in a point in-
stead of a foot.

3.2 Single support with flat foot contact

Assuming at least three non-collinear points of contact,
the net effect of the ground reaction forces can be sum-
marized as a reaction wrench expressed in a frame at-
tached to the foot. Let Rst be a reference frame attached
to the stance foot as in Fig. 2. The ground contact wrench

7



Fst has six components 6 ,

Fst = (F fxst , F
fy
st , F

fz
st , F

mx
st , Fmyst , Fmzst )′,

where the first three components are the ground reaction
forces and the last three are themoments (i.e., ground re-
action torques). Because F fzst is a normal force, it is uni-
lateral. If the reaction wrench is calculated in a different
point (not at the origin of frame Rst), the values of the
moments change. It can be shown that for planar hori-
zontal ground, there exists a point on the ground where
the moments around the horizontal axes Fmxst , Fmyst are
zero; this point is called the Center of pressure (CoP) or
Zero Moment Point (ZMP). It is known that flat-footed
walking requires this point to be in the interior of the
convex hull of the foot Vukobratović and Borovac [2004].

The position and orientation of the frame Rst in the in-
ertial frameR0 can be expressed by a (4×4) transforma-
tion matrix denoted T st0 , which is a function of qe. The
linear and angular velocities of the foot, vst and ωst, are
then defined by

0 −ωzst ωyst v
x
st

ωzst 0 −ωxst vyst

−ωyst ωxst 0 vzst

0 0 0 0


=
(
T st0 (qe)

)−1
Ṫ st0 (qe, q̇e).

(18)

According to the principle of virtual work found in Dom-
bre and Khalil [2002], Murray et al. [1993], Spong et al.
[2005], the contact wrench is taken into account in the
dynamic model as

De(qe)q̈e +He(qe, q̇e) = Be(q)u+ Jst(qe)
′Fst, (19)

where Jst(qe) is full rank and satisfies[
vst

ωst

]
= Jst(qe)q̇e. (20)

This model is similar to (14), but adapted to the case of
single support on a flat foot (i.e., the stance foot), with
the other foot raised above the ground (i.e., the swing
foot).

The position and orientation of the stance foot is as-
sumed to be fixed (no slipping, etc.), and the distance

6 In the complementarity representation, a 3-dimensional
ground reaction force would be attached to each of them ≥ 3
contacts, using the normal forces λn and the tangential forces
captured in Pt. The moments would be generated by the
forces acting at a distance from the origin of Rst.

between each of the points of contact of the stance foot
and the ground is assumed to be zero. We will impose
these conditions with a holonomic constraint. Let the
position and orientation 7 of Rst with respect to R0 (see
Fig. 2), expressed in terms of the generalized coordinates
qe, be denoted by

ηst(qe) =

[
pst(qe)

φst(qe)

]
. (21)

It can be shown that the Jacobian ∂ηst
∂qe

has full rank. We
can write a holonomic constraint as

ηst(qe) =

[
pst

φst

]
= constant. (22)

Because the position and orientation of the foot are fixed,
their velocity and acceleration are zero. The kinematic
constraint is [

vst

ωst

]
= Jst(qe)q̇e = 06×1, (23)

where the velocities are defined in (18). Differentiating
(23), the constraint on acceleration is

Jst(qe)q̈e +
∂

∂qe

(
∂Jst(qe)

∂qe
q̇e

)
q̇e = 06×1. (24)

This equation in conjunction with (19) leads to a system
of equations from which the contact wrench Fst(qe, q̇e, u)
and q̈e can be computed. It follows that Fst is affine in
the actuator torques u.

The foot remaining fixed and flat on the ground imposes
specific bounds on Fst. In order to avoid the foot lifting
from the ground, the constraint is

F fzst > 0. (25)

Since we represent (dry) friction by a classical Amon-
tons–Coulomb model, to avoid linear slipping 8 , the con-
straint is √

(F fxst )2 + (F fyst )2 < µF fzst , (26)

where µ is the assumed friction parameter. The param-
eter µ does not directly affect the model (19) because

7 Euler angles can be used for example to express the ori-
entation.
8 A condition also exists also on Fmz

st , but it involves the size
of the foot, the friction parameter and the unknown distri-
bution of the forces along the sole of the foot. Consequently,
when modeling straight displacement, a constraint on Fmz

st

in order to avoid rotational slipping is usually neglected.
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Fig. 3. The ground exerts a wrench on the foot, that is, a pure
force and a moment (or torque). The wrench is expressed
in the reference frame Rst, which has been attached to an
arbitrary point on the foot.

the foot is assumed to be not slipping, however it di-
rectly affects the domain of validity of the model; as a
consequence, the results obtained are not sensitive to
the choice of µ when the constraints are far from their
limits 9 . To use linear constraints, the friction cone (26)
can be replaced by a friction pyramid, which gives

|F fxst | < µ√
2
F fzst ,

|F fyst | < µ√
2
F fzst .

(27)

Even if the foot is pressing against the ground and not
sliding, it could be in rotation about one of its edges. In-
deed, due to the finite size of the feet, and due to the uni-
lateral nature of the contact, Vukobratović et al. [1990]
and Chevallereau et al. [2009a] show that the moment
produced by the ground is limited by

−lbF fzst < Fmxst < laF
fz
st

−LaF fzst < Fmyst < LbF
fz
st ,

(28)

where La, Lb, la, lb are defined by the geometry of the
foot as in Fig. 3. If one of the conditions in (28) is not sat-
isfied, the foot will rotate along an edge. The constraint
(28) is known as the Zero Moment Point (ZMP) condi-
tion. Because a foot is typically less wide than long, the
constraints in the frontal plane are more severe than in
the sagittal plane.

The collection of constraints (25), (27), and (28) must
all be satisfied for the assumption of walking with a foot
flat on the ground to be correct. These equations can be
grouped as

AFst(qe)
′Fst(qe, q̇e, u) > 0, (29)

where it is noted that Fst depends not only on the states
q, q̇, but also on the actuator torques, u. The dynamic

9 Even if a sliding phase can be useful, we limit our presen-
tation to walking without sliding.

model is valid only if Fst satisfies the condition (29);
otherwise, the assumed contact conditions are not valid
and the phase of walking changes.

The phase of a walking gait can also change due to other
conditions, for example the distance of the swing foot
to the ground becoming zero. We introduce therefore a
unilateral constraint, h : Qe → IR, which parameterizes
distance to impact. We can combine unilateral and holo-
nomic constraints viz.

H(qe, q̇e, u) =

[
AFst(qe)

′Fst(qe, q̇e, u)

h(qe)

]
. (30)

The domain of admissibility corresponds to the subset
in which all of the previous constraints, both holonomic
and unilateral, are satisfied,

D =



qe

q̇e

u

 ∈ TQe × IRNa ∣∣H(qe, q̇e, u) > 0

 . (31)

If the state of the robot belongs to the domain of admis-
sibility, then a simplified model can be used, correspond-
ing to restricting the dynamics to the surface defined by
the holonomic constraint (22). The dynamic model then
takes the form 10

D(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u. (32)

If each of the joints of the robot, including the ankle, is
independently actuated, then the model is fully actuated,
meaning dim q = dim u = rank of B; otherwise, it is
underactuated.

Remark 9 When employing the reduced model (32), the
condition of belonging to the domain of admissibility must
still be checked. This step is neglected in many publica-
tions. As a result, one does not know if the closed-loop
model is implicitly assuming a foot of infinite size (so that
(28) is hard to violate), a “sticky” ground model, where
(25) is violated, or an unrealistically large coefficient of
friction in (27). Along a trajectory of (32), the holo-
nomic constraint (22) allows the “missing” components
of qe and q̇e to be computed, which in conjunction with
the control input used in (32), allows the contact wrench
to be evaluated.

Remark 10 The constraint (28) is the most difficult to
meet and hence many control strategies are devoted to its
satisfaction; see Hirai et al. [1998], Kajita et al. [2003]
and references therein. The difficulty in satisfying this

10D is positive definite and the columns of B remain invo-
lutive and linearly independent.
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constraint increases as the size of the feet (La, Lb, la, lb)
decreases. In Sect. 3.4, we will study the situation where
all of theses values are equal to zero, corresponding to a
point-foot model. A control strategy which can deal with
this case should be extendable to a foot of any size.

Remark 11 Section 7 considers a model where the
stance knee angle qsk is mechanically locked. In this
case, a holonomic constraint ηsk = qsk − qlsk must be
appended to the constraint η in (21) and (22). The Jaco-
bian Jst is thus augmented by an additional line ∂ηsk(qe)

∂qe
.

Correspondingly, the reaction Fst is completed by the
torque applied by the mechanical locking system, and the
torque applied by the knee actuator can be set to zero. If
the mechanical looking system is unilateral, a unilateral
constraint on the knee torque must be added.

3.3 Rotation of the foot about the toe or the heel

A situation where the foot is not flat on the ground is
analyzed next. It is assumed that the foot is in rotation
along an axis aligned with the toe or the heel and that the
y-axis of the reference frame Rst has been aligned with
the axis of rotation of the foot. It is assumed also that the
orientation of the frame Rst is defined by a set of three
rotations, with the third rotation being along the y-axis,
so that the orientation matrix between R0 and Rst can
be written as 0Ast = Rot(z, φzst)Rot(x, φ

x
st)Rot(y, φ

y
st).

It follows that the angle φyst is free, while the variables
φxst and φzst are constant. Let

ηst,R(qe) =


pst(qe)

φxst(qe)

φzst(qe)

 (33)

be the position of Rst with respect to R0 and its ori-
entation about the x and z axes, expressed in terms of
the generalized coordinates qe. It can be shown that the
Jacobian ∂ηst,R

∂qe
has full rank. The corresponding holo-

nomic constraint is

ηst,R(qe) =


pst

φxst

φzst

 = constant, (34)

and the associated kinematic constraint is
vst

ωxst

ωzst

 = Jst(qe)q̇e = 05×1, (35)

where Jst(qe) consists of the first four rows of Jst in (23)
and the sixth one.

Since the rotation along the y-axis of Rst is free, the
contact wrench has five non-zero components as no mo-
ment is exerted about the y-axis. The wrench can thus
be written

Fst = (F fxst , F
fy
st , F

fz
st , F

mx
st , 0, Fmzst )′.

Differentiating (35), and using (19), q̈e and the nonzero
components of Fst can be calculated in terms of qe, q̇e
and u.

The associated constraints to avoid take-off, slipping,
and rotation about the x-axis of the foot (i.e., rotation
in the frontal plane) are

F fzst > 0,

|F fxst | < µ√
2
F fzst ,

|F fyst | < µ√
2
F fzst ,

−lbF fzst < Fmxst < laF
fz
st .

(36)

As before, these equations can be grouped as in (29) and
a unilateral constraint can be added as in (30), which
leads to a domain of admissibility as in (31). In addi-
tion, if the state of the robot belongs to the domain of
admissibility, then a simplified model can be deduced.
From (34), the set of generalized position variables can
be taken as qR = (φyst, q

′)′ and the dynamic model can
be expressed as 11

DR(q)q̈R + CR(qR, q̇R)q̇R +GR(qR) = BR(q)u. (37)

The system is always underactuated because no torque
is applied about φyst.

3.4 Point-Foot Contact Model

Consider again the situation in Sect. 3.2 where the foot
is flat on the ground and not slipping. If the size of the
stance foot is reduced to zero in all dimensions, that is,
La = Lb = la = lb = h = 0, then the contact with
the ground is reduced to a point. This simplifies walking
models because there is then only one way for the swing
leg to touch the ground, instead of the contact possibly
taking place on any edge of the foot.

When realizing a point foot contact as the limiting case
of a foot with finite size, two cases can be considered: (a)
the (yaw) moment Fmzst goes to zero as well, so the point
contact rotates freely about the z-axis; or (b), no limit
on Fmzst is imposed and there is no rotational slipping of

11DR is positive definite and the columns of BR remain
involutive and linearly independent.
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the stance foot 12 (i.e., no yaw rotation). The latter case
is assumed here.

It is now shown that the stance ankle must be passive
(i.e., unactuated) when a point foot model is arrived at by
letting the size and mass of the stance foot go to zero 13 .
To see this, consider the torque balance at the fictitious
ankle. For a massless foot, one has

u1 = Fmxst − LF fzst + hF fyst

u2 = Fmyst + lF fzst − hF fxst ,
(38)

where l, L, and h are the distances along the x, y and z
axes between the origin of the reference frame Rst and
the ankle. From the ZMP conditions in (28), it follows
that both Fmxst and Fmyst must be zero when the size of
the supporting foot is zero. From (38), we obtain u1 =
u2 = 0, and therefore the stance ankle joint must be
passive.

q
5

q
4

q
8

q
3

q
6

q
7

Rsh

Rst

Rb

q1

q2

Fig. 4. A reference frame is attached to the shin Rsh. The
motion of the stance shin is limited to the motion produced
by a fictitious stance ankle with degrees of freedom q1 = φx

sh

and q2 = φy
sh.

With the foot reduced to a point, the reference frame
used to define the contact constraint is moved to the end
of the leg, with its z-axis aligned along the shin as de-
picted in Fig. 4. The reference frame is relabeled as Rsh;
its position and orientation are denoted by psh and φsh,
respectively. In order to simplify the definition of the
holonomic constraint, we choose to define the angles such
that the orientation of the frame Rsh with respect to the
frame R0 is 0Ash = Rot(z, φzsh)Rot(x, φxsh)Rot(y, φysh).

12 This is analogous to the assumption that the tangential
forces lying in a friction cone continue to imply, even for
a point contact, no slipping along the plane of the ground
contact.
13 Consequently, models in the literature which treat point
feet robots with actuation at the fictitious ankle are assuming
a foot of zero mass, but non-zero size.

Consequently, the angle φzsh defines the orientation of a
fictitious foot, and φxsh and φysh are the angles of the fic-
titious ankle. Recalling that we assume no yaw rotation
for the stance leg end, the appropriate holonomic con-
straint is

ηsh(qe) =

[
psh(qe)

φzsh(qe)

]
= constant. (39)

It can be shown that the Jacobian ∂ηsh
∂qe

has full rank.

It is not straightforward to define the contact wrench
in the frame Rsh because it does not have an axis per-
pendicular to the ground, making it impossible to ex-
press easily the normal component. Thus a frame Rst
linked to the fictitious stance foot 14 is defined. The
contact wrench computed at the origin of Rst has four
nonzero components, because the only nontrivial mo-
ment is about the z-axis. It can thus be written as Fst =
(F fxst , F

fy
st , F

fz
st , 0, 0, F

mz
st )′.

The kinematic constraint corresponding to the holo-
nomic constraint (39) is[

vst

ωzst

]
= Jst(qe)q̇e = 04×1, (40)

where vst and ωst are the linear and angular velocity of
the shin expressed in the frame Rst, and Jst(qe) consists
of the first three rows of Jst in (23) and the sixth one.
Differentiating (40), and using (19), q̈e and the four non-
zero components of Fst can be calculated as a function
of qe, q̇e, and u.

The associated constraints to maintain ground contact
and to avoid slipping of the foot are

F fzst > 0,

F fxst < µ√
2
F fzst ,

F fyst < µ√
2
F fzst .

(41)

There is no longer any constraint of the ZMP type and
the fictitious ankle is passive. The equations (41) are
grouped as in (29) in order to define the domain of ad-
missibility, as in (31).

When the state of the robot and the control belong to the
domain of admissibility, a simplified model is once again
deduced. From (39), the set of generalized coordinates

14 This frame is defined with respect to the reference frame
R0 by the position psh and the angle φz

sh, thus the use of
this frame is coherent with the definition of the holonomic
constraint (39).
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can be taken as qP = (φxsh, φ
y
sh, q

′)′ and the dynamic
model can be expressed as 15

DP (qP )q̈P + CP (qP , q̇P )q̇P +GP (qP ) = BP (q)u. (42)

The system is always underactuated because no torque
is applied about φxsh and φysh.

3.5 Double support phase

If both legs are in contact with the ground simultane-
ously, a double support phase occurs. The ground reac-
tion wrench and constraints on it must be considered for
each leg, leading to

De(qe)q̈e+He(qe, q̇e)+J1(qe)
′F1st+J2(qe)

′F2st = Be(q)u,
(43)

where Ji is the Jacobian matrix corresponding to leg
i, i = 1, 2. The appropriate holonomic and kinematic
constraints associated with how each leg is contacting
the ground must be considered, and they can be different
for each leg. As in Sect. 3.2–3.4, the type of contact
determines the rank of the constraints, which is the same
as the number of nonzero components in F1st and F2st,
denoted c1 and c2, respectively. We can group all these
constraints and reaction forces into the form (29) and
add a unilateral constraint, if present, as in (30). The
domain of admissibility is then given as in (31).

Remark 12 If the number of independent velocity con-
straints associated to the ground contact denoted c12

(c12 ≤ c1 + c2) is greater than 6, then the robot is over
actuated. For a desired motion compatible with the con-
straints in the robot, an infinite number of control input
and reaction wrenches can produce the motion. Control
input and reaction wrenches are connected by the dy-
namic model (43), and control inputs have to be defined
such that the reaction wrench belongs to the domain of
admissibility. In the specific case of double support with
two point-foot contacts, the 6 constraints are not inde-
pendent, the system is underactuated, and the biped can
rotate along the line linking the two points of contact.

3.6 Impact model

An impact occurs when a point or collection of points
on the robot strikes the ground with a nonzero velocity.
Typically, as part of the walking gait design, the con-
tact occurs at either the heel of the swing foot, the sole
of the foot, or in the case of a point foot model, the
end of the swing leg. The mechanics of contacting bod-
ies is a complicated subject as explained in Kozlov and
Treshchev [1992], Brogliato [1999]. Various aspects of it
have been addressed for tool use in robotic manipulators;

15DP is positive definite and the columns of BP remain
involutive and linearly independent.

see Gorinevsky et al. [1997], Siciliano and Villani [1999]
and Sciavicco and Siciliano [1996]. Two approximate rep-
resentations of the contact wrench (forces and torques)
have been pursued in the legged robotics literature. One
approach assumes the contact is elastic and attempts to
model the contact forces due to the deformation of the
contacting bodies as in Wei et al. [1993], Plestan et al.
[2003]. While elastic models may conceptually capture
the actual physical phenomenon, in practice, they tend
to introduce a suite of parameters that cannot be read-
ily identified; one is therefore obliged to “guess” reason-
able values, introducing uncertainty 16 and inaccuracy.
An alternative approach 17 assumes the contact is rigid,
that is, inelastic.

In a rigid impact, the contact wrench acts over an in-
finitesimal interval of time and is modeled as a vector of
impulses. During the impact, the biped’s configuration
variables do not change, but the generalized velocities
undergo a jump. Most of the rigid impact models used in
the locomotion literature are inspired by Hürmüzlü and
Marghitu [1994]. The derivation of the model is based on
introducing a contact impulse δfimp into the dynamic
model (19),

De(qe)q̈e +He(qe, q̇e)q̇e = Be(q)u+ J(qe)
′δfimp. (44)

Assuming that the actuator torques do not contain im-
pulses, (44) is “integrated” over the “duration” of the im-
pact to obtain

De(qe)(q̇
+
e − q̇−e ) = J(qe)

′Fimp, (45)

where Fimp :=
∫ t+
t−
δfimp(τ) dτ is the intensity of the

impulsive contact wrench over the infinitesimal impact
event, q̇−e is the generalized velocity just before the im-
pact, and q̇+

e is the generalized velocity just after the
impact. Equation (45) expresses conservation of gener-
alized momentum; see Hürmüzlü and Marghitu [1994].
In the above, it is assumed that the generalized position
does not change during the impact, so q+

e = q−e = qe.

In (45), q̇−e is determined as the limit from the left of the
state of the robot just before impact, and is thus known.
The post-impact velocity q̇+

e and impact intensity Fimp
are unknown. There are thus more unknowns than rela-
tions. Completing the model requires that one make a
priori assumptions about the nature of the impact. In

16 A compliant ground contact model has been used in
Plestan et al. [2003] to check the robustness of a feedback
controller computed on the basis of a rigid model. In this
case, the uncertainty in the parameters is less important.
17 The user of any contact representation must keep in mind
that it is a model of reality and is therefore approximate. The
various tradeoffs between ease of use and accuracy must be
assessed on a case-by-case basis.
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the simplest case 18 , the one analyzed here, the impact
model is completed in essentially the same manner that
the contact wrench was determined in Sect. 3.2 through
Sect. 3.4. Namely, the impact wrench intensity is de-
termined by adding a kinematic constraint on velocity;
the form of the constraint is determined by the assumed
nature of the impact (flat foot versus heel strike versus
point foot, former stance leg releases from the ground
versus the robot enters double support, for example);
and the validity of the assumed impact must be verified
a posteriori by checking that the force and torque com-
ponents of the resulting impact wrench, and possibly the
post-impact velocities, satisfy a set of inequalities.

In order to illustrate the process, assume that the impact
of the swing leg with the ground occurs on the sole of
the foot (i.e., on a flat foot), the impacting foot neither
slips nor rotates, and the former stance leg releases from
the ground after the impact. The double support phase
is then instantaneous and an impulsive wrench exists on
the impacting leg only. The appropriate kinematic con-
straint is consequently given by (23), computed for the
swing leg instead of the stance leg. The kinematic con-
straint completes the impact model by specifying that

J(qe)q̇
+
e = 0. (46)

In combination with (45), these relations yield the over-
all impact model (as in equation (27) of Glocker and
Pfeiffer [1992]):[

De −J ′

J 0

][
q̇+
e

Fimp

]
=

[
Deq̇

−
e

0

]
. (47)

The matrix on the left-hand side of (47) is square, and
it has full rank as long as J has full rank.

Equation (47) shows that the post-impact velocity q̇+
e

and the impulsive contact wrench Fimp depend linearly
on the pre-impact velocity q̇−e . Block matrix inversion
can be performed using the Schur complement (see
Zhang [2005]) to obtain a direct expression for post-
impact velocity, namely

q̇+
e =

(
I(N+6) −D−1

e J ′(JD−1
e J ′)−1J

)
q̇−e . (48)

Starting from a reduced model of the robot before im-
pact, for example, q−, q̇− determined from (32) or (42),
the corresponding holonomic constraint yields the com-
plete state of the robot q−e , q̇−e just before impact. Solv-
ing for the post-impact velocity (48) and projecting it

18 A contact event does not necessarily correspond to a holo-
nomic constraint. The foot could slide after impact, for ex-
ample. Such cases are more difficult to model.

down to the reduced model of the ensuing phase gives a
reduced impact model written in the form

q̇+ = ∆(q)q̇−. (49)

Almost every paper on legged locomotion contains a ver-
sion of this equation.

It should be noted that the expression (49), which sup-
presses the use of the complete state of the robot, hides
the fact that the holonomic constraints before and af-
ter impact are not identical (at the very least, the for-
mer swing leg is now in contact with the ground). It is a
crucial step, which is omitted in many papers, to verify
that the post-impact velocity and the impulsive contact
wrench are compatible with the holonomic constraint
assumed after impact. In particular, since no constraint
was imposed on the former stance leg, it must be the case
that the vertical component of the post-impact foot ve-
locity is positive (i.e., the foot is lifting from the ground
after the impact). Next, the friction pyramid should be
verified with Fimp replacing Fst (i.e., the foot is not slip-
ping post-impact), and finally, the ZMP conditions need
to be checked for Fimp (i.e., the foot is rotating appropri-
ately or not about one of its edges, post impact). If any
of these conditions are violated, then the assumed im-
pact model was invalid, another set of constraints must
be posed, and the entire process repeated; see Hürmüzlü
and Marghitu [1994].

The models for an impact occurring on the heel or for
the impact of a point foot, while assuming an instanta-
neous double support phase, are developed in the same
manner, using velocity constraints on the swing leg that
are analogous to (35) and (40) and the appropriate
nonzero components of Fimp. A detailed derivation for
a planar point foot contact can be found in Westervelt
et al. [2007a]; the 3D case is very similar as shown in
Chevallereau et al. [2009b].

Remark 13 If the former stance leg remains on the
ground after the impact, reaction forces and velocity con-
straints must be applied to both legs, similar to the double
support model in Sect. 3.5. It has been observed that it
may be difficult to satisfy the constraints (foot remains
on the ground, no slipping, ZMP condition) associated
to each impulsive contact wrench. In particular, Miossec
and Aoustin [2006] have shown for the planar robot Rab-
bit that the former stance leg remains on the ground only
in the case of an impactless 19 contact.

Remark 14 In general, in point feet models, the im-
pacting leg is assumed to stay on the ground, although

19 If the pre-impact velocity satisfies the assumed post-
impact condition of contact, i.e Jq̇−e = 0, the velocity does
not change at impact, that is, q̇+e = q̇−e , and Fimp = 0. The
motion is called impactless.
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it can slide in the presence of insufficient friction, as in
Rodriguez and Bowling [2013]. A point foot that was in
rigid contact before impact can either lift-off, stay put,
or slide. Thus, for the impact of a walking biped with
point feet, six impact cases have to be considered. In the
case of a robot with finite feet, many more cases have to
be considered since the foot can be flat on the ground or
can be rotating about one of its edges, or even one of its
corners. Multi-point models of impact are studied in Ro-
driguez and Bowling [2012]. Additional complexity could
come in the form of Zeno solutions, where the foot re-
bounds an infinite number of times over a finite inter-
val; see Or and Ames [2008, 2009], Lamperski and Ames
[2008, 2013], Goebel et al. [2009]. Typically, control so-
lutions are sought which avoid such behavior.

3.7 Hybrid Models

An overall hybrid model of a walking gait is con-
structed by first enumerating a list of dynamic models,
1 ≤ i ≤ Np, corresponding to allowed phases in the
gait. In general, a directed graph of possible transitions
among phases must be constructed. When studying pe-
riodic gaits, it is much simpler and more common to
specify a cyclic graph, that is, a temporal order of the
form 1 → 2 → · · · → Np → 1. By imposing a tem-
poral ordering, we are assuming a priori that the flow
intersects a specific subset of the domain’s boundary;
this must be taken into account when a control law is
designed and then verified when the model is analyzed
for stable orbits. Specific examples of cyclic graphs are
worked out in Sects. 5 and 7.

In the following, we suppose that phase i corresponds
to one of the single support models (32), (37), or (42),
or a double support model as discussed in Sect. 3.5. Let
the configuration space be Qi and the state space be
Xi = TQi. The state variable control model is then

d

dt

[
qi

q̇i

]
=

[
q̇i

−D−1
i (qi) [Ci(qi, q̇i)q̇i +Gi(qi)]

]
+

[
0

D−1
i (qi)Bi(qi)

]
ui, (50)

where ui ∈ Ui ⊂ Rmi is the vector of actuator torques.
Defining xi = (q′i , q̇

′
i)
′ yields

ẋi = fi(xi) + gi(xi)ui. (51)

Recall that the various Lagrangian models come with a
domain of admissibility, such as (31), arising from the
ground contact conditions. Let the element from the
constraint vector (30) corresponding to the appropriate
edge for transition into phase i + 1 be H i+1

i (xi, u). In

general, the transition condition depends on the actua-
tor torques as well as the system’s state. For simplicity,
it is often supposed that H i+1

i and Ḣ i+1
i do not depend

on u so that a switching surface is given by

S i+1
i =

{
xi ∈ Xi

∣∣H i+1
i (xi) = 0, Ḣ i+1

i (xi) < 0
}
. (52)

Note that as in Sect. 2.3, addition modulo the number
of phases Np is used, so that Np + 1 = 1.

To complete the specification of a hybrid model, the re-
set map ∆i+1

i : S i+1
i → Xi+1 must be defined. If the

transition condition in (52) corresponds to an impact,
such as the swing leg height above the ground going to
zero, then the reset map is computed as in (49). In other
cases, when impacts are not involved, the transition map
is typically determined by inserting the state of the robot
into the state space of the full model (13), and then pro-
jecting down to the state space of the reduced model of
the next phase.

Putting all of this together results in a hybrid control
system of the form

Σ :



X = {Xi}Npi=1 : Xi ⊂ Rni

U = {Ui}Npi=1 : Ui ⊂ Rmi

FG = {(fi, gi)}Npi=1 : ẋi = fi(xi) + gi(xi)ui

S = {S i+1
i }Npi=1 : S i+1

i = {xi ∈ Xi | H i+1
i (xi) = 0,

Ḣ i+1
i (xi) < 0}

∆ = {∆i+1
i }

Np
i=1 : x+

i+1 = ∆i+1
i (x−i ).

(53)
As with uncontrolled hybrid models, the hybrid control
model can be written in the form of a tuple that is more
consistent with the literature on hybrid systems, namely,

H C = Σ = (Γ,X ,U ,S,∆,FG).

For the formal definition of hybrid systems stated in this
form, and defined on more general graphs, see Sinnet
and Ames [2009a] and Ames et al. [2011].

Remark 15 A typical hybrid model would include
phases for support on both the left and right legs. When
studying walking gaits with left-right symmetry, a com-
mon “trick” in the field is to develop a model of the robot
for one of the legs in contact with the ground, say the
left one, and then to “swap” or relabel angles after swing
leg impact in order to propagate the dynamics for the
ensuing step. The interest of doing this is that it reduces
the number of phases by half. This “trick” is particularly
common and straightforward for planar models. For 3D
models, it is a little more involved as one must “flip” the
sign on the hip width and “flip” the sign convention for
all angles that are not in the sagittal plane. When using
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this more economical model of a biped, a state relabel-
ing procedure is included as part of the reset map at leg
impact.

4 Approaches to Feedback Control of Locomo-
tion

Over the past fifty years, research into bipedal robots has
come from a variety of perspectives: from passive walk-
ers with simple mechanical designs to advanced multi-
functional humanoids. Myriad control designs have been
introduced using models which vary from the simplified
representations shown in Fig. 5 to full-dimensional dy-
namic models as developed in Sect. 3. Proponents of
simplified models point to the benefits of more tractable
analysis, enhanced insight, and faster control law com-
putation, whereas proponents of more complex models
point to enhanced predictive ability and formal guar-
antees on stability. In this section, some of the more
common approaches to bipedal gait generation are ex-
amined with a particular emphasis on how the underly-
ing modeling paradigms affect control design. The book
Westervelt et al. [2007a] and the review paper Hürmüzlü
et al. [2004] provide an extensive overview of the state
of the art up to early 2006; further information is avail-
able in Full and Koditschek [1999], Holmes et al. [2006],
Wisse and van der Linde [2007], Kuo [2007], Siciliano
and Khatib [2008], Chevallereau et al. [2009a], Sadati
et al. [2012] and the references therein.

4.1 Zero Moment Point and Linear Inverted Pendulum
Models

One of the most common control methods for bipedal lo-
comotion is the ZMP control strategy. Recall from Sect.
3.2 that the ZMP is the point on the ground at which the
reaction forces acting between the ground and the foot
produce no horizontal moment. Traditionally, ZMP con-
trol strategies achieve walking by planning the motion
of a robot’s CoM such that the ZMP remains strictly
within the convex hull of the stance foot in the case of
single support (or convex hull of the stance feet, in the
case of double support). Under this condition on the
ZMP, the stance foot remains flat on the ground and
immobile (not rotating)—much like the base of a tradi-
tional manipulator robot—and hence the robot will not
topple; see, e.g., Yamaguchi et al. [1999].

In the special case of the Linear Inverted Pendulum
Model (LIPM), the ZMP can be expressed explicitly in
terms of the dynamics of the CoM via a linear ordinary
differential equation (ODE). There are key assumptions
permitting this simplification, including representing a
robot as a point mass with massless telescoping legs. Ad-
ditionally, the height of the CoM is assumed constant
throughout a step. Under these conditions, Kajita and
Tani [1991] showed that the robot model reduces to the

LIPM. Because of their simplicity when combined, the
ZMP control method and the LIPM have historically
been tightly connected. While the model found its ori-
gins in the study of human posture and balance (e.g.,
Geursen et al. [1976],Winter [1995], Patton et al. [1999]),
it has also been the subject of much attention in bipedal
walking; see, for example, Miura and Shimoyama [1984],
Kajita et al. [2001, 2010].

Many of the early experimental results of bipedal robotic
walking came from Japan, where Kato began working
on the WABOT series of humanoid robots around 1970.
A full-scale anthropomorphic robot, WABOT-1, was re-
ported in Kato et al. [1974] and it demonstrated prim-
itive, statically stable walking while transporting ob-
jects with its hands. Over a decade later, the ZMP tech-
nique was first demonstrated in practice on the WL10-
RD biped in Takanishi et al. [1985]. Interest in walking
humanoid robots has continued to grow with researchers
from around the world frequently developing newer gen-
erations like WABIAN-2, ASIMO, HRP-4, KHR-3, and
Johnnie (Ogura et al. [2006], Sakagami et al. [2002],
Kaneko et al. [2011], Park et al. [2005], Pfeiffer et al.
[2002]).

In spite of the widespread success of ZMP methods,
there are recognized limitations. Gaits designed using
this method generally do not take impacts into account,
and thus the swing foot trajectory must be designed so
that it will impact the ground with minimal velocity,
which can be hard to achieve. In addition, it is known
that meeting the ZMP condition is not sufficient for
asymptotic stability of a periodic walking motion (see
Choi and Grizzle [2005]). Gait generation using ZMP
has taken many forms: Kurazume et al. [2003] used an-
alytical solutions to the ZMP dynamics; Nagasaka et al.
[1999] used the optimal gradient method; Kajita et al.
[1992] examined potential energy conserving orbits; Lim
et al. [2002] computed ZMP-consistent trajectories of-
fline and stabilized them using trunk motion; and Nishi-
waki et al. [2002] generated ZMP-consistent trajectories
in real-time while walking. Additional information on
ZMP-basedmethods and related ground reference points
is given in Goswami [1999], Vukobratović and Borovac
[2004], Vukobratović et al. [2006], Popovic et al. [2005].

4.2 Nonlinear Inverted Pendulum Models

In order to overcome limitations resulting from the sim-
plicity of the LIPM model, researchers have considered
more complex models. Park and Kim [1998] explored the
Gravity Compensated LIPM which adds an additional
point mass at the location of the swing foot to achieve
highermodeling accuracy. In Pratt andDrakunov [2007],
the requirement of constant CoM height on the LIPM
was relaxed leading to a nonlinear inverted pendulum
model. In another common model, a flywheel is added to
the inverted pendulum; examples can be found through-
out the literature: Stephens [2011] used it for posture
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Increasing Model Complexity

LIPM SLIPIPF CG

Fig. 5. Four low-dimensional models that are frequently used as approximate representations of walking robots. From left to
right: the Linear Inverted Pendulum Model (LIPM) lumps the mass of the robot at a point moving at a constant height and
assumes massless legs; the Inverted Pendulum with Flywheel (IPF) relaxes the assumption on constant height and adds a
flywheel to account for internal angular momentum; the Spring-Loaded Inverted Pendulum (SLIP) adds a spring to model a
robot’s legs as a massless pogo stick; and the Compass-Gait Biped (CG) treats a robot as a double pendulum with lumped
masses on the stance and swing legs.

control, Takenaka et al. [2009] used it to with on-line er-
ror compensation to mitigate the effect of modeling er-
rors on gait generation, and Komura et al. [2005] used
it to simulate pathological gaits. The various pendulum
models have been widely used in analysis of push recov-
ery and balance (Takanishi et al. [1990], Hof et al. [2005],
Hyon et al. [2007], Stephens [2007]).

Pratt et al. [2006] considered a flywheel model in order
to present the idea of the capture point – a point on the
ground on which a biped can step and come to a com-
plete (upright) stop without falling over; additional in-
formation on capture points can be found in Koolen et al.
[2012], Pratt et al. [2012]. The capture point (Pratt and
Tedrake [2006]) has gained recognition as a convenient
method for stabilizing a biped. This method, which con-
siders a robot as an inverted pendulum with a flywheel,
has been used not only for standing but for robust walk-
ing as well. Because the model makes many simplifying
assumptions, the capture regions – the set of all capture
points – can have a large error and this has motivated
the combining of capture point with learning in, e.g.,
Rebula et al. [2007].

4.3 Raibert Hoppers and SLIP Models

Raibert observed that hopping and running can be rep-
resented by a low-dimensional model with springs and
built a pneumatically actuated planar monopod with
a pogo-stick (springy) leg that was able to run 20 at a
speed of 1 m/s (Raibert [1984], Raibert and H. Brown,

20 Roughly speaking, running consists of a stance phase with
one foot on the ground followed by a flight phase with no
feet on the ground; hence hopping on one leg and running
on two legs are closely related.

Jr. [1984], Raibert [1986]). This was followed by a 3D
hopper that was able to run without being constrained
to the sagittal plane ([Raibert, 1986, Chap. 3], Raibert
et al. [1984]) as well as multi-legged robots (Raibert et al.
[1986], Raibert [1990], Hodgins and Raibert [1991]).

This body of work gave rise to the Spring-Loaded In-
verted Pendulum (SLIP) model, which has been shown
to approximate the body center-of-mass (CoM) motion
during steady-state running gaits of a wide diversity
of terrestrial animals (Blickhan [1989], McMahon and
Cheng [1990], Farley et al. [1993], Full and Farley [2000],
Dickinson et al. [2000], Seyfarth et al. [2001]). Success-
ful running robots, such as the Planar Hopper, ARL
Mono pod II and CMU Bowleg Hopper, also exhibit
SLIP model behavior (Raibert [1986], Zeglin and Brown
[1998], Ahmadi and Buehler [2006]).

The control of these robots has been based on Raib-
ert’s original control ideas, which can be decomposed
into three subtasks dedicated to (a) forward propulsion
of the robot at the desired speed, (b) regulation of the
vertical hopping height of the body, and (c) keeping
the body at a desired posture (Raibert [1984], [Raibert,
1986, Chapter 2]). To control the forward speed, the con-
troller places the toe at a desired position with respect to
the center of mass during flight. To regulate the hopping
height, the length of the leg at the bottom of the stance
phase is adjusted by giving a fixed amount of thrust. Fi-
nally, to control the pitch attitude of the body, the con-
troller employs hip torque during stance. The inclusion
of springs into legged robots with revolute knees seems
to have started with spring flamingo and spring turkey
as described in Hollerbach et al. [1992], Pratt and Pratt
[1999], Pratt [2000], Pratt et al. [2001]. These robots
used a type of series elastic actuator (SEA) designed for

16



force control as opposed to energy storage. The recent
COMAN robot discussed in Kormushev et al. [2011] in-
cludes passive compliance to reduce energy consumption
during walking.

4.4 Passive Walkers and Compass-Gait Biped

At the other end of the spectrum, instead approximating
complex bipeds with simplified models, some researchers
have opted to design robots with dynamics that approx-
imately realize a simplified model. For these bipeds, dy-
namic stability is achieved as much as possible through
mechanical design instead of feedback control. Though
comparatively less complex in terms of the models stud-
ied, many of the formal methods developed on simple
bipeds still enjoy use in complex systems. However, the
simpler design facilitates more complete modeling and,
indeed, control researchers who follow this path often
consider impact dynamics, thereby taking into account
the full hybrid model which is generally omitted from
analysis of controllers designed using the LIPM.

Mochon and McMahon [1980] concluded that the swing
phase of human walking is similar to a double pendulum,
pointing to the passive nature of human walking and
the importance of mechanism design. In the late 80’s,
McGeer analyzed and built planar, passive bipedal walk-
ers, i.e., no actuation, which could walk stably down shal-
low slopes, starting with the compass gait walker (which
is simply an inverted pendulum) in McGeer [1990a] and
later adding knees in McGeer [1990b]. This gave rise to
the terminology passive dynamic walking. Subsequently,
robots with this general principle at their core have been
constructed, as described in Collins et al. [2005], based
on injecting small amounts of energy into passive-type
bipeds. The result is very “human-looking” walking, but
the remarkable elegance and economy of these walkers
comes at the cost of poor ability in achieving tasks other
than walking at a fixed speed; they cannot climb stairs,
pause, turn or run.

Additional work was later done to analyze the properties
of passive dynamics walkers, for instance, in Espiau and
Goswami [1994], Garcia et al. [1998], Borzova and Hur-
muzlu [2004]. In terms of control, Spong [1999] looked
at passive dynamic walking with energy-based meth-
ods to design passivity-based control strategies such as
controlled symmetries, introduced in Spong and Bullo
[2005]. Other important contributions to passive dy-
namic walking are given in Kuo [1999, 2002], Anderson
et al. [2005], Wisse and van der Linde [2007].

4.5 Quadratic Programs and Lyapunov Funnels

Early implementations of ZMP-based controllers used
offline trajectory optimization to generate center of mass
trajectories on the basis of the LIPM and generally ig-
nored impact dynamics in the control design. Modern

methods have achieved improved control by formulating
the control problem as a quadratic program (QP), allow-
ing gait replanning on the fly and improving stability
properties (Kudoh et al. [2002], Stephens and Atkeson
[2010], Herdt et al. [2010]).

Similarly, sums of squares methods, also formulate tra-
jectory generation as a convex optimization (Tedrake
et al. [2010]). One elegant method which provides formal
guarantees on stability is outlined in Majumdar et al.
[2013]. The procedure investigates the notion of control-
lability, composing sequential funnels (verified with sum
of squares Lyapunov inequalities), which each lead to a
predefined goal set. This allows one to create a trajec-
tory with guaranteed stability properties: at any given
point in time, the system is within one of the known fun-
nels (regions of attraction). By using the sum of squares
formulation, the trajectory optimization becomes more
tractable, making verification of stability feasible for
low-dimensional models.

5 Controlling Underactuated Bipedal Locomo-
tion via Virtual Constraints and Hybrid Zero
Dynamics

This section overviews an approach to achieving asymp-
totically stable bipedal locomotion in the presence of un-
deractuation. As discussed in Sect. 3, the contact condi-
tions between the robot and the ground are extremely
important for the control of a biped. Moreover, the most
difficult conditions to satisfy are the ZMP conditions, as
illustrated in (28) and (36), for example. With this as
motivation, the work in this section is tailored to feed-
back control of a biped with the point-foot contact model
described in Sect. 3.4, corresponding to the limiting case
of a robot with feet, as the size of the feet decreases to
zero. If this robot can be controlled with no actuation
at the point of contact, then flat-footed walking with ac-
tuated feet (of any size) can be accomplished with (arbi-
trarily small) torques that will respect the constraint of no
rotation about an edge of the stance foot, thereby remov-
ing an important obstacle to previous studies of walking.
Once a gait consisting only of point feet walking of a 3D
robot can be controlled, then, based on previous work in
planar robots in Chevallereau et al. [2008] and Choi and
Grizzle [2005], there is good reason to believe that a gait
consisting of a more complete walking cycle, heel strike,
flat foot, toe roll, can be realized in a stable manner.
Indeed, a freely rotating point of contact is potentially
more difficult to control than the heel-strike or toe-roll
phases of a human walking gait, which correspond to ro-
tation about a single axis instead of two axes. Finally,
work in Chevallereau et al. [2008] shows that even in the
case of flat-footed walking with an actuated ankle, if the
center of pressure of the ground reaction forces on the
stance foot is actively controlled in order to avoid foot
rotation, the corresponding control problem is underac-
tuated. For these reasons, walking with unactuated point
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feet presents an interesting test case for any control de-
sign methodology.

In the following, a constraint is said to be virtual if it
is achieved through feedback control instead of through
physical connections, such as gears or contact conditions
with the environment. Virtual constraints can be used
to synchronize the evolution of a robot’s links through-
out a gait. A connection with the now-classical notion
of zero dynamics will become clear during the presenta-
tion, with one novelty being the extension of the notion
of zero dynamics to a class of hybrid models that occur
in bipedal locomotion. Virtual constraints and hybrid
zero dynamics originated in the study of underactuated,
planar bipedal locomotion in Grizzle et al. [2001], West-
ervelt et al. [2003]; a synthesis of these methods can be
found in Westervelt et al. [2007a]. The methods are cur-
rently being extended to underactuated 3D robots; see
Chevallereau et al. [2009b]. The utility of virtual con-
straints and hybrid zero dynamics has been experimen-
tally verified for planar bipedal robots Chevallereau et al.
[2003], Westervelt et al. [2004], Sreenath et al. [2011b].
The 3D results are still in their infancy and much work
remains to be done.

5.1 Virtual Constraints

Any attempt to describe a walking gait, even something
as simple as the difference between human-like walking
(knees bent forward) and bird-like walking (knees bent
backward), or the torso being upright versus leaning for-
ward, leads to a description of the posture or shape of
the robot throughout a step. In other words, a descrip-
tion of walking involves at least a partial specification
of the path traced out in the configuration space of the
robot. Fig. 6 illustrates this idea for the simple case of
a planar biped evolving in the sagittal plane. The same
idea applies to a 3D robot, with the addition of coordi-
nates parameterizing the robot’s evolution in the frontal
plane and its yaw rotation.

To formalize this approach to locomotion control, sup-
pose that O is a periodic orbit corresponding to a walk-
ing gait with Np ≥ 1 continuous phases 21 (or domains).
Let q = (q1, · · · , qN ) be a set of generalized coordinates
for a particular phase Xi of the gait, and let h0(q) be
functions of the generalized coordinates that are to be
controlled, such as the knee and hip angles illustrated in
Fig. 6. Let θ(q) be a function of the generalized coordi-
nates that is strictly monotonic 22 on Oi := O∩Xi, and

21 The development here focuses on control with full-state
feedback within the continuous phases. Control at the dis-
crete transitions is addressed in Westervelt et al. [2007a].
Observer design is discussed in Grizzle et al. [2007].
22 θ̇ strictly positive or negative on the orbit. Functions which
commonly satisfy this include the horizontal position of the
robot’s hips with respect to an inertial frame, or the absolute
angle of the line connecting the stance leg end to the hip.
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SS

Step

DS DS

Step

θ θ

Left Hip

Time (s)

Left Knee

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 6. Illustration of the concept of virtual constraints. De-
picted are the relative knee and hip angles versus time for
a planar, point-foot walker over a symmetric periodic gait.
The gait is comprised of alternating phases of single support
(SS), described by a Lagrangian model, and double support
(DS), assumed to be instantaneous. The variable θ (taken
here as the angle with respect to the ground of the line con-
necting the stance leg end to the hip) is strictly monotoni-
cally increasing in each continuous phase of the gait. Plot-
ting the joint angles versus θ provides a graph of the virtual
constraints (54) for the relative relative knee and hip angles.
The same idea is applicable to 3D walkers.

express the controlled variables as a function 23 hd(θ) so
that, on the periodic orbit,

(h0(q)− hd(θ))|Oi
≡ 0. (54)

Off the orbit,

y = h(q) := h0(q)− hd(θ) (55)

is nonzero, and a natural objective is therefore to design
a feedback controller that drives h(q) asymptotically to
zero. The function h(q), or more correctly, the relation
h(q) = h0(q) − hd(θ) = 0, is called a virtual constraint.
The number of constraints will be assumed equal to the
number of inputs in all that follows.

Two questions naturally arise:
An analysis question: For a given periodic orbit O
and selection of virtual constraints (in general, different

23 Always possible when θ is strictly monotonic.
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for each domain), when will driving y in (55) asymptot-
ically to zero render the orbit stable (resp., asymptoti-
cally stable, or exponentially stable)?
A synthesis question: how to design virtual con-
straints, and feedback controllers that asymptotically
impose them, which together yield an asymptotically
stable periodic orbit meeting physically motivated re-
quirements such as: energy efficiency; the robot walks
at a desired speed; and the reaction forces at the leg end
respect required unilateral constraints?

Addressing the first question leads to the notion of
the hybrid zero dynamics, which will be outlined in
Sects. 5.2 and 5.3. A finite parametrization of possible
paths hd(θ, α) via Bézier polynomials and parameter
optimization have been employed to address the second
question; see Sect. 5.4. An illustration is given in Sect.
5.5.

5.2 Zero Dynamics

We focus first on the dynamics within a given contin-
uous phase Xi of a gait model. Let once again q =
(q1, · · · , qN ) be a set of generalized coordinates and sup-
pose the model is given by

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (56)

whereD(q) is the inertia matrix, C(q, q̇) contains Corio-
lis and centrifugal terms, G(q) is the gravity vector, and
B is an N × Na constant matrix with rank Na < N .
Letting x = (q, q̇), and defining f and g in the standard
manner, the mechanical model is expressed in state vari-
able form as

ẋ = f(x) + g(x)u. (57)

It is noted in passing that the distribution generated by
the columns of g is automatically involutive because the
matrix B in (56) is constant.

Let the output be defined as in (55) and assume it has
vector relative degree 24 two. According to Isidori [1995],
the zero dynamics manifold is then

Zi := {x ∈ Xi | h(x) = 0, Lfh(x) = 0}. (58)

A feedback control law rendering Zi forward invariant

24 The assumption of vector relative degree two is for con-
venience and works well in applications. A uniform vector
relative degree of k is treated in Morris and Grizzle [2009];
a case with a non-uniform vector relative degree is treated
in Poulakakis and Grizzle [2009]. Even the assumption of a
vector relative degree could be relaxed to dynamic input-
output linearizability, for example, but we have had no need
to do this in the applications studied to date.

and attractive is

u = u∗(x)− [LgLfh(x)]
−1

(
1

ε2
Kph(x) +

1

ε
KdLfh(x)

)
(59)

with
u∗(x) = − [LgLfh(x)]

−1
L2
fh(x), (60)

where Kp > 0, Kd > 0 and ε > 0. In applications, ε > 0
is used to adjust the rate of convergence 25 to the zero
dynamics manifold.

The feedback u∗ renders Zi invariant under the closed-
loop vector field f+gu∗ defined on the continuous phase
Xi. The zero dynamics vector field is the restriction

fzero := f + gu∗|Zi
. (61)

The phase-Xi zero dynamics is then

ż = fzero(z), (62)

for z ∈ Zi.

Because Zi has been designed without consideration of
the reset maps in the hybrid model, there is no reason
for it to be impact invariant, and hence hybrid invariant.
The next section discusses a means developed in Morris
and Grizzle [2009] for achieving hybrid invariance with-
out imposing stringent conditions on the feedback de-
signs in neighboring domains or conditions on the reset
maps. It is based on realizing the virtual constraints h
in (55) as one member of a parameterized family of vir-
tual constraints. The parameters in the constraints are
updated upon transition into domain Xi so as to achieve
invariance, while preserving the original orbit used in
the design of h.

5.3 Hybrid Invariance

We continue to focus on a domain Xi where a feedback
law has been constructed as in Sect. 5.2. We suppose for
the moment that a feedback law has been defined in each
of the other domains; this may be achieved by following
the virtual constraints and zero dynamics approach of
the previous section, or by any other approach as long as
(i) O is a periodic orbit of the model and (ii) the closed-
loop model is smooth enough for the maps defined below
to beC1 in a neighborhood of the periodic orbitO. These

25 In many concrete examples, the reset map tends to am-
plify the distance from a periodic orbit and thus the con-
tinuous phase dynamics must be sufficiently contractive in
order to achieve orbital stability. The parameter ε is used for
this purpose. The assumptions on the feedback parameters

guarantee that λ2 +
1

ε
Kdλ+

1

ε2
Kp is Hurwitz.
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assumptions allow a system with impulse effects to be
associated with domain Xi by defining

Σ :

{
ẋ = f(x) + g(x)u x− 6∈ S
x+ = ∆(x−) x− ∈ S

(63)

where x ∈ Xi, S = S i+1
i , and ∆ = ∆i

i−1 ◦ Pi−1 ◦ · · · ◦
P1 ◦PNp ◦· · ·Pi+1, where Pi are the generalized Poincaré
maps defined in (6).

The manifold Zi is forward invariant under fzero = f +
gu∗ and O is a solution of the zero dynamics. However,
Zi is not necessarily invariant under the transition map
∆, that is, the condition ∆(Zi ∩ S) ⊂ Zi does not hold
in general.

Reference Morris and Grizzle [2009] provides a construc-
tive procedure for determining an open neighborhood B
of the origin in IR2Na , a smooth function hc : Xi × B →
IRNa , and a smooth function v : S → B such that[

ẋ

β̇

]
=

[
f(x) + g(x)u

0

]
= fe(xe) + ge(x)u x− /∈ S

[
x+

β+

]
=

[
∆(x−)

v(x−)

]
= ∆e(xe) x− ∈ S,

ye = he(xe) = h(x) + hc(x, β),

(64)
with h as defined in (55), satisfies the following proper-
ties:

(1) hc(x, 0) ≡ 0 all x ∈ Xi;
(2) v(x∗) = 0 where x∗ = Ō ∩ S is the fixed point;
(3) he has the same vector relative degree as h (in this

case two) on Xe = X̌i × B, where X̌i is an open
neighborhood of O ∩ Xi;

(4) he(x+, β+) = 0 and Lfehe(x+, β+) = 0 for all x− ∈
S, x+ = ∆(x−) and β+ = v(x−);

(5) there exists an open neighborhood Š of S such that,
for all β ∈ B and x ∈ Š, hc(x, β) = 0.

System (64) is called a deadbeat hybrid extension. Prop-
erties (1) and (2) imply that the set Oe = O×{0} ⊂ Xe,
called the trivial lift ofO, is a periodic orbit of (64). Prop-
erty (3) implies the existence of a (new) zero dynamics
manifold and associated restriction dynamics. Property
(4) implies that the new zero dynamics manifold is hy-
brid invariant and containsOe. Property (5) implies that
near S, the projection of the new zero dynamics mani-
fold onto Xi equals the original zero dynamics manifold,
Zi.

Theorem 16 Morris and Grizzle [2009] (Hyrbid In-
variance and Orbital Stability) The system (64) in

closed-loop with the feedback controller defined on Xe

u = u∗e − [LgeLfehe]
−1

(
1

ε2
Kphe +

1

ε
KdLfehe

)
(65a)

u∗e = − [LgeLfehe]
−1
L2
fehe, (65b)

with Kp > 0, Kd > 0, and ε > 0, satisfies the following
properties:

(1) the manifold

Ze = {xe ∈ Xe|he(xe) = 0, Lfehe(xe) = 0} (66)

is hybrid invariant;
(2) Oe is a solution of the hybrid zero dynamics;
(3) (S × B) ∩ Ze = (S ∩ Ži)× B, where Ži = Zi ∩ X̌i;
(4) the Poincaré return map for the hybrid zero dynam-

ics P εe |Ze : (S ∩Ži)×B → (S ∩Ži)×B has the form

P εe |Ze(z, β) = (ρεe(z), v(z)), (67)

where v is the parameter update law of the deadbeat
hybrid extension and ρεe : S ∩ Ži → S ∩ Ži; and

(5) there exists ε̄ > 0 such that, for 0 < ε < ε̄, the
following are equivalent:
(a) Oe is an exponentially stable periodic orbit
(b) the original fixed point x∗ = Ō ∩ S is an expo-

nentially stable fixed point of ρεe.

5.4 Gait Design

The analytical results of Sections 5.1, 5.2, and 5.3 are
rendered useful in feedback synthesis by introducing, in
each domain Xi of a biped model, a finite parametriza-
tion of the virtual constraints in (55) per

hα(q) := h0(q)− hd(θ, α); (68)

in concrete applications, we have found it convenient to
construct the function hd from Bézier polynomials; see
Bézier [1972]. The parameters appearing in (68) intro-
duce free parameters α into the zero dynamics of each
domain,

ż = fzero,α(z). (69)

A fixed order of cycling the phases is postulated: 1 →
2 → · · · → Np → 1. The search for a periodic walking
motion is cast as a constrained nonlinear optimization
problem: find parameters which minimize the integral-
squared torque per step length 26 ,

J =
1

step length

∫ T

0

||u(t)||22dt, (70)

26 Torque being proportional to current in a DC motor,
integral-squared torque is a rough approximation of energy
dissipated in the motors.
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where T is the total walking period through the Np
phases. The optimization is carried out subject to natu-
ral constraints such as the following:
inequality constraints

• θ is strictly increasing (i.e, θ̇ > 0 along the solution of
each domain);
• the solution respects the domain of admissibility, (31);
• positive vertical reaction force on the stance foot (a

no-take-off constraint) (25);
• a friction constraint (27);
• bounds on allowed actuator torques;
• the swing foot is positioned above the ground in ap-

propriate phases, etc.;

equality constraints

• conditions at the domain transitions that impose pe-
riodicity;
• desired walking speed;
• etc.

The parameters in the optimization include the coeffi-
cients in the virtual constraints, initial conditions of the
model in the first phase, time spent in each phase, etc.
The optimization problem is non-convex in the param-
eter set, with many local minima, and is very hard to
solve. Nevertheless, fmincon in MATLAB and experi-
ence gained from studying simple planar robots in West-
ervelt et al. [2003] have so far allowed approximate so-
lutions to be found for an interesting range of models.

For the purpose of finding a periodic orbit, the zero dy-
namics is used in each phase. This speeds up the inte-
gration of the various mechanical models. For phase-i,
the input in (70) is evaluated as

u∗α,i := − [LgLfhα]
−1
L2
fhα

∣∣∣
Zi

, (71)

assuming the virtual constraints have vector relative de-
gree two. Once a periodic orbit is found, a hybrid zero
dynamics feedback controller is synthesized via Sect. 5.3,
and the stability of the closed-loop hybrid model is eval-
uated via a Poincaré map as in Theorem 16. The feed-
back controller is not necessarily synthesized with the
same virtual constraints used to find the periodic orbit,
though it often is; for details, seeWestervelt et al. [2007a]
and Chevallereau et al. [2009b].

Remark 17 The important role of the optimization
criterion in gait design has been extensively explored;
see Srinivasan and Ruina [2006] and references therein.
The design of virtual constraints on the basis of the
dimensionless cost of mechanical transport is performed
in [Sreenath et al., 2011b, Eq. (40)] and [Ramezani
et al., 2014, Eq. (17)]. As an alternative to optimization,
one could imagine choosing virtual constraints so that

the resulting zero dynamics is diffeomorphic to a spec-
ified target dynamics, as in the templates and anchor
framework of Full and Koditschek [1999]. To date, this
has been achieved in only one case; see Poulakakis and
Grizzle [2009].

Remark 18 The feedback (59) is inverting the dynam-
ics associated with the virtual constraints. Inversion or
“cancelling the natural dynamics” is generally believed to
be a bad thing. Does this make the whole method suspect?
First of all, experimental implementation of the method
is discussed in Westervelt et al. [2004], Sreenath et al.
[2011b], Sreenath et al. [2011a], and Park et al. [2013].
A key point is that when the virtual constraints are de-
signed to minimize a cost function such as (70), they tend
to use low control effort which means that the “natural
dynamics” are used as much as possible instead of being
cancelled. This aspect is made especially clear in Wester-
velt et al. [2007b], where an actuated compass gait biped
is controlled using virtual constraints and zero dynam-
ics in such a manner that the controller uses zero torque
when walking down a slope on the periodic orbit of the
unactuated biped, and only expends control effort to re-
turn to the periodic orbit. A second point is that in prac-
tice, exponential stability is robust to sufficiently small
perturbations, and thus approximately zeroing the virtual
constraints tends to result in good experimental behavior.
A third point is that input-output linearization can be re-
placed with other types of feedback, as discussed in Sect.
6.4 and in Galloway et al. [2013].

5.5 Illustration on an Underactuated Biped

The design of a stabilizing controller for a simple 3D
bipedal robot is illustrated here with simulation re-
sults 27 . The influence of the frontal (coronal) plane
dynamics on the overall motion of the robot will be em-
phasized as this is the major new element when passing
from 2D to 3D. With this in mind, the simplest me-
chanical structure that highlights this aspect of the gait
design and stabilization problem will be used.

Biped: The 3D-biped depicted in Fig. 7 is taken from
Chevallereau et al. [2009b]. It consists of five links: a
torso and two legs with revolute one DOF knees that
are independently actuated and terminated with “point-
feet”. Each hip consists of a revolute joint with two DOF
and each DOF is independently actuated. The width of
the hips is nonzero. The stance leg is assumed to act as
a passive pivot in the sagittal and frontal planes, with
no rotation about the z-axis (i.e., no yaw motion). In-
deed, the small link in the diagram that appears to form
a foot has zero length and no mass. Its purpose is to in-
dicate the two DOF at the leg-ground contact point cor-
responding to motion in the frontal (q1) and sagittal (q2)

27 Recent experiments can be found in Grizzle [2014a] and
Grizzle [2014b]
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planes; in addition, it shows that there is no yaw rotation
about the stance leg end per Sect. 3.4 and Fig. 4. The
angles q1 and q2 are unactuated. The remaining joints
are independently actuated. In single support, the robot
is underactuated, having 8 DOF and 6 independent ac-
tuators. The physical parameters of the robot are given
in Table 1.

Studied Gait: The walking gait consists of phases of
single support, alternating on the left and right legs,
with transitions determined by the height of the swing
leg above the ground becoming zero. The impact of the
swing leg with the ground is assumed to be rigid as in
Sect. 3.6, and, consequently, the double support phase
is instantaneous. Following Sect. 3.4, a dynamic model
is easily developed. The hybrid model naturally has two
continuous domains, corresponding to single support on
the left and right legs, respectively. If a gait is sought
that is symmetric with respect to the left and right legs,
it is possible (and common) to use a model with a single
continuous phase, and to “flip” the sign of the hip width
from one step to the next; see Chevallereau et al. [2009b].

x y

z

L1

L2

m1

m2

m3

L3

W

q1

q2

q3

q4

q5q6

q7

q8

x y

z

L1

L2

m1

m2

m3

L3

W

q1

q2

q3

q4

q5q6

q7

q8

x , y , z , qst st st 0,st

y

z

L1

L2

m1

m2

m3

L3

W

q1

q2

q6

q5

q3

y

z

L1

L2

m1

m2

m3

L3

W

q1

q2

q1

q2 q8

q7
q6

q5q4

x

x , y , z , qst st st 0,st

(a) (b)

Fig. 7. A five-link 3D biped with point feet that is 0.55 m
at the hip and has a total mass of 7.25 Kg. (a) shows the
coordinates for single support on leg-1 and (b) shows the
coordinates for single support on leg-2.

g W L1 L2 L3 m1 m2 m3

9.81 0.15 0.275 0.275 0.05 0.875 0.875 5.5
Table 1
Parameters for the 3D bipedal robot (in MKS).

Periodic Orbit: A symmetric, periodic walking gait
was found as in Sect. 5.4. The model has two continuous
phases, corresponding to support on leg-1 and then leg-
2. In each phase, the function h0(q) in (55) was selected
as the actuated variables, namely,

h0(q) =


q3

...

q8

 . (72)

The variable θ was taken as

θ = −q2 − q3/2, (73)

which corresponds to the sagittal plane angle of the line
connecting the leg end to the hip. Bezier polynomials
of degree 3 were chosen for hd(θ) to complete the def-
inition of the virtual constraints. The parameters were
then selected by seeking a (local) minimum of (70).

The computed gait has an average walking speed of 0.75
leg lengths per second; the step length is 0.32 leg lengths;
and the step width is close to the hip width. The nom-
inal gait’s joint profiles over two consecutive steps are
shown in Fig. 8. The unactuated and actuated variables
are presented; note that θ is monotonic over each step.
Fig. 9 shows the torque required to produce the periodic
motion. Fig. 10 shows the profile of the ground reaction
force on the stance foot and the profile of the swing leg
end; this figure shows that the unilateral contact con-
straints are satisfied on the nominal periodic orbit.
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Fig. 8. Joint profiles of a periodic motion that is symmet-
ric over two steps. The small circles represent the points
where the discrete transitions occur. Plots of qk versus θ, for
3 ≤ k ≤ 8 define the virtual constraints.

FeedbackControl:The periodic orbit essentially came
with a set of nominal virtual constraints based on the
controlled variables (72). Using outputs based on these
constraints, a hybrid zero dynamics feedback controller
was synthesized following the method of Sect. 5.3. The
stability of the closed-loop hybrid model was evaluated
via the restricted Poincaré map as in Theorems 8 and
16. The eigenvalues of the Jacobian of the restricted
Poincaré map evaluated at the fixed point were

|λ1| = 0.89, |λ2| = 0.70, |λ3| = 2.1

One eigenvalue has magnitude greater than one and
hence the gait is unstable under this controller.
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Fig. 9. Torques profiles of the periodic motion over two steps.
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Fig. 10. The reaction forces on the stance foot over two
steps and the evolution of the swing leg end. The nominal
orbit satisfies the required unilateral constraints at ground
contact, as specified in (41).

An analysis of the eigenvectors did not clearly associate
a particular “component” of the state of the HZD with
the unstable eigenvalue. Based on results in [Westervelt
et al., 2007a, pp. 160–163], however, the sagittal plane
motion was expected to be stable, so it was suspected
that the instability arose in the frontal plane motion.
Indeed, the position of the center of mass in the frontal
direction is important. If, at leg touchdown, the center
of mass is not between the feet, but outside the position
of the next supporting foot, the robot will topple side-
ways. Based on this physical intuition, the control of the
variable q6 (which regulates step width on the swing leg)
was replaced by the control of the distance between the
swing leg end and the center of mass along the frontal
direction; denote this distance by d(q).

To incorporate this new objective into the control law,
the fourth component of the function h0(q) in the virtual
constraints (72) was replaced with 28 d(q). On the nom-
inal periodic orbit, this distance was evaluated and ap-
proximated by a Bezier polynomial in θ, denoted d∗(θ).
When the HZD control law of Sect. 5.3 was recomputed
using this new output, the walking gait was stable, as
shown via the calculation of the eigenvalues of the lin-
earization of the restricted Poincaré map:

|λ1| = 0.78, |λ2| = |λ3| = 0.25

Remarks on 2D vs. 3D: When extending the method
of virtual constraints from planar robots with one de-
gree of underactuation to 3D robots with two or more
degrees of underactuation, new challenges and proper-
ties appeared. In the 2D case, hybrid invariance could
be achieved without use of a deadbeat hybrid extension.
Indeed, Theorem 5.2 in Westervelt et al. [2007a] shows
that, under very mild conditions, hybrid invariance fol-
lows from the nominal virtual constraint vanishing along
a periodic orbit. Moreover, the restricted Poincaré map
is scalar, can be computed in closed form, and an an-
alytical condition for asymptotic orbital stability can be
obtained, based on physical properties of gait along the
periodic orbit, and independent of the virtual constraints
used to parameterize the orbit. For a robot evolving in
3D, with two or more degrees of underactuation, creat-
ing hybrid invariant manifolds is much more challenging.
The only known method to achieve invariance under the
rest maps is to use a deadbeat hybrid extension. The re-
sulting restricted Poincaré map is of dimension three or
higher, and conditions for asymptotic orbital stability
depend on the particular choice of the virtual constraints
used to parametrize the orbit, as was illustrated here.

6 AdvancedAspects of Control viaVirtual Con-
straints

This sections points to recent advances in the theory
of virtual constraints and hybrid zero dynamics. The
development is deliberately less detailed than in Sect. 5.
The primary objective is to indicate recent trends.

6.1 Non-Trivial Feet

When a robot has nontrivial feet, the point-foot control
strategy presented in Sect. 5 can be applied without dif-
ficulties if the following additional issues are taken into
account:

• The gait can be more complex. It can have several
phases corresponding to different kinds of contact be-
tween the foot and the ground. This point is illustrated
for example in Fig. 12.

28 A linear approximation was in fact used.
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Fig. 11. The canonical walking function (74) parallels many human-inspired outputs like the four common ones featured in
this figure. The human data here represent an amalgamation of experimental data collected over numerous trials from nine
test subjects as detailed in Sinnet and Ames [2012a]; in the literature, e.g., in Perry and Burnfield [2010], healthy walking is
defined as being within one standard deviation of the mean. The two human data fits depicted with solid lines represent both
unconstrained fits of (74) to human walking data and fits constrained to satisfy the conditions of partial hybrid zero dynamics
on the robot AMBER 1 (see Kolathaya et al. [2012] and Yadukumar et al. [2013]), i.e., these fits result in stable walking. The
unconstrained fits tend to have correlations within one percent of unity justifying the choice of (74).

• When the stance foot is flat on the ground, the sys-
tem is fully actuated and the control must ensure that
the constraints collected in (29) are satisfied. Among
these, the constraint (28) is the most difficult to sat-
isfy, and several strategies have been developed to
achieve this objective Hirai et al. [1998], Kajita et al.
[2003].
• The evolution of the swing foot must be managed so

that the landing of the swing foot occurs in an appro-
priate way.

Wang et al. [2012, 2014] presented an extension of the
underactuated control approach to fully actuated robots
with feet by directly regulating the evolution of the ZMP.
For a robot with point feet, the center of pressure (CoP)
is located at the point of contact, and thus the robot’s
motion automatically has the ZMP at the point of con-
tact. In the case of a robot with a foot in flat contact
with the ground, the path of the ZMP was moved into
the control objectives, defined as a function of θ, just as
was done previously for the joint variables. Thus the set
of virtual constraints or outputs was augmented with
yZMP = ZMP0 − ZMP d(θ).

Because the evolution of the ZMP is controlled, phases
of walking with rotation about the toe or the heel, as
described in Sect. 3.3, can be treated using the same
control strategy. Even in the case of a fully actuated
humanoid, as long as two outputs have been defined to
ensure the satisfaction of the constraint on the ZMP,
the system can be view as an underactuated system of
relative degree 2, as treated in Sect. 5. Thus the same
approach can be used. In case of a nontrivial foot, the
absolute orientation of the swing foot must be controlled
rather than the relative orientation of the swing ankle
to achieve an appropriate landing configuration in the
eventual presence of error.

The proposed method can be viewed as an on-line modi-
fication of the reference trajectory in order to ensure the
satisfaction of the contact constraint. The main point is

Heel-Lift

Heel-StrikeToe-Strike

Toe-Lift

[ , ]lh lt

[ ]lt
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59%

18%
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Fig. 12. An example of a domain breakdown, i.e., the dis-
crete phases of a walking gait, based upon a specific tem-
poral ordering of contact points. The red dots indicate the
constraints enforced in each discrete phase (or domain). The
percentages shown for each domain indicate the approximate
amount of the gait which humans spend in each domain; in
particular, note that approximately 20% of the gait is spent
in double support. In addition, the gait contains periods of
full, under and over actuation.

that the effect of this on-line modification on the stabil-
ity of a gait is studied on the basis of a rigorous stability
analysis, and not by hand tuning in experiments. More
importantly, the stability during the foot rotation phase
can also be taken into account, something that has been
missing in previous studies for walking gaits with foot
rotation.

6.2 Human-Inspired Output Functions

Motivated by the biomechanics literature, 29 human-
walking can be used to inspire the construction of hybrid
system models, along with virtual constraints—inspired
by human locomotion data—that yield provably stable
walking gaits.

29 The study of human kinematics is common for biomechan-
ics researchers; see, e.g., Winter [2009].
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In the context of hybrid system models, as illustrated in
Sect. 3, a hybrid system model of a walking gait is essen-
tially completely determined by the contact points over
the course of a step; this is explained in further detail, us-
ing the modelling methodologies of this paper, in Ames
et al. [2011]. This motivates the use of human data—
specifically, the temporal ordering of contact points—in
order to determine the discrete domains of a hybrid sys-
tem model associated with a periodic walking gait. Uti-
lizing human motion capture experiments, Ames et al.
[2011] and Vasudevan et al. [2013] determined a met-
ric for comparing different walking gaits by constructing
weighted graphs associatedwith each gait and employing
a variant of the cut distance between graphs. Through
these constructions, it was found that all healthy sub-
jects displayed the same universal domain breakdown
composed of four discrete phases (shown in Fig. 12). In
addition, utilizing the optimal walking cycle obtained by
finding the graph with minimum distance between the
graphs associated with the walking gait of each subject,
an initial metric for gauging the human-like nature of
a walking gait was proposed. These results provide evi-
dence for the importance of multi-domain walking gaits
in achieving human-like locomotion.

Studies such as Kirtley et al. [1985] have shown through
gait analysis that numerous parameters of gaits do not
seem to be affected by a person’s height or weight and
such results motivate a kinematics-based gait design ap-
proach. In the context of controller synthesis as moti-
vated by human locomotion data, the goal is to utilize
kinematic walking data to construct virtual constraints
as outlined in Sect. 5. With this goal in mind, con-
sider a human output combination (see Ames [2014]):
Y H = (Q, yH1 , y

H
2 ), consisting of the configuration space

of a robot, Q ⊂ Rn, a velocity modulating output yH1 :
Q → R, position modulating outputs yH2 : Q → Rn−1

given by yH2 (q) = [yH2 (q)i]i∈O with O an indexing set
for yH2 . By considering human walking data, specific hu-
man output combinations appear to kinematically char-
acterize human walking through the canonical walking
function (CWF):

yH(t, α) = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5.
(74)

In particular, consider human data taken over one step
of a walking gait at discrete times t[k], k ∈ {1, . . . , N}
yielding discrete angle measurements of the human
qH [k] ∈ Q as appropriately mapped to the robot model.
For the proper human output combination and choice
of parameters, α = (v, (αi)i∈O), it appears that (see
Fig. 11):

yH1 (qH [k]) ≈ vtH [k], yH2 (qH [k]) ≈ [yH(tH [k], αi)]i∈O.
(75)

This implies that a proper human output combination
characterizes the behavior of human walking at a kine-

matic level to be that of a linear mass–spring–damper
system. Specific examples of human output combina-
tions have been studied in numerous papers, including
Sinnet et al. [2011], Ames [2011] and Jiang et al. [2012].
For example, the forward position of the hip or forward
position of the center of mass can be taken to be the
velocity modulating output, and 4 examples of position
modulating outputs are shown in Fig. 11.

With the goal of driving outputs of the robot to outputs
of the human, as expressed by (74), human output com-
binations can be used to synthesize virtual constraints
(see Sect. 5) by considering the following human-inspired
outputs consisting of relative one and vector relative de-
gree two outputs 30 of the form:

y1(q, q̇) = dyH1 (q)q̇ − v, (76)
y2(q) = yH2 (q)− [yH(θ(q), αi)]i∈O. (77)

where θ(q) is a parameterization of time based upon the
velocity modulating output yH1 :

θ(q) =
yH1 (q)− yH1 (q+)

v
,

with q+ the system configuration at the beginning of a
step, and v is the desired velocity of the velocity mod-
ulating output (76). This choice of parameterization is
motivated by the fact that velocity modulating outputs
are chosen by the critera that they are expressed by a lin-
ear function of time (75). Utilizing the human-inspired
outputs, the feedback linearizing controller (59) can be
adapted to drive h := y2 → 0 in the case of underac-
tuation, and a slight modification can be used to drive
y1 → 0 and y2 → 0 in the case of full actuation. Intu-
itively, driving these outputs to zero drives the outputs
of the robot—both velocity and position modulating—
to the outputs of a human as represented by a constant
for the velocity modulating output and the CWF for the
position-based outputs.

The parameters, α, of the CWF that best fit the human
data will not generally result in robotic walking due to
differences between the robot and human. Although it is
possible to obtain walking through the heuristic proce-
dure of simply fitting (74) to human data and manually
tuning parameters as was done in Sinnet et al. [2011], a
more effective approach involves performing the fitting
subject to conditions on hybrid invariance and using the
framework of virtual constraints to achieve formal sta-
bility (see Ames [2014] for the full development of these
ideas in the case of full and under actuation). We will
briefly outline this construction in the context of full
actuation for a robot with n degrees of actuation. The

30 Note that the human output combination must be prop-
erly chosen to ensure proper relative degree, i.e., invertibility
of the decoupling matrix.
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feedback controller utilizing the human-inspired outputs
renders the zero dynamics manifold (58) forward invari-
ant and attractive for the continuous dynamics. Since
we are assuming full-actuation, and this manifold is de-
fined in terms of only the relative degree 2 outputs we
term it the partial zero dynamics manifold and denote
it by PZi. The human-inspired optimization problem is
given by:

(v∗, α∗) = argmin
(v,α)∈R5(n−1)+1

CostHD(α) (78)

s.t. ∆(PZ i ∩ S) ⊂ PZ i

where CostHD : R(5n−1) → R is the least squares fit of
the CWF to the experimental human walking data over
one step. The novelty of human-inspired optimization
(Ames [2011]) lies in the specific formulation of the con-
straints ∆(PZ i ∩ S) ⊂ PZ i as they can be expressed
in terms of only the parameters (v∗, α∗). Moreover, ad-
ditional constraints that ensure the physical validity of
the resulting walking gait, e.g., torque bounds, veloc-
ity bounds, and ZMP constraints (28), can be added
to the optimization problem and, again, be expressed
in terms of only the parameters. The parameters solv-
ing the human-inspired optimization problem, (v∗, α∗),
provably result in a stable walking gait for which a
fixed point can be found explicitly (Ames [2014]). These
methods have been successfully applied experimentally
to achieve walking on 3D bipedal robots Ames et al.
[2012a], Powell et al. [2013], Dantam et al. [2013]. In
addition, the application of these methods to underac-
tuated robots 31 was considered in Ames [2012] and the
results have been demonstrated in practice in Kolathaya
et al. [2012], Yadukumar et al. [2013].

6.3 Series-Compliant Actuation

Inspired by Raibert’s hoppers (Raibert [1984], Raib-
ert and H. Brown, Jr. [1984], Raibert [1986]), and also
by spring flamingo and spring turkey (Hollerbach et al.
[1992], Pratt and Pratt [1999], Pratt [2000], Pratt et al.
[2001]), Hurst designed the planar bipedal robot MA-
BEL and the 3D bipedal robot ATRIAS to include large
springs, as shown in Fig. 13. In the case of MABEL, the
springs are (roughly speaking) placed in series between
the actuators and the knee joints Park et al. [2011]. In
the case of ATRIAS, the springs are between the actua-
tors and the top two links of the 4-bar mechanism form-
ing the legs Grimes and Hurst [2012]. In each case, the
springs serve to isolate the reflected rotor inertia of the
motors from the impact forces at leg touchdown and to
store energy in the compression phase of a running gait,

31 The first use of human data in conjunction with virtual
constraints in the context of underactuated robots can be
found in Srinivasan et al. [2008, 2009]. In this case, methods
based upon those presented in Sect. 5.4 were used.

when the support leg must decelerate the downward mo-
tion of the robot’s center of mass; the energy stored in
the spring can then be used to redirect the center of mass
upwards for the subsequent flight phase, when both legs
will be off the ground Alexander [1990], Chevallereau
et al. [2005], Full and Koditschek [1999]. Both of these
properties (shock isolation and energy storage) enhance
the energy efficiency of locomotion. On the other hand,
the springs increase the number of degrees of freedom in
the robot, with no attendant increase in the number of
actuators.

To date, the design of the zero dynamics for series elas-
tic actuators has been addressed in two distinct ways.
In Morris and Grizzle [2009], the spring model of Spong
[1987] was adopted. It was shown that if the controlled
variables h0(q) are taken on the joint side of the spring,
the relative degree of those components of the output be-
comes 4 instead of 2, and the zero dynamics of the robot
with series elastic actuation is diffeomorphic to that of
the robot without series elastic actuation. In particular,
the dimension of the zero dynamics does not increase,
which favors simplicity of any attendant stability anal-
ysis. On the other hand, if the the controlled variables
h0(q) are taken on the motor side of the springs, the rel-
ative degree remains 2 and the dimension of the zero dy-
namics increases; see for example Poulakakis and Grizzle
[2009]. Which approach is better? Reference Poulakakis
and Grizzle [2007] designed two controllers for a hopper
model with compliance; one controller used virtual con-
straints with relative degree 2 outputs and the other con-
troller used outputs with relative degree 4. The same pe-

(a) (b)

Fig. 13. (a) The planar (2D) biped MABEL is one meter tall
at the hip and has overall mass of 65 Kg. Because the hips
are 1 degree-of-freedom (DOF) revolute joints, the robot is
tethered, walks in a cylindrical approximation to the sagit-
tal plane, and cannot leave the laboratory. (b) 3D biped
ATRIAS is one meter tall at the hip and has a total mass of
55 Kg. Each hip has 2 DOF, allowing the leg to move in the
frontal and sagittal planes, and thus ATRIAS can balance
itself side-to-side without the aid of a boom. ATRIAS is bat-
tery powered and is designed for both indoor and outdoor
use. Both robots use large springs in their actuation.
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riodic orbit was realized with each controller, so that the
robot in closed-loop had the same steady-state hopping
motion in each case. The difference showed up in tran-
sient operation: the controller based on outputs with rel-
ative degree 2 used lower peak torques and consumed less
actuator power when rejecting common disturbances.
The feedback controller based on the relative degree 2
outputs is simpler to compute and implement than the
controller based on relative degree 4 outputs. In simula-
tions, it also seems to preserve stability for a wider range
of uncertainty in the spring constant.

The robot MABEL has been controlled with relative de-
gree 2 outputs and they have performed remarkably well
in experiments Sreenath et al. [2011b, 2012], Park et al.
[2012, 2013], allowing the robot to accommodate unseen
stepdowns of 20 cm and to run on level ground at a peak
speed of 3m/s. Relative degree 2 outputs have performed
well in simulations of the 3D robot ATRIAS Ramezani
et al. [2014]. Experimental confirmation for 3D ATRIAS
has just recently been demonstrated in Grizzle [2014b].

6.4 Control Lyapunov Functions for Zeroing the Vir-
tual Constraints

In the control law (59), the term u∗ given by (60) renders
the zero dynamics manifold forward invariant, while the
term

[LgLfh(x)]
−1

(
1

ε2
Kph(x) +

1

ε
KdLfh(x)

)
(79)

accomplishes two things: it renders the input-output
map linear and renders the zero dynamics manifold lo-
cally exponentially attractive, with the rate of conver-
gence adjusted through the choice of ε.

Theorem 16 clarifies the importance of being able to
tune the rate of convergence because it states that when
the “transverse variables” converge sufficiently rapidly to
zero, exponential stability of a periodic orbit in the zero
dynamics implies exponential stability of the orbit in the
full model. Is the input-output linearization property
somehow fundamental?

Ames et al. [2012b] shows that it is not at all necessary
to linearize the input-output map; it is only the ability
to tune the rate of exponential convergence that is im-
portant. Specifically, the notion of a control Lyapunov
function (CLF) (Sontag [1989], Grognard and de Wit
[2004], Hauser and Chung [1994]) is extended to the hy-
brid setting, and then refined to allow for the tuning of
the rate of exponential convergence through the defini-
tion of a Rapidly Exponentially Stabilizing Control Lya-
punov Function or RES-CLF for short. The point-wise
minimum norm of Petersen and Barmish [1987], Free-
man and Kokotović [1996] is extended to RES-CLFs
and validated experimentally on MABEL in Ames et al.
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Fig. 14. Directed graph of proposed model.

[2012c]. Furthermore, actuator bounds can also be taken
into account via a Quadratic Program (QP), as shown
in Galloway et al. [2013]. More recent work can be found
in Ames and Powell [2013], Morris et al. [2013].

7 Controlled Routhian Reduction

First introduced in Ames [2006], functional Routhian re-
duction has been helpful in achieving 3D walking in a
number of bipeds in simulation (see, e.g., Ames et al.
[2007, 2009], Sinnet and Ames [2009b]) and has also been
demonstrated in practice in Sinnet and Ames [2012a,b].
By shaping the energy of a biped through control, func-
tional Routhian reduction can effectively decouple the
sagittal and coronal dynamics of a 3D biped and allow
for control design to be conducted with the dynamics re-
stricted to the sagittal plane. 1 This decoupling allows
one to harness existing methods for control of 2D bipeds.
Moreover, as a consequence of the reduction procedure,
the biped will be stabilized in an upright configuration
in the coronal plane. Thus in addition to simplifying con-
trol design for 3D bipeds, functional Routhian reduction
also points to the inherent decoupled nature of walking.

Beginning with a 3D biped, a sagittal restriction is
applied to arrive at a reduced-order model operating
in the sagittal plane. Controllers are then designed to
achieve sagittal-plane walking on this simplified model.
For the example herein, controlled symmetries will be
used with additional spring–damper-like control laws
which will provide an overall passivity-based feel. Once
stable 2D walking has been found, energy shaping is
used to transform the Lagrangian of the 3D biped into
a form amenable to functional Routhian reduction. The
reduced system obtained by stacking this form of re-
duction with sagittal control has the same dynamics as
the 2D biped. Finally, the decoupling afforded by re-
duction can only be guaranteed on a manifold on which
certain initial conditions of the continuous dynamics
hold (as will be seen in Theorem thm:reduction) and
thus feedback linearization is used to render this man-
ifold exponentially stable. The end result is stable 3D

27



bipedal walking which is identical to the 2D biped with
respect to the continuous dynamics.

The rest of this section describes and illustrates func-
tional Routhian reduction on a biped with feet, locking
knees, and a hip, as in Sinnet and Ames [2009b]. Non-
trivial anthropomorphic foot action obtained through
control and a four-domain hybrid model is used to treat
the different phases of walking shown in Fig. 14.

7.1 3D Model

The model of interest in this section is composed of rigid
links with point masses as shown in Fig. 16. The model
will have configuration space Q3D, which will consist of
the extended coordinates

qe = (p′b, φ
′
b, q
′)′,

where pb and φb are, respectively, the position and Eu-
ler angles for the orientation of a point on the torso.
The joint angles for the stance leg are the same as an-
gles q1, . . . , q4 shown in Fig. 4. The numbering of the
angles q5, . . . , q8 begins at the hip and each angle twists
about the opposite axis of its counterpart on the stance
leg in the same manner as shown in Fig. 7. A gait can be
constructed for this model based on the domain graph
shown in Fig. 14. The nodes on the graph are dictated
by those constraints which are enforced by the environ-
ment such as ground contact and knee lock (assuming
mechanical locks).

The validity of the desired domain graph depends on the
choice of control; certain controllers may cause the foot
contact to enter into undesirable states (which are not
present in Fig. 14.) The system itself can be modeled as
the following hybrid control system (as in (53)):

Σ3D = (Γ3D,X3D,U3D,S3D,∆3D,FG3D), (80)

where Γ3D is an oriented graph as pictured in Fig. 14 and
contains domain-specific information regarding which
points are in contact with the environment. Each of the
symbols in the tuple above is an array of elements such
as X3D = {X i3D}4i=1 containing different elements for dif-
ferent phases of walking. Each domain will be described
in deatil and examples will be given on how to con-
struct specific elements for the tuple (80) and the reader
may feel free to extrapolate to determine those elements
which have been omitted for the sake of clarity. Before
delving into the individual domains, however, a discus-
sion of some general considerations is pertinent.

General Considerations. Inherent symmetries in
bipedal walking allow one to simplify a gait’s descrip-
tion by considering the system in terms of stance–swing
leg rather than left–right leg: a discrete state variable
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Fig. 15. Proposed scheme for obtaining walking.

can be used to track which leg is currently the stance
leg but one is free to examine the system over a single
step rather than an entire step cycle thereby simplifying
analysis.

By convention, the phases are numbered such that the
transition from the last domain to the first domain (i.e.,
4 → 1) corresponds to heel strike as this event signi-
fies that the stance and swing legs should be swapped.
For the proper choice of gains, the walking controllers
applied in this example can generate a gait for which
the hybrid dynamics h1(qe) = pzstt(qe), where pzstt(qe) is
height of the stance toe above the ground, can be com-
bined to construct the constraint vector H1(qe, q̇e, u).
The unilateral constraint provides a metric for deter-
mining the distance of the system from the edge of the
domain; when this metric reaches zero, the discrete dy-
namics of plastic impacts comes into play, operating on
the pre-impact state to provide the post-impact state as
an initial condition for the continuous dynamics of the
next domain.

After impact, it is desired that the stance knee be locked,
that the stance foot be flat on the ground, and that the
swing toe remain fixed to the ground. These require-
ments dictate an apropos choice of kinematic constraints
for constructing a Jacobian for the impact map (47).
Using toe strike as the transition leads to the switch-
ing surface S1→2

3D given in (52). As alluded to, the im-
pact should be treated in exactly the same manner as
the continuous dynamics. Specifically, the friction, ZMP,
and normal force constraints must be checked. However,
additional checks must be performed to ensure no point
has a post-impact trajectory into the ground.

Phase 2 – Toe Lift (tl). As the stance foot experiences
heel roll from the previous phase and the toe rolls into
the ground causing an impact, the stance foot enters a
state of flat foot contact while the swing toe remains
on the ground. The system continues under these con-
ditions until the vertical constraining force on the back
(swing) toe reaches zero, at which point, the ground is
no longer undergoing a force interaction with the toe.
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This force thus represents a holonomic constraint on the
system which can be used to define both the switching
surface and domain of admissibility (which must always
be checked). As the force reaches zero, the toe leaves the
ground and, as there is no impact, there is no impulsive
change in momentum and thus the reset map simplifies
to the identity map, as previously mentioned.

Phase 3 – Knee Lock (kl). After the swing toe lifts,
the biped continues to locomote with flat foot contact
between the stance foot and the ground until the swing
knee reaches full extension, resulting in an impact which
locks the knee. The locking and unlocking of knees could
be accomplished by solenoid actuators. Unlike Phases 1
and 2, which are comparatively short, the biped spends
a major part of the gait in Phase 3. This ends up be-
ing useful as one could say the biped has full actuation
in this phase. The constraints imposed on the system
in this domain actually reduce the available degrees of
freedom in the mechanical configuration to the same as
the number of actuators. Thus the robot can be made to
move anywhere within the domain of admissibility pro-
viding the appropriate constraints aren’t violated.

Phase 4 – Heel Strike (hs). The locking of the
stance knee which represents the transition to this do-
main means that both knees are locked in this domain,
but the system still has full acutation. This phase ends
when the swing heel strikes the ground, resulting in a
transition back to the first phase. A coordinate trans-
formation can be constructed to “swap” the angles of
the stance leg and swing leg. For the model presented,
the new joint angles are given by the following map:

Tq : (q8, q7, q6, q5, q4, q3, q2, q1)

7→ (q1, q2, q3, q4, q5, q6, q7, q8).

By choosing the reference frame to be on the torso, the
transformation for the base coordinates is simply the
identity map. The transformation can then be written
as a linear map, T = diag(I6, Tq) which induces pushfor-
ward T ∗. The post-impact state is thus given, as in (47),
by diag(T , T ∗) · ∆4→1

3D Finally, it should be noted that
there are certain choices of control which could result in
a bi-periodic orbits due to poor control design.

Table 2
Physical model parameters corresponding to Fig. 16. Massess
and lengths are given in kilograms and meters, respectively.

M mt mc mf wf w

20 5 1 .1 .08 .10

` `t `c ra rf rh rt rT

1 .175 .375 .1 .139 .0625 .25 .075

Fig. 16. Configuration of bipedal model.

7.2 Reduction

Before constructing the control laws that will be ap-
plied to the hybrid control system Σ3D, it is necessary
to introduce functional Routhian reduction—the tool
that will be used to achieve 3D walking with a con-
troller designed for an equivalent 2D biped. This form
of reduction utilizes almost-cyclic variables, which are
analogous to cyclic variables in classical geometric re-
duction (cf. Marsden and Ratiu [1999]), i.e., these vari-
ables are the “symmetries” in the system that will be
eliminated through reduction. As with classical reduc-
tion, the way in which these variables are eliminated is
through a momentummap which describes how momen-
tum is conserved due to the symmetries in the system—
the key difference is that in functional Routhian reduc-
tion this momentum map is set to be equal to a func-
tion of the almost-cyclic variables rather than a con-
stant. This function can be chosen, which will allow one
to pick a specific function that will stabilize the walker
to the upright position while simultaneously decoupling
the sagittal and coronal dynamics of the system.

Almost-Cyclic Lagrangians. Consider a system with
configuration space Q = Tm × S, where S is called the
shape space. Let the coordinates be represented by q =
(ϕ′, ϑ′)′ with ϑ ∈ S and almost-cyclic variables ϕ ∈ Tm.
A Lagrangian Lλ : TTm × TS → R is almost-cyclic if it
takes the form

Lλ(ϕ, ϑ, ϕ̇, ϑ̇) =
1

2

(
ϕ̇′ ϑ̇′

)
Dλ(ϑ)

(
ϕ̇

ϑ̇

)
(81)

−Wλ(ϕ, ϑ, ϑ̇)− Vλ(ϕ, ϑ),

with

Dλ(ϑ) =
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 Dϕ(ϑ) Dϕ,ϑ(ϑ)

Dϕ,ϑ(ϑ)′ Dϑ(ϑ) +Dϕ,ϑ(ϑ)′D−1
ϕ (ϑ)Dϕ,ϑ(ϑ)

 ,

Wλ(ϕ, ϑ, ϑ̇) = λ(ϕ)′D−1
ϕ (ϑ)Dϕ,ϑ(ϑ)ϑ̇,

Vλ(ϕ, ϑ) = Vfct(ϑ)− 1

2
λ(ϑ)′D−1

ϕ (ϑ)λ(ϑ), (82)

for some function λ : Tm → Rm. Note: Dϑ : S →
Rn−m×n−m and Dϕ : S → Rm×m are positive definite
and symmetric.

MomentumMaps. Reduction is based on the concept
of a momentum map, J : TQ → Rm, which specifies the
conserved quantities of a system and is given by

J(ϕ, ϑ, ϕ̇, ϑ̇) =
∂Lλ(ϕ, ϑ, ϕ̇, ϑ̇)

∂ϕ̇

= Dϕ,ϑ(ϑ)ϑ̇+Dϕ(ϑ)ϕ̇.

Unlike standard Routhian reduction, in which this map
is a constant, functional Routhian reduction allows one
to set this map equal to a function λ(ϕ).

Functional Routhians. For almost-cyclic Lagrangian
Lλ, define the functional Routhian Lfct : TS → R:

(83)

Lfct(ϑ, ϑ̇) =
[
Lλ(ϕ, ϑ, ϕ̇, ϑ̇)− λ(ϕ)′ϕ̇

]
J(ϕ,ϑ,ϕ̇,ϑ̇)=λ(ϕ)

Because J(ϕ, ϑ, ϕ̇, ϑ̇) = λ(ϕ) implies that

ϕ̇ = D−1
ϕ (ϑ)(λ(ϕ)−Dϕ,ϑ(ϑ)ϑ̇), (84)

by direct calculation the functional Routhian is given by:

Lfct(ϑ, ϑ̇) =
1

2
ϑ̇′Dϑ(ϑ)ϑ̇− Vfct(ϑ). (85)

Reduction Theorem. Before introducing the re-
duction theorem, note that for Lλ, the forced Euler-
Lagrange equation can be written as:

ELq(Lλ) = Dλ(ϑ)q̈ + Cλ(q, q̇)q̇+ (86)
Gλ(q) + ELq(Wλ(q, q̇)) + Υ(q, q̇),

where Cλ(q, q̇) is obtained from Dλ, Gλ(q) = ∂Vλ(q)
∂q ,

and Υ(q, q̇) represents external forcing. Therefore, the
forced Euler-Lagrange equation of Lλ yields the dynam-

ical system

fLλ(q, q̇) = (87)(
q̇

D−1
λ (ϑ)(Dλ(ϑ)q̈ − ELq(Lλ) + Υ(q, q̇))

)
.

In addition, fLfct
, the forced vector field corresponding

to Lfct, is given by

fLfct
(ϑ, ϑ̇) = (88)(

ϑ̇

D−1
ϑ (ϑ)(−Cfct(ϑ, ϑ̇)ϑ̇−Gfct(ϑ) + Υ(q, q̇))

)
.

obtained from the controlled Euler-Lagrange equation
for Lfct, given by: Dϑ(ϑ)ϑ̈ + Cfct(ϑ, ϑ̇)ϑ̇ + Gfct(ϑ) =
Υ(q, q̇). The subsequent theorem assumes that Υ(q, q̇) is
only dependent on ϑ and ϑ̇ making equation (88) only a
function of ϑ and ϑ̇ and thus well-defined.

The solutions of these two dynamical systems, fLλ and
fLfct

, are related in the following manner (in a way anal-
ogous to the classical Routhian reduction result, see
[Marsden and Ratiu, 1999, pp. 260]):

Theorem 19 Let Lλ be an almost-cyclic Lagrangian
with almost-cyclic variable ϕ ∈ Tm and Lfct the
corresponding functional Routhian with shape space
S = Rn−m. Additionally, let Υ : TS → Rn represent
external forcing satisfying

(i) Υ(ϑ, ϑ̇) does not depend on ϕ, ϕ̇,
(ii) Υi(ϑ, ϑ̇) = 0, for i ∈ {[1,m] ∩ Z}.

(I.e., no external forces act on the almost-cyclic vari-
able.)

Then, (ϕ(t), ϑ(t), ϕ̇(t), ϑ̇(t)) is a solution to the vector
field fLλ given by (87) on [t0, tF ] with

ϕ̇(t0) = D−1
ϕ (ϑ(t0))(λ(ϕ(t0))−Dϕ,ϑ(ϑ(t0))ϑ̇(t0)),

(89)

if and only if (ϑ(t), ϑ̇(t)) is a solution to the forced vector
field fLfct

given by (88) and (ϕ(t), ϕ̇(t)) satisfies:

ϕ̇(t) = D−1
ϕ (ϑ(t))(λ(ϕ(t))−Dϕ,ϑ(ϑ(t))ϑ̇(t)). (90)

This theorem implies that reduction shapes the sagittal
dynamics of the 3D biped to be equivalent to those of
the 2D system.
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Sagittal Restriction. The reduced model is obtained
by applying a sagittal restriction, setting all coronal an-
gles to zero, i.e., q1 = q̇1 = q8 = q̇8 = 0, and thereby pro-
jecting down onto a submanifold representing the kine-
matic workspace of the biped in Euclidean coordinates
being restricted to 2D. This can be expressed as the hy-
brid control system

Σ2D = (Γ2D,X2D, U2D, S2D,∆2D,FG2D).

This control system can be constructed following the
same procedure used to construct Σ3D earlier. Because
this model operates exclusively in the sagittal plane, the
number of base coordinates necessary to represent the
frame at the torso reduces to three. Specifically, with
the base coordinates, the generalized coordinates are
q2D = (pxst, p

z
st, φ

y
st, ϑ

′)′. This derived model is consid-
ered equivalent to the 3D model and indeed equivalence
of corresponding dynamics is guaranteed given the the
conditions of Theorem 19 are satisfied.

7.3 Sagittal Control Design

The gait considered in this paper requires the use of
several different control laws. For the sake of obtaining
a passivity-based feel, controlled symmetries was taken
as the basis for sagittal control design. When combined
with a spring–damper (PD) controller to stabilize the
torso, controlled symmetries can produce stable walking
gaits on point foot models under the assumption of full
actuation. This is essentially equivalent to a model with
trivial foot behavior, i.e., either flat ground contact or
no contact. In order to get nontrivial foot action, addi-
tional PD controllers can be added at the ankles and at
the non-stance knee. Finally, in order to avoid scuffing,
which occurs when the swing toe strikes the ground be-
fore desired, a controller is designed to rotate the toe
away from the ground with a torque that fades expoen-
tially with the toe’s distance from the ground.

Controlled Symmetries. Controlled symmetries, in-
troduced in Spong and Bullo [2005], works by shaping
the potential energy a robot to that of a passive biped
walking down a slope. A group action effectively “rotates
the world” by operating on the potential energy allowing
for walking on flat ground given passive walking down
a slope. The goal is to combine controlled symmetries
with other control laws to achieve stable walking in the
2D sagitally-restricted kneed biped with feet.

To rotate gravity, consider the group action

Ψγ(q2D) : (pxst, p
z
st, φ

y
st, ϑ1 − γ, ϑ2, . . . , ϑ6)

7−→ (pxst, p
z
st, φ

y
st, ϑ1 . . . , ϑ6)

for slope angle γ ∈ S and define the feedback control law

Kγ
2D(q2D) := Gϑ(q2D)−Gϑ(Ψγ(q2D))

with Gϑ(q2D) = ∂V2D

∂ϑ (q2D) which in the vector fields

fγ2D,i(q2D, q̇2D) = (91)
f2D,i(q2D, q̇2D) + g2D,i(q2D)Kγ

2D,i(q2D),

for i ∈ {1, . . . , 4}.

Spring–Damper Controllers. Motivated by the elas-
ticity the human ankle and by human ankle torque (see
Au et al. [2009]), PD controllers are considered as a
means of meeting specific control objectives. For a given
joint with angle ϑj and angular velocity ϑ̇j , a typical PD
controller takes the form

uPD,ϑj (q2D, q̇2D) = −kϑj (ϑj − ϑϑj ,0)− cϑj (ϑ̇j). (92)

In order to stabilize the torso, (92) requires modification:

uPD,ϑ4
(q2D, q̇2D) = −kT (φyst − ϑT,0)− cTωyst,

where φyst is an Euler angle for the torso and ωyst is the
body-fixed angular velocity of the torso in the sagittal
plane for the model described earlier. The controller is
applied at the swing hip, ϑ4. To have the swing foot land
in a desirable configuration, and motivated by measure-
ments of human ankle torque during walking, the PD
controller (92) is applied at ϑ6. Heuristics has shown
that a PD controller at the stance ankle may often con-
tribute to stability and thus (92) is used at ϑ1. In order
to get the swing knee moving forward after heel strike,
it was necessary to impose (92) on ϑ5.

For simplicity take these controllers to be a set on each
domain i such that

U iΘ =

{
{1, 4, 5, 6}, i = 1,

{1, 4, 6}, i = 2, 3, 4.

One can observe that the controllers are continuous
through a single step with the exception of the con-
troller designed for the swing knee. In a continuous time
system, this would mean the torques for smooth control
laws would be smooth, but in a hybrid system with
impulse-like forces due to impacts, discontinuities will
occur in the velocities causing jumps in those control
laws which depend on these variables. The keen observer
might notice that if equivalent controller parameters
were found for ϑ1 and ϑ6, these controllers could be
replaced by actual spring–damper mechanisms. These
controllers can be combined to construct

KΘ
2D,i(q2D, q̇2D) :=

∑
j∈Ui

Θ

uPD,ϑj (q2D, q̇2D) · bϑ,j ,
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where bϑ,j is the j-th basis vector for the coordinates ϑ.
Applying these controllers to (91) gives

fγ,Θ2D,i(q2D, q̇2D) = (93)

fγ2D,i(q2D, q̇2D) + g2D,i(q2D)KΘ
2D,i(q2D),

where gains (Table 3) are lumped into superscripts.

Scuffing Prevention Controller. In order to avoid
the scuffing phenomenon, a controller can be designed
which repels the swing toe from the ground. To mini-
mize interference with the rest of the system’s control,
the scuffing prevention controller imposes exponential
spatial disipation that and thus only makes a significant
contribution when the swing toe passes near the floor.
This control law thus takes the form

Kβ
2D(q2D) = −β1e

β2·pzswt(q2D) · bϑ,6,

where β1, β2 ∈ R are positive constants and represent
the strength of repulsion and spatial dissipation rate,
respectively, bϑ,6 is the 6-th basis vector in ϑ, and pzswt :
S → R is the height of the swing toe above the ground.
This control law is only desirable when the swing toe is in
the air, so appropriate application leads to the following
vector fields:

fγ,Θ,β2D,i (q2D, q̇2D) =

fγ,Θ2D,i(q2D, q̇2D) +

{
0, i = 1, 2,

g2D,i(q2D)Kβ
2D,i(q2D), i = 3, 4.

2D Simulation. Applying the feedback control laws as
shown above to the hybrid control system Σ2D gives the
hybrid system

Σ̄γ,Θ,β2D = (Γ2D,X2D, S2D,∆2D,Fγ,Θ,β2D ),

where Fγ,Θ,β2D = {fγ,Θ,β2D,i }4i=1. This hybrid system was
simulated with model parameters given in Table 2 and
control parameters given in Table 3. The joint angles
and torques resulting from this walking simulation are
shown in Fig. 17 and Fig. 18 as dashed lines alongside
their counterparts from the later 3D simulation. The
Table 3
Gains for PD controllers, scuffing prevention controller, and
controlled symmetries, as well as gravity.

kϑ1 cϑ1 ϑϑ1,0 kT cT ϑT,0 β1 γ

30 0.1 -0.5 100 5 0 10 0.05

kϑ5 cϑ5 ϑϑ5,0 kϑ6 cϑ6 ϑϑ6,0 β2 g

70 1 0.5 30 1 0 20 9.81

stability of the gait can be examined by considering the
codimension-one Poincaré section S1

4 , which is the guard
of domain 4 (i.e., heel strike) and involves switching legs.
To minimize the perturbations necessary to examine the
Poincaré map, one can perturb along a minimal set of
bases that span the Poincaré map locally. Holonomic
constraints represent restrictions on the degrees of free-
dom of a system and this shows up in a dropping of rank
in the Poincaré map. For this particular model, these
minimal bases can be found by moving the fixed frame
to the fixed stance foot, then perturbing along angles
ϑ3, ϑ4, ϑ6 and angular velocities ϑ1, ϑ3, ϑ4, ϑ6. Because
the knees are locked, ϑ2 = ϑ̇2 = ϑ5 = ϑ̇5 and one can
solve for ϑ1 such that the swing heel is on the ground.
Thus the Poincaré map for the orbit drops rank to seven.
Through optimization, the fixed point

ϑ∗ = (−.163, 0, .245,−.139, 0,−.003)′,

ϑ̇∗ = (−.987, 0, 1.090, 1.068, 0, .067)′,

is found. A numerical approximation of a linearization of
the Jacobian of the Poincaré map in the seven minimnal
bases yields eigenvalues with magnitudes 0.613, 0.169,
0.056, . . .. In general, eigenvalues with magnitudes below
unity for discrete-time systems indicate stability. The
Poincaré map for the simulated system is indeed stable
thus implying (q∗, q̇∗) is a fixed point of a stable periodic
orbit which represents the stable walking gait.

One could perform a similar analysis taking a different
Poincaré section such as the guard for knee lock. This
map has two bases more than the guard for heel strike
as used above; one may no longer solve for q1 and ϑ̇5 be-
comes arbitrary. By taking this Poincaré section and per-
forming analysis, one would find seven non-zero eigen-
values for the reasons alluded to above.

7.4 Reduction Control Design

The scheme depicted in Fig. 15 summarizes the reduc-
tion procedure, which consists of first applying an en-
ergy shaping control law and then applying a stabiliz-
ing controller. The assumptions dictating the validity of
functional Routhian reduction require that the system
be in flat-foot, single support contact with the ground;
for this model, the controller only applies in Phases 3
and 4. The sagittal controls can be adapted as follows:

Kγ,Θ,β
3D,i (q, q̇) := B3D

2D

[
Kγ

2D,i(π(q))+

KΘ
2D,i(π(q)) +Kβ

2D,i(π(q), π∗(q̇))
]
,

where B3D
2D =

(
∂q2D

∂q

)′ and π : Q3D → S is a canonical
projection (which induces pushforward π∗ : TQ3D →
TS) associated with the sagittal restriction. Applying
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Fig. 17. Joint profiles for the 3D gait (solid) and 2D gait
(dashed) over two steps. The small circles represent the
points where the discrete transitions occur.
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Fig. 18. Torque profiles for the 3D gait (solid) and 2D gait
(dashed) over two steps. The small circles represent the
points where the discrete transitions occur.

this control law yields

fγ,Θ,β3D,i (q, q̇) = f3D,i(q, q̇) + g3D,i(q)K
γ,Θ,β
3D,i (q, q̇).
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Fig. 19. Ground reaction forces for the 3D gait (solid) and 2D
gait (dashed) over two steps. The small circles represent the
points where the discrete transitions occur. It is important
to verify that these forces keep the system within the domain
of admissibility. The spikes above result from the numerous
impacts throughout the gait and the reaction of the PD
controllers to jumps in velocity.

Lagrangian Shaping Controller. Having an almost-
cyclic Lagrangian is required for reduction. This con-
troller, therefore, shapes the Lagrangian of the system
into the almost-cyclic Lagrangian Lα of the form (81),
choosing a function λ(ϕ) = −αϕ with α ∈ R a positive
constant specifying the rate of convergence. Define the
control law as

Kγ,Θ,β,α
3D (q, q̇) := B−1

3D

(
H3D(q, q̇) +M3D(q)D−1

α (ϑ)
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·
[
Dα(ϑ)q̈ − ELq(Lα(q, q̇)) +Kγ,Θ,β

3D (q, q̇)
])

(94)

with Dα(ϑ) the shaped inertia matrix as given in (82)
and ELq(Lα(q, q̇)) given in (86). Applying this control
law on the first two domains yields the vector field

fγ,Θ,β,α3D,i (q, q̇) = (95)

f3D(q, q̇) +

{
0, i = 1, 2,

g3D(q)Kγ,Θ,β,α
3D,i (q, q̇), i = 3, 4.

Reduction Surface Stabilization. In order to enjoy
the decoupling effects of functional Routhian reduction,
the system must operate on the surface where reduction
is valid. Doing so will result in the system satisfying (90).
This motivates the output function

yz(q, q̇) = ϕ̇+D−1
ϕ (ϑ)

(
αϕ+Dϕ,ϑ(ϑ)ϑ̇

)
, (96)

which has relative degree one. Driving this output to zero
will drive the system to the forward-invariant surface

R =

{(
q

q̇

)
∈ TQ3D : yz(q, q̇) = 0

}
. (97)

Using feedback linearization (cf. Sastry [1999]), a control
law which results in yz → 0 is

Kε
3D(q, q̇) :=

[
(Lg3Dyz)

−1(−Lfγ,Θ,β,α
3D

yz − ε yz)
]
· bϕ
(98)

where bϕ is a basis vector corresponding to the almost-
cyclic coordinate φ and ε ∈ R is a positive constant
specifying rate of convergence. Applying this control law
gives the dynamical systems

fγ,Θ,β,α,ε3D,i (q, q̇) = (99)

fγ,Θ,β,α3D,i (q, q̇) +

{
0, i = 1, 2,

g3D,i(q)K
ε
3D(q, q̇), i = 3, 4.

3D Simulation. Applying the preceding control laws
to the hybrid control system Σ3D gives the hybrid system

Σ̄γ,Θ,β,α,ε3D = (Γ3D,X3D,S3D,∆3D,Fγ,Θ,β,α,ε3D ), (100)

where Fγ,Θ,β,α,ε3D = {fγ,Θ,β,α,ε3D,i }4i=1. This hybrid system
contains the same control laws implemented on the 2D
model in addition to the reduction control laws and the
additional control gains α = 10 and ε = 25 are used.

The joint angles and torques for this walking simulation
are shown in Fig. 17 and Fig. 18 as solid lines and the
2D simulation is shown in dashed lines for comparison.
The closeness of trajectories can be readily observed.
The discrepancy in the nonstance ankle pitch q7 can
be attributed to the scuffing prevention controller: in
the 3D model, the biped sways so the toe stays farther
away from the ground, thus reducing the need for the
scuffing prevention controller. q1 and q8 are identical as
q8 is commanded to allow for flat edge contact upon heel
strike.

Using a similar procedure to that conducted in the 2D
simulation, a fixed point is found,

q∗ = (−.011,−.115, 0, .199,−.115, 0,−.001,−.011)′,

q̇∗ = (−.015,−.844, 0, .931, 1.574, 0, .010,−.007)′,

Due to the numerical complexity of the model, the au-
thors were unable to approximate the eigenvalues of the
system; this is indeed a troublesome area for many re-
searchers due to the limitations of numerical methods.
Yet the system appears stable as the trajectory does not
diverge from the limitcycle after many steps.

The joint angles and torques for the 2D and 3D sec-
tion are shown overlaid in Figs. 17 and 18 while tiles are
shown in Fig. 20. The main observation from comparison
is that the systems behave very similarly. However, dif-
ferences in the models arise due to the inability of reduc-
tion to cope with external forcing (i.e., double support)
and the lack of invariance of the reduction surface R to
impacts which differ between models. Moreover, spring–
damper systems like what is created through the appli-
cation of PD control is known be difficult to obtain accu-
racy through numerical integration. But after each im-
pact, the reduction surface stabilization controller (98)
acts to return the system to the surface R (97) so the
system still remains close to the surface and this sur-
face is exponentially stable. Thus the sagittal and coro-
nal dynamics are decoupled through the use of reduc-
tion indicating the effectiveness of functional Routhian
reduction for designing gaits for 3D bipeds. Moreover,
a reduction in model complexity is demonstrated which
simplifies controller design. Finally, the reaction forces
are shown for both simulations in Fig. 19 and were used
to verify the domain of admissibility. For more detail
along this line of research, see Sinnet [2011].

8 Summary and Open Problems

8.1 Summary

This paper has attempted to provide the reader with an
introduction to the area of 3D bipedal locomotion. Sec-
tion 2 emphasized that, in locomotion, steady-state be-
haviors correspond to periodic solutions and not static
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Fig. 20. Sample gait for 3D simulation

equilibria. Consequently, Poincaré first return maps
are key in characterizing stability of periodic solutions.
While some of the technical details associated with
Poincaré maps are more delicate for hybrid models, at
a fundamental level, the method works essentially the
same as for non-hybrid systems described by a single set
of ordinary differential equations. The study of periodic
solutions of hybrid models was placed before the model-
ing section for two reasons. First of all, stability is dear
to the heart of a control theorist, so its study in hybrid
systems would be of interest independent of the under-
lying physical phenomena. Secondly, it hopefully placed
the reader in the frame of mind of seeking to understand
in Sect. 3 just how a mixture of continuous and discrete
behaviors could arise from Lagrangian dynamics.

Section 3 presented models. The models vary depending
on both the characteristics of the robot as well as the
characteristics of the gait being studied, and this cou-
pling occurs because of the contact forces and moments,
called the contact wrench, between the robot and the
ground. Because much of the control-oriented literature
on locomotion has been ambiguous on the calculation
of the contact wrench, the interpretation of its compo-
nents, and its primal role in determining the validity of
a given model, the modeling section paid extra atten-
tion to this aspect of bipedal locomotion. The researcher
wishing more detail on computing the unconstrained dy-
namic model of a bipedal robot, that is, the robot with-
out any interactions with its environment other than
gravity, can consult numerous texts.

Section 4 gave a broad overview of how bipedal walking
gaits are being designed and controlled. Emphasis was
given to how the various control approaches relate to the
underlying model. The vast majority of the literature
uses one or more of the simplified models illustrated in
Fig. 5. Sections 5 through 7 provided more depth on two
approaches to control design for achieving asymptoti-
cally stable, periodic walking gaits in 3D bipedal robots.
Both of these approaches use the full hybrid dynamic
model of the robot and gait. The first approach focused
on gaits exhibiting underactuation, while the second fo-

cused on gaits composed of a series of phases.

8.2 Challenges

The paper will conclude with a non-exhaustive list of
questions that one or more of the authors find challeng-
ing and important.

Aperiodic Gaits:The models, analysis procedures and
control designs presented in the paper have focused on
periodic locomotion. It is important to move beyond this
assumption. Some preliminary results can be found in
Yang et al. [2007, 2009]. A notion of stability based on
expected time to a fall is developed in Byl and Tedrake
[2008a], Byl and Tedrake [2008b] and Byl and Tedrake
[2009] for low-dimensional models. Qualitative indica-
tors of stability are discussed in Su and Dingwell [2007]
and references therein, especially in relation to falls and
injuries in the elderly. There is room for improved no-
tions of stability of aperiodic walking gaits. Two cases
where aperiodic gaits arise naturally are walking on un-
even ground and maneuvering a biped around obstacles.
These are discussed next.

Walking on Uneven Ground: This tutorial empha-
sized walking on flat ground. Much less is known about
the problem of bipedal walking on unknown, uneven
ground. The mechanical design of feet for assuring good
ground contact has been studied in Yamaguchi et al.
[1995]. Heuristics for maintaining stability on slight in-
clines were studied in Kim et al. [2007], and for more
aggressive ground variations in Hodgins and Raibert
[1991], Kajita and Tani [1997], Shih and Chiou [1998],
Huang et al. [2000], Shimizu et al. [2007], Erez and
Smart [2007], Yin et al. [2007]. A virtual constraint
based human-inspired control methodology was experi-
mentally realized in Kolathaya and Ames [2012]. Ana-
lytical work is just beginning Manchester et al. [2011a],
Dai and Tedrake [2013], Park et al. [2012, 2013]. The
role of compliance in locomotion on uneven terrain has
been emphasized in Hodgins and Raibert [1991], Saranli
et al. [2001], Daley et al. [2006], Daley and Biewener
[2006], Hashimoto et al. [2006], Ogino et al. [2007].

Maneuvering: Relatively few papers have addressed
the issue of maneuvering for bipedal robots, and even
fewer have attempted to provide stability guarantees.
Heuristic methods have included turning motions based
on the duty ratios of the two legs; allowing the feet to slip
when rotating with respect to the ground; other trial-
and-error methods Shih [1999], Sakagami et al. [2002],
Miura et al. [2008], Yagi and Lumelsky [2000]. The ref-
erences Gregg and Spong [2008, 2009] have developed
an elegant and rigorous setting for stable walking and
steering of fully actuated 3D robots using a variant of
functional Routhian reduction (the basic ideas behind
this form of geometric reduction were discussed in Sect.
7). Steering is achieved by adjusting the yaw set point of
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the within-stride passivity-based controller. How to turn
without violating unilateral ground contact constraints
is not explained in this work. In Powell et al. [2013], Dan-
tam et al. [2013], a method for speed regulation in 3D
walking robots is presented through the notion of mo-
tion primitives and transitions based upon hybrid zero
dynamics surfaces. This gives formal guarantees of cor-
rect behavior when walking at different speeds and tran-
sitioning between them, along with methods for auto-
matically synthesizing code that experimentally realizes
the formal results.

Impact Models: Work in Miossec and Aoustin [2002]
indicates that the approach currently used to represent
an inelastic impact of the swing leg with the ground
essentially rules out a nontrivial double support phase.
In humanwalking, the double support phase accounts for
approximately 20% of the gait. A commonly held opinion
in the locomotion field is that compliance is essential
for achieving such gaits. It would be very useful to find
impact models, even very approximate ones, that will
allow such gaits in robots with “stiff” feet and limbs.
A step in this direction has been taken by Mu and Wu
[2006].

Standing and Push Recovery with Passive Feet:
Standing is challenging for robots with passive ankles.
Regaining a quiescent standing position after being
pushed is even harder. The existing literature is rich
for robots with actuated ankles; see Pratt et al. [2012],
Koolen et al. [2012] and references therein.

Computation of Periodic Solutions: The approach
in Sect. 5 combines the determination of virtual con-
straints and open-loop, periodic solutions to the hybrid
model of a bipedal gait. Our experience is that finding
periodic solutions in this manner is difficult due to nu-
merous local minima. The problem is even more diffi-
cult when seeking solutions that are energy efficient, in
addition to being periodic. Other approaches to finding
periodic orbits, such as those in Srinivasan and Ruina
[2006] and Posa et al. [2014], need to be considered when
designing feedback laws through virtual constraints.

Computing the Domain of Attraction: Computing
the domain of attraction of a stable equilibrium point
has been well-studied in the area of dynamical systems.
What remains an almost completely unexplored area
is computing the domain of attraction for periodic so-
lutions, even for dynamical systems. Important initial
work in hybrid systems is available in Tedrake et al.
[2010], Manchester et al. [2011b]. Characterizing the do-
main of attraction of a periodic walking gait for a bipedal
robot model is an important consideration with respect
to the eventual implementation of the corresponding
feedback controller on the actual biped. There will nat-
urally be errors in the model of the biped, and account-
ing for these while estimating the domain of attraction

would be very useful when passing from simulation to
experimentation.

Determining the “Correct” Hybrid Model of a
Human-Like Biped: This paper considered two dis-
tinct hybrid models. In the literature on bipedal robots,
hybrid models have been considered with everywhere
from one discrete domain or phase (which is the case for
most models considered), to five. This raises the natu-
ral question: given an anthropomorphic bipedal robot,
what is the hybrid model that best captures the behavior
of this system? In particular, what is the model so that
when stable walking gaits are found, these gaits are as
human-like as possible? Answering this question would
be important because, if a single “most human-like” hy-
brid model could be found, this could be used as the
canonical model for studying controller development for
obtaining anthropomorphic walking for bipedal robots.
Yet, in order to answer this question in a formal manner,
it seems necessary to develop a metric that can measure
the human-like nature of bipedal walking.

Metrics for Human-Like Walking: There are a
wide variety of controllers that can yield walking in a
wide array of bipedal robot models; for example, two
types of controllers were considered in this paper that
yielded walking for two different bipeds. A question
is: which controller for which hybrid model yields the
most human-like walking Miura et al. [2011]? In or-
der to answer this question, a metric on the distance
between walking gaits is needed, i.e., a metric for com-
paring the distance between solutions of hybrid systems
even in the case when the hybrid models are differ-
ent. This could then be used to both compare different
controllers—through a comparison of the resulting pe-
riodic solutions—and to compare robotic walking with
human walking—by computing the distance between
periodic solutions for bipedal robots and periodic so-
lutions corresponding to real human walking data (ob-
tained through motion capture, the use of sensors, or a
combination of both).

Develop New Cost-Functions: Once a viable met-
ric for comparing walking gaits has been found, it can
be used to develop new cost-functions. Cost functions
play a fundamental role in developing controllers for
bipedal robots since parameters for the controllers are
typically found by minimizing a specific cost function,
e.g., in the case of hybrid zero dynamics, the parameters
in the virtual constraints that are not fixed by the con-
ditions that enforce hybrid invariance are determined
by minimizing a cost function. Yet, currently, there are
only two cost functions that are typically considered:
the integral-squared torque per step length (as was con-
sidered in this paper, see (70)) and the specific cost of
transport. There is, of course, no guarantee that mini-
mizing these cost functions yields human-like walking.
Therefore, through notion of the distance of a specific
gait from being human-like, it may be possible to de-
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velop better cost functions, i.e., cost functions such that,
when minimized, yield periodic solutions that are very
“close” to human-like walking gaits. This is potentially
a very important problem because it might allow for the
development of controllers for bipedal robots that yield
more human-like walking gaits and are thus naturally
transferable to controllers for prosthetic devices.

Foot Shape and Prosthetics: Passive robots as stud-
ied in Collins et al. [2001], which can stably walk down
small slopes under the power of gravity, are inspiring
the design of semi-passive robots, which can walk on flat
ground with very low energy consumption; see Collins
et al. [2005]. Spherically shaped feet have proven espe-
cially useful in the design of such robots. With spherical
feet, the model of the contact between the ground and
the foot is different from the cases studied in this paper,
though it involves underactuation similar to the point-
foot contact model. In the case of 2D walking, the con-
trol law proposed in Sect. 5 has been extended to spher-
ical feet in Kinugasa et al. [2009]. The 3D case is open
and interesting. Indeed, in human locomotion, as noted
in Hansen et al. [2004] and Adamczyk et al. [2006], the
stance ankle and foot together approximate the rolling
motion of a wheel, imparting energy efficiency to the hu-
man gait. This is one of the reasons that foot prosthetics
have a spherical shape. In a related line of investigation,
Srinivasan et al. [2008] and Srinivasan et al. [2009] have
tied locomotion models based on virtual constraints to
human walking data, for both normal gaits and gaits of
transtibial prosthesis users. It is argued that the models
can be a useful analytical tool for making more informed
design and selection of prosthetic components for arriv-
ing at more energy efficiency gaits in prosthesis users. It
would be interesting to extend this work to address gait
stability in the presence of passive or active prostheses.
The application to lower-limb prostheses of control laws
conceived for bipeds is presented in Gregg and Sensinger
[2013].

Other: Many other interesting questions arise, rang-
ing from reflex actions to enhance stability under large
perturbations, to bipedal robo;t safety when operating
around humans, manipulation of objects, navigation,
etc.
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