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Biichi Automata Recognizing Sets of Reals
Definable in First-Order Logic
with Addition and Order

Arthur Milchior!

LACL, Université Paris-Est Créteil arthur.milchior@lacl.fr

Abstract. This work considers encodings of non-negative reals in a fixed
base, and their encoding by weak deterministic Biichi automata. A Real
Number Automaton is an automaton which recognizes all encodings of
elements of a set of reals. We explain in this paper how to decide in linear
time whether a set of reals recognized by a given minimal weak determin-
istic RNA is FO[IR; +, <, 1]-definable. Furthermore, it is explained how
to compute in quasi-quadratic (respectively, quasi-linear) time an exis-
tential (respectively, existential-universal) FO[IR; 4, <, 1]-formula which
defines the set of reals recognized by the automaton.

As an additional contribution, the techniques used for obtaining our
main result lead to a characterization of minimal deterministic Biichi
automata accepting FO[IR; +, <, 1]-definable set.

Introduction

This paper deals with logically defined sets of numbers encoded by weak de-
terministic Biichi automata. The sets of tuples of integers whose encodings in
base b are recognized by a finite automaton are called the b-recognizable sets.
By [?], the b-recognizable sets of vectors of integers are exactly the sets which
are FO [IN; +, <, V;]-definable, where Vj(n) is the greatest power of b dividing n.
It was proven in [?,?] that the FO [IN; +, <]-definable sets are exactly the sets
which are b- and b’-recognizable for every b > 2.

Those results naturally led to the following problem: deciding whether a finite
automaton recognizes a FO [IN; +, <]-definable set of d-tuples of integers for some
dimension d € IN”?. In the case of dimension d = 1, decidability was proven in
[?]. For d > 1, decidability was proven in [?]. Another algorithm was given in
[?], which solves this problem in polynomial time. For d = 1, a quasi linear time
algorithm was given in [?].

The above-mentioned results about sets of tuples of natural numbers and finite
automata have then been extended to sets of tuples of reals recognized by a
Biichi automaton. The notion of Biichi automata is a formalism which describes
languages of infinite words, also called w-words. The Biichi automata are similar
to the finite automata. The main difference is that finite automata accept finite
words which admit runs ending on accepting state, while Biichi automata accept
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infinite words which admit runs in which an accepting state appears infinitely
often.

One of the main differences between finite automata and Biichi automata is
that finite automata can be determinized while deterministic Biichi automata
are less expressive than Biichi automata. For example, the language Lﬁn(a) of
words containing a finite number of times the letter a is recognized by a Biichi
automaton, but is not recognized by any deterministic Biichi automaton. This
statement implies, for example, that no deterministic Biichi automaton recog-
nizes the set of reals of the form nb? with n € IN and p € ZZ, that is, the set of
reals whose encoding ends with 0 or (b — 1) repeated infinitely many times.

A main difference between the two classes of deterministic automata is that
the class of languages recognized by deterministic finite automata is closed under
complement while the class of languages recognized by deterministic Biichi au-
tomata is not. For example, Lﬁn(a) is not recognized by any deterministic Biichi
automaton while its complements Lil’lf(a) is recognized by a deterministic Biichi
automaton.

However, the set of weak deterministic Biichi automata is closed under com-
plement. A weak deterministic Biichi automaton is a deterministic Biichi au-
tomaton whose set of accepting states is a union of strongly connected compo-
nents. Handling weak Biichi automata is similar to manipulating finite automata.
A set is said to be weakly b-recognizable if it is recognized by a weak automaton
in base b. The class of weak deterministic Biichi automata is less expressive than
the class of deterministic Biichi automata. For example, as mentionned above,
the language Linf(a) is recognized by a deterministic Biichi automaton, but this
language is not recognized by any weak deterministic Biichi automaton. This
implies that, for example, no weak deterministic Biichi automaton recognizes
the set of reals which are not of the form nb? with n € IN and p € Z7, since
those reals are the ones whose encoding in base b contains an infinite number
of non-0 digits. Furthermore, by [?], weak deterministic Biichi automata can be
efficiently minimized.

A Real Vector Automaton (RVA, See e.g. [?]) of dimension d is a Biichi
automaton 4 over alphabet {0,...,b— 1}d U {x}, which recognizes the set of
encodings in base b of the elements of a set of vectors of reals. Equivalently, for
w an infinite word encoding a vector of dimension d of real (rq,...,r4—1), if w
is accepted by A, then all encodings w’ of (rg,...,rq_1) are accepted by A. In
the case where the dimension d is 1, those automata are called Real Number
Automata (RNA, See e.g. [?]).

The sets of tuples of reals whose encoding in base b is recognized by a RVA are
called the b-recognizable sets. By [?], they are exactly the FO [R,IN; +, <, X, 1]-
definable sets. The logic FO [IR,IN; +, <, X3, 1] is the first-order logic over reals
with a unary predicate which holds over integers, addition, order, the constant
one, and the function Xp(x,u, k). The function Xp(z,wu, k) holds if and only if
u is equal to some 0" with n € ZZ and there exists an encoding in base b of x
whose digit in position n is k. That is, v and = are of one of the two following
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forms:

u=0...0x0...010... ©u=0...010...0x0...
or
rT= ... * ... k ... r= ... k ... %

By [?], a set is FO [IR, IN; +, <]-definable if and only if its set of encodings is
weakly b-recognizable for all b > 2.

By [?], the logic FO[IR; 4+, <, 1] admits quantifier elimination. By [?, Sect. 6],
the set of reals which are FO [IR; 4, <, 1]-definable are finite unions of intervals
with rational bounds. Those sets are called the simple sets.

Standard definitions are recalled in Sect. ?7. Sets of states of automata reading
reals are studied in Sect. ?7?7. Furthermore, a method to efficiently solve au-
tomaton problem is introduced. In Sect. 7?7, given a simple set, an automaton
accepting it is constructed. A characterization of minimal deterministic Biichi
automata accepting a FO [IR; +, <, 1]-definable set is given in Sect. ??. This char-
acterization is similar to the insight given in [?]| and leads to a linear time al-
gorithm deciding whether a minimal RNA recognizes a FO [IR; +, <, 1]-definable
set. This algorithm does not return any false positive on weak deterministic
Biichi automata which are not RNA. A false negative is exhibited at the end
of Sect. ??7. Given a minimal weak RNA automaton accepting a simple set,
it is shown in Sect. ?? that an existential (respectively, existential-universal)
FO [IR; +, <, 1]-formula which defines R is computable in quasi-quadratic (re-
spectively quasi-linear) time.

1 Definitions

The definitions used in this paper are given in this section. Some basic lemmas
are also given. Most definitions are standard.

Let IN, ZZ, Q and IR denote the set of non-negative integers, integers, ra-
tionals and reals, respectively. For R C R, let RZ° and R>° denote the set of
non-negative and of positive elements of R, respectively. For n € IN, let [n] rep-
resent {0,...,n}. For a,b € R with a < b, let [a,b] denote the closed interval
{reR |a<r<b}, and let (a,b) denote the open interval {r € R | a < r < b}.
Similarly, let (a,b] (respectively, [a,b)) be the half-open interval equals to the
union of (a,b) and of {b} (respectively, {a}). For r € IR let |r| be the greatest
integer less than or equal to r.

1.1 Finite and Infinite Words

An alphabet is a finite set, its elements are called letters. A finite (respectively
w-) word over alphabet A is a finite (respectively infinite) sequence of letters of
A. That is, a function from [n] to A for some n € IN (respectively from IN to
A). A set of finite (respectively w-) words over alphabet A is called a language
(respectively, an w-language) over alphabet A. The empty word is denoted e.
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Let w be a word, its length is denoted |w], it is either a non-negative integer
or the cardinality of IN. For n < |w|, let w[n] denote the n-th letter of w. For v a
finite word, let u = vw be the concatenation of v and of w, that is, the word of
length |v| + |w]| such that u[i] = v[é] for i < |v| and w[fv| + 9] = wli] for i < |w].
Let w [< n] denote the prefix of w of length n, that is, the word u of length n
such that w[i] = u[i] for all ¢ € [n — 1]. Similarly, let w [> n] denote the suffix of
w without its n-th first letters, that is, the word u of length |w| — n such that
uli] = wli + n] for all ¢ € [|w| — n]. Note that w = w [< i]w[> ] for all i < |w|.

Let L be a language of finite words and let L’ be either a w-language or
a language of finite words. Let LL’ be the set of concatenations of the words
of L and of L. For i € IN, let L’ be the concatenations of i words of L. Let
L* = Ujen L' and LT = {J;cs0 LY. If L is a language which does not contain
the empty word, let L be the set of infinite sequences of elements of L.

Encoding of Real Numbers. Let us now consider the encoding of numbers
in an integer base b > 2. Let X} be equal to [b — 1]; it is the set of digits. The
base b is fixed for the rest of this paper.

The function sending words to the number they encode are now introduced.
Let w be an w-word with exactly one . It is of the form w = w; x wp, with
wr € X} and wp € XY, The word wr is called the natural part of w and the
w-word wp is called its fractional part. Let [wl]é = Z‘iil(fl blwl=1=ty [4], let
[wF]ZI: = > en 0" twpli] and finally, let [wI*wF]g = [wI]l{ + [wp]f. Some
properties of concatenation and of encoding of reals are now stated.

Lemma 1. Letv € X7, v' € X}, we ¢ and a € . Then:

wly = 0«uly,  lawly = (a+ [lf) /o,

[va]é =b [U]i +a and [v‘“]? = [v]i/ (b‘”' —-1).

Some basic facts about rationals are recalled (see e.g. [?]). The rationals are
exactly the numbers which admit encodings in base b of the form u x vw* with
u,v € XY and w € E;r. Rationals of the form nb?, with n € IN and p € Z,
admit exactly two encodings in base b without leading 0 in the natural part. If
p < 0, the two encodings are of the form uxwva(b—1)¥ and uxv(a+ 1)0¥, with
u,v € X} and a € [b—2]. Otherwise, if p > 0, the two encodings are of the form
ua(b—1)? % (b—1)¥ and u(a + 1)0? x 0¥ with u € X}, a € [b—2] and ¢ € IN.
The rationals which are not of the form nb? admit exactly one encoding in base
b without leading 0 in the natural part.

Encoding of Sets of Reals. Relations between languages and sets of reals are
now recalled. Given a language L which is a subset of X} x X}, let [L]? be the
set of reals admitting an encoding in base b in L. The language L is said to be an
encoding in base b of the set of reals [L]l'j. Reciprocally, given a set R C IRZ? of
reals, Ly(R) is the set of all encodings in base b of elements of R. For L a subset
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of X, [L]llj is the set of d-tuples of reals, belonging to [0,1]¢, which admits an
encoding in base b in L.

Following [?], a language L is said to be saturated if for any number r which
admits an encoding in base b in L, all encodings in base b of r belong to L. The
saturated languages are of the form L,(R) for R C IR=". Note that [Lb(R)}S =R

for all sets R C IR=". Note also that I C Lb([L]E), and the subset relation is an
equality if and only if L is saturated.

All non-empty sets of reals have infinitely many encodings in base b. For
example, for I C IN an arbitrary set, 0* % {0,1}* \ {0°1“ | i € I'} is an encoding
in base 2 of the simple set [0, 1]. This language is saturated if and only if I = (.

1.2 Deterministic Biichi Automata

This paper deals with deterministic Biichi automata. This notion is now defined.

A Deterministic Biichi automaton A is a 5-tuple (Q, A, 0, qo, F'), where Q is
a finite set of states, A is an alphabet, § : Q X A — @Q is the transition function,
qo € Q is the initial states and F' C @Q is the set of accepting states. A state
belonging to @ \ F' is said to be a rejecting state.

From now on in this paper, all automata are assumed to be deterministic.
The function ¢ is implicitly extended on @ x A* by d(gq,€) = ¢ and (g, wa) =
0(d(q,w),a) for a € A and w € A*.

Let A be an automaton and w be an infinite word. A run 7 of A on w is
a mapping 7 : IN — @ such that 7(0) = ¢o and §(7 (i), w[i]) = 7(i + 1) for all
i < |w|. The run is accepting if there exists a state ¢ € F such that there is an
infinite number of ¢ € IN such that 7 (i) = ¢. Let A be a finite automaton. Let
L,, (A) be the set of infinite words w such that a run of A on w is accepting.

Accessibility and Recurrent States. Some definitions related to the under-
lying labelled graph of Biichi automata are introduced in this section. A state ¢
is said to be accessible from a state ¢’ if there exists a finite non-empty word w
such that d(¢’, w) = q. Following [?], a state ¢ is said to be recurrent if it is ac-
cessible from itself and transient otherwise. Transient states are called trivial in
[?]. The strongly connected component of a recurrent state ¢ is the set of states ¢/
such that ¢’ is accessible from g and ¢ is accessible from ¢’. A strongly connected
component C' is said to be a leaf if for all a € A, for all ¢ € C, §(q,a) € C. Let
C be a strongly connected component. It is said to be a cycle if for each ¢ € C,
there exists a unique s, € A such that (g, sq) € C.

The transient states of the automaton pictured in Figure ?? are ¢1, ¢10, q11,
q10« and qi14. All other states are recurrent. The cycles are {qo}, {qox, Gox0}
{q10%0}, {q1041; q10410}s {@1140} and {q1141, q11410}- The strongly connected com-
ponents which are not cycles are {q@’A}, {¢oo,4} and {Q[0,1],A}~

For ¢ € Q, let A, be (Qq, A, 6,q,F,), where Q, is the set of states of @
accessible from ¢, and F;, = F'N Q,. Note that, if there is no finite word w such

that d(qo, w) = qo, then Q, C Q for all ¢ # qo.
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Quotients, Morphisms and Weak Biichi Automata The Biichi automaton
A= (Q,A,0d,qo, F) is said to be minimal if, for each distinct states ¢ and ¢’ of
A, L, (Ay) # L, (Ay). Let A = (Q,A,9,q,F) be a Biichi automaton and
A = (Q,A,0,q),F') be a minimal Biichi automaton. A surjective function
L Q — Q' is a morphism of Biichi automata if and only if u(go) = ¢ and, for

all g € Q, L (Ay) = Lu (4, ).

The Biichi automaton A is said to be weak if for each recurrent accepting
state g of A, all states of the strongly connected components of ¢ are accepting.
An w-language is said to be (weakly) recognizable if it is a set of word accepted by
a (weak) Biichi automaton. An example of weak deterministic Biichi automaton
is now given. This example is used through this paper to illustrate properties of
Biichi automaton reading set of real numbers.

Ezample 1. Let R = (%, 2] U (%, 3] U (1—31, oo]. The set of encodings in base 2 of

reals of R is (weakly) recognized by the automaton pictured in Fig. ??. The run

() )
58 &b |
::o :co%

Fig. 1. Automaton Ag of Ex. 7?7

of A on the w-word 011 % (10)* is (qo, 90, 1,93, 1%, ¢11%1, ¢11%10; - - - ), With the
two last states repeated infinitely often. The Biichi automaton A does not accept
011 (10)“ since this run does not contain any accepting state. The run of A on
w-word *1% is (qo, Q0% 90,1],A> - - ) with the last state repeated infinitely often.
The Biichi automaton A accepts x1* since the accepting state qp,1], 4 appears
infinitely often in the run.

The main theorem concerning quotient of weak Biichi automata is now recalled.

Theorem 1 ([?]). Let A= (Q, 4,6, qo, F) be a weak Biichi automaton with n
states such that all states of A are accessible from its initial state. Let ¢ be the
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cardinality of A. There exists a minimal weak Biichi automaton A’ such that
there exists a morphism of automaton p from A to A'. The automaton A’ and
the morphism p are computable in time O (nlog(n)c) and space O (nc).

The Biichi automaton Ag pictured in Figure 7?7 is weak and is not minimal.
Its minimal quotient is pictured in Figure ??. The following lemma states that

Fig. 2. Minimal quotient of automaton Ag of Figure 77

each strongly connected component of a quotient by a morphism p from an
automaton A is the image of a strongly connected component of A. It allows to
prove that some properties, such as being a cycle, is closed under taking quotient.

Lemma 2. Let A = (Q,A,6,q0, F) and A = (Q', X%, 8, ¢}, F’) be two Biichi
automata. Let p be a morphism from A to A'. Let C' be a strongly connected

component of A'. There exists a strongly connected component C C @ such that
w(C) = C" and such that, for all g € Q\ C accessible from C, u(q) ¢ C'.

Real Number Automata. For A a Biichi automaton over alphabet X, U {x},
let [A]? denote [L,, (A)],F:. It is said that A recognizes [.A]l'j. Following [?], a Biichi
automaton over alphabet X, U{x} is said to be a Real Number Automaton (RNA)
if it recognizes a subset of X} » X't and if the language L, (A) is saturated. The
Biichi automata pictured in ?? and ?7 are RNA. Clearly, the RNAs are the
Biichi automata which recognize saturated languages.

1.3 Logic

The logic FO [IR;+, <, 1] used in this paper is introduced in this section. FO
stands for first-order. The first parameter IR means that the (free or quantified)
variables are interpreted by non-negative real numbers. The + and < symbols
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mean that the addition function and the binary order relation over reals can
be used in formulas. Finally, the last term, 1, means that the only constant
is 1. The logic FO[IR; +, <, 1] is denoted by £ in [?], where it is proven that
this logic admits quantifier elimination. In this paper, all results deal with the
quantifier-free, the existential fragment and the existential-universal fragment
of FO[IR; +, <, 1] denoted by Xy [R;+, <,1], X1 [R;+, <,1] and X3 [R; +, <, 1]
respectively.

In the rest of the paper, rationals are also used in the formulas. Admit-
ting rationals does not change the expressivity since all rational constants are
Yo [IR; +, 1]-definable. The length of a formula ¢ is denoted by |¢|. It is such
that each symbol takes one bit of space, apart from integers n and rationals
n/m which take log(1 + |n|) and log(1 + |n| + |m|) bits of space respectively.

First-Order Definable Sets of Reals. In this section, notations are intro-
duced for the kind of sets studied in this paper: the FO [IR; +, <, 1]-definable sets.
Following [?, Sect. 6], the FO [IR; 4+, <, 1]-definable sets are called the simple sets.
By [?, Sect. 6], those sets are the finite unions of intervals with rational bounds.
It implies that there exists an integer tr such that for all x,y > tg, = belongs to
R if and only if y belongs to R. The least such integer ¢y is called the threshold
of R.

Note that every closed and half-closed intervals is the union of an open inter-
val and of singletons, hence it can be assumed that any simple set R is of the form
R = Ui (pie, pit) WU {pie}, with pic,pie € Q and pim € QU {oo}.
The p; ¢’s are the left bounds, the p; 2’s are the right bounds and the p; g’s are
the singletons.

For example, let R = (%,2] U (%,3] U (13—1,00] as in Ex. ??7. Then tp is 4,
I=3,J=2pic=13% pam =2 p2e =3 pam =3, psec =11/3, p3;m = o0,
pr,e =2 and py s = 3.

2 Some Sets of states of Automata Reading Reals

We now introduce five sets of states used in the algorithms of this paper.

Definition 1 (Qg 4, Q[o,1],45 Q0,45 Q1,4 and Qp 4). Let A = (Q, A, 0,qo, F).

— Let Qg 4 be the set of states q such that Ay recognizes the empty language.
— Let Qo,11,4 be the set of states q such that A, recognizes 3.

— Let Qoo 4 be the set of states q such that A recognizes the language X+ X .
— Let Q1.4 be the set of states q such that A, recognizes a subset of Xy « Xy
— Let QF 4 be the set of states g such that Ay recognizes a subset of 2.

In [?], the strongly connected components included in Qp 4 are called empty and
the ones included in Qo1],4 are called universal.

Intuitively the states belonging to Q1 4 and to QQr 4 are the states which can
be visited while the automaton read the natural and the fractional part of the
number respectively.
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Let A be the automaton pictured in Figure ??. Let gy 4 be the state d(qio40, 1),
which is not pictured in Figure ??. Then Qp,1},4 = {q[071],R}, Qoo A = {Goo.r}
and Qp 4 = {q@,A}. Furthermore, the states of Q7 4 are pictured in the top row
of Figure 77, they are qo, g1, q10, goo,r and gy r. Finally, the states of Qp 4 are
pictured in the second row of Figure ??, they are qiox, 1040, qox; ox0; Q[o,1],r
and qp g.

In a minimal weak Biichi automaton A, let gy 4, qjo,1,4 and geo .4 denote
the only state ¢ such that A, recognizes the languages (), Xy’ and X} « Xy
respectively. The following lemma states that the five sets introduced in Def. 77
are linear time computable.

Lemma 3. Let A be a weak Biichi automaton with n states. Then the sets Qg 4,
Q[0,1],45 Goo, A, Qr.a and Q.4 are computable in time O (nb).

It is explained how to compute )y 4. The other sets are computed similarly.

Proof. Tarjan’s algorithm [?] can be used to compute the set of strongly con-
nected component in time O (nb), and therefore the set of recurrent states. By
definition, ¢ € Qg 4 if and only if A, accept no w-word. It is equivalent to the
fact that no recurrent state accessible from ¢ are accepting. Equivalently, Qy 4
is the greatest set of states ¢ such that, ¢ is not a recurrent accepting state, and
furthermore, for all a € X3 U {x}, 6(¢,a) € Qp, 4. This naturally leads to the
following greatest fixed-point algorithm.

Two sets PotentiallyEmpty and ToProcess are used by the algorithm.
The algorithm initializes the set PotentiallyEmpty to () and initializes the
set ToProcess to the empty set. The algorithm runs on each recurrent state q.
For each state ¢, if ¢ is accepting, then ¢ is removed from PotentiallyEmpty and
added to ToProcess. The algorithm then runs on each element ¢ of ToProcess.
For each state g, the algorithms removes ¢ from ToProcess and runs on each
predecessors ¢’ of q. For each ¢/, if ¢ is in PotentiallyEmpty, then ¢’ is removed
from PotentiallyEmpty and added to ToProcess. Finally, when ToProcess is
empty, the algorithm halts and )y 4 is the value of PotentiallyEmpty.

3 From simple sets to automata

Let us fix a simple non-empty set R C RZ. In this section a weak RNA Apr
which recognize L, (R) is constructed. Since R is a simple set, there exists an
integer tg € N20 such that [tg,o0) is either a subset of R or is disjoint from
R. Without loss of generality, it is assumed that tg > b. As seen in Section 77,
R can be expressed as Uf;[)l(pi7g,pi7m) u UiJ:_O1 {pi,e} with p; ; € QNI0,tg].
Without loss of generality, it can be assumed that all integers n belonging to
[0,tg] are of the form p; ; for some 4, j. It suffices either to assume that there is
some i € IN such that n is of the form p; ¢ if n € R and of the form p; ¢ and
pi,m otherwise.

Since the p; ; are rationals, their encodings in base b are of the form u; ; v

w

0,3,k
with w; j, € X7 x X7 such that u; j,[0] # 0 and v; j, € X} . Since there are
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at most two encodings, a third index, k, is also required. Up to replacing the
words u; j i by u; j kv .k it can be assumed without loss of generality that, for all
i,J,k, 1, j', k', the word w; j 1, is not a strict prefix of uys j p and if u; j p = wpr jr 1

then v; j x = vir j» 7. The formal definition of Ag is now given.

Definition 2 (Ag). Let R C [0,00) be a simple non-empty set. Note that
tr > 0. Let Ag be the automaton (Q, X U {*},0,qo, F) where:

— Q contains the states qp 4, qj0,1], 45 doo,4, and a state q,, for each strict prefiz
w of a word w; j 1Vi j k-
— F contains qpo,1),4, and the q,’s, for w € X7 x X}’ some non-empty prefix of
some U;,s,kVi & k-
— and the transition function is such that, for each word w and for each letter
a:
® 0(qe,0) = ¢e.
o Forwa a strict prefic of some w; j kVi jk, 6(qw, @) = Guwa-
o For wa of the form u; j 1v; jk, 0(qw,a) = Qu; -
1t is now assumed that wa is not a prefix of or equal to any w; ; kVi k-
o Ifwa € X}, then 6(qu,a) 1S oo, 4 if [tr,00) € R and qp 4 otherwise.
o Forwa € X} * X}, 6(qu,a) is qp.r if [waO“’]? ¢ R and qo,1),4 otherwise.
e For g being qpo,1),r; doo,r O 49.r, 6(¢; @) = q.
® 3(goo,R,*) = q[01],R-
e For q being qo,1),4 0T qp,4 OT Gu for w € X7 x X7, (g, %) = qp.a-

It can be shown that Ag recognizes R. Let R = (%,2] U (%,3] U (1,—31,00] as
in Example ?7?. The automaton Ag is pictured in Figure ??, without the non
accepting state gp 4. Its minimal quotient is pictured in Figure ?7.

A second example is now given, which shows that the minimal number of
intervals of a simple set may be exponential in the number of state of the minimal
Biichi automaton accepting this set. For every non-negative integer n, let R,, be
{m2=("=Y | m e [2n~1]}. It is the set of reals which admit an encoding w in
base 2 whose suffixes w [> n] are either equal to 0¥ or to 1“. This set can not be
described with less than 2”2 intervals and is recognized by the automaton A,,:

An=({ai i€ n}U{gn+1,0,@n+1.1,90,4} > Zb, 6,405 {qnt1,0, Gnt1,1}) 5

where the transition function is such that, for a € X5, and i € [n — 1]\ {0},

6(go,*) = q1, 6(¢i,a) = Gi+1, 6(qn, @) = dnt1,a5 6(qnt1,a:@) = Gn1,q- For each
state ¢ and letter a such that 0(¢, a) is not defined above, §(q,a) = gy .

4 Deciding Whether an Automaton Recognizes a Simple
Set

It is explained in this section how to decide whether a minimal weak RNA accepts
a simple set. The first main theorem of this paper is now given.

Theorem 2. It is decidable in time O (nb) and space O (n) whether a minimal
weak Biichi RNA with n states recognizes a simple set.
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In order to prove this theorem, a proposition is is now given. This property is a
general method used to efficiently decide properties of automata. This method
is similar to the method used in [?] and in [?].

Proposition 1. Let A’ be a class of weak Biichi automata and let I be the class
of languages {L,, (A) | A€ A'}. Let L be a class of languages over an alphabet
such that there exists a class A of weak Biichi automata such that:

1. there exists an algorithm « which decides in time t(n,b) and space s(n,b)
whether a Biichi automaton belongs to A, for n the number of states and b
the number of letters,

2. for each L € LN/, there exists an automaton A € A which recognizes L,

3. the minimal quotient of any automaton of A belongs to A and

4. every language recognized by an automaton belonging to A belongs to L.

The algorithm « decides in time t(n,b) and space s(n,b) whether a minimal
automaton of A’ recognizes a language of L. Furthermore, the algorithm o applied
to an automaton belonging to A’ \ A may not return a false positive.

Proof. Let A be an automaton which recognizes a language L. Let us assume
that « accepts A, by Prop. (??), A € A, hence by Prop. (??), L € L.

Let us now assume that A € A’ and that L € L. By definition of L/, L € I,
hence L € LN/, thus by Prop 7?7, there exists A’ € A which recognizes L. Since
A" and A recognize the same language, they have the same minimal quotient,
which is A. By Prop. 7?7, A € A. Thus, by Prop. (??), a accepts A.

In this paper, A’ is the set of RN As, hence £’ is the class of saturated recognizable
languages. The class of languages L is the class of base b encoding of non-empty
sets R C RZ0. The cases of R = RZ% and of R = () being special cases. The class
A of automata is now introduced.

Definition 3 (A). Let A be the set of weak Biichi automata A, of the form
(Q, Xy U{x},9,q0, F), such that, for each strongly connected component C C

Qr.A\(Q0,1,4UQ0,), there exists B .c and B> ¢, two states of Qo 1],4UQp, A,
such that, for all q € C':

1. Cis a cycle. Recall that s, is the only letter such that 6(q,s,) € C.

2. For all a > sq, 0(q,a) is B> c.

3. For all a < sq4, 0(q,a) is < c.

4. There exists an accepting and a rejecting strongly connected component, ac-
cessible from the initial state, belonging to Qp, 4.

The set Qg 4 contains exactly one recurrent state, denoted qp 4.

The set Q0,4 contains at most one recurrent state, denoted goo, A-
(90, 0) = qo.

0(qo,a) # qo for all 0 < a < b.

If oo, exists, then 6(q,a) # qp.a for all g € Qr.a\ {qp,.a} and a € .
The recurrent states of Qr 4 are gy _a, qo and potentially goo 4.

S NSO

1

The automata of A admits the following property.
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Lemma 4. Let A € A be an automaton with n states recognizing a set R. If
A contains a state oo a, as in Definition 77, then (b"~ ', 00) C R, otherwise

("1 oo)NR=10.

Proof (Sketch of proof of Theo. ?7?). Using Lem. 7?7, the algorithms checks
whether A accepts a subset L of X} « X}, if it is not the case, the algorithm
rejects. The algorithms also checks whether L is () or X « X}, If it is the case,
the algorithm accepts. It is now assumed that A accepts a non-empty language
L C X}« XY, Let L/ be the set of saturated languages and A’ be the set of
RNAs. Let L be the set of encoding of simple non-empty sets R C IR=°. In order
to prove this theorem, it suffices to show that A admits the four properties of
Proposition 77.

Each property of Def. 77 is testable in time O (nb) and space O (n). Therefore,
it is decidable in time O (nb) and space O (n) whether a weak Biichi automaton
A with n states belongs to A. Hence Property (??) of Prop. 7?7 holds.

For R C RZ% a non-empty simple set, the automaton Ag of Def. 7?7 belongs
to A. Therefore Property (?7) of Prop. 7?7 holds.

Let A € A be a RNA. Let A’ be its minimal quotient. It can be proven that
A’ satisfies the properties of Def. 77, hence A’ € A. Therefore Property (??) of
Prop. 77 holds.

Property (??) of Prop. ?? is now considered. Automata satisfying Properties
(?7), (?7) and (??) of Def. ?? are studied in [?]. It is shown that automata
satisfying those properties accepts a set R such that RN[i, i+ 1] is a finite union
of intervals with rationals boundaries for all ¢ € IN. Lemma 7?7 ensures that
furthermore, there is some ¢ € IN such that [t,00) is either a subset of R or is
disjoint from R. Thus, an automaton of A recognize a finite union of interval
with rational boundaries, i.e. a simple set. Therefore Property (??) of Prop. ??
holds. a

The algorithm of Theo. 7?7 takes as input a minimal weak RNA and runs
in time O (nb). It should be noted that it is not known whether it is decidable
in time O (nb) whether a minimal Biichi automaton is a RNA. However, if the
algorithm of Theo. 77 is applied to a weak Biichi automaton which is not a Real
Number Automaton, the algorithm returns no false positive. An example of false
negative is now given. The not-saturated language L = (00)" (01 + 2) X3 x X¥
encode the simple set of reals R>Y. However, the minimal automaton recognizing
L it is not accepted by the algorithm of Theo. 77.

5 From Automata to Simple Set

It is explained in this section how to compute a first-order formula which defines
the simple set accepted by a weak RNA. The exact theorem is now stated.

Theorem 3. Let A= (Q, XyU{x},0,q0, F) be a be a minimal weak RNA with n
states which recognizes a simple set. There exists a X1 [IR; +, <, 1]-formula com-
putable in time O (n?blog(nb)) which defines [A]?. There exists a X5 [IR; +, <, 1]-

formula computable in time O (nblog(nb)) which defines [A]g.



Biichi Automata and FO[IR; +, <]-Definable Sets of Reals 13

The proof of Theo. ?? consists mostly in encoding in a first-order formula ¢(x)
the run of A over an encoding w of x. The following lemma allows to consider
two distinct part of the run on the fractional part of w. The first part of the run
is of length at most n. The second part on the run begins on a state belonging
to a restricted set of states.

Lemma 5. Let A € A be minimal with n states and g € Qp 4. Let wy € X} and
wr € XY, Let @ C Qr,.a be a set containing exactly one state of each strongly
connected component. Then, there exists s € [n] such that §(q, wixwr [< s]) € Q.

The following lemma allows to reduce the size of a formula by adding quantifi-
cations.

Lemma 6. Let ¢(x,2') be a formula of length | and (x;)icm—1) be n vari-
ables. Then /\ie[n—Z] Y(xi, xig1) 1s equivalent to the following formula of length
O(n+1):

vy 8\ lw=ainy =xialp = v(y,y).
i€[n—2]

A sketch of the proof of Theo. 7?7 can now be given.

Proof (Proof of Theo. 77). Let R = [.A]:j. As shown in Sect. 7?7, it can be
assumed that A belongs to A. By Lem. 77, in order to construct a formula which
defines R it suffices to construct a formula ¢(z) which defines RN [0,6" ). The
formula ¢(z) is the conjunction of four subformulas of size O (n?blog(nb)). Let
x € [0,b"7!) and let w be an encoding of x without leading 0 in the natural
part.

The first formula, ¥ (z, 2, xF), states that © = x; + zF and that x; € IN.
Since z; < ™1, in order to state that x; € IN, it suffices to state that = is of
the form ZZZOQ a;b* for a; € [b— 1]. More precisely, it suffices to state that x;
is of the form (¢, + b(cp—1 +b(-- -+ b(cg) ...))) with the ¢; belonging to [b — 1].
This can be stated by existentially quantifying the 2n partial sums and products
and taking disjunctions over each ¢;. This can be done by a formula ¥(x;) of
size O (nblog(b)).

Let g be the state d(go,wr). The second formula, ¢;(xy,q), states that the
state 0(qo, wy*) is equal to g. This formula existentially quantifies 2n variables.
Those variables encode the n first steps of the runs and the values of wy [< 7] for
i < n. Each step of the computation can be encoded by a X [R; +, <, 1]-formula
of length O (nblog(b)), using the equalities of Lem. ??. Since z; < b" 71, |w;| < n,
the formula ¢;(zy, q) have to consider at most n steps of the computation. The
formula ¢;(xy,q) is a conjunction of n formulas of size O (nzblog(b)) and thus
the size of ¢7(x1,q) is O (n?blog(b)).

Let Q be a set of states as in Lem. 7?7 and let ¢’ be the first state of Q in
the run of A on w. The third formula, ¢r(q, zr,q’, %) states that there exists
i € [n] such that §(q, wr [< i]) = ¢/, that ¢’ € Q and that 2z = [wp [> z]]f By
Lem. 77, i is at most n. Hence, similarly to ¢;(zy,q), the size of the formula
or(q,zp, ¢, 2%) is O (nleog(b)).
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Finally, the fourth formula ¢/ (¢’, z’), states that A, accepts wp [> i]. Let
¢ be the number of strongly connected components in A. For C' a strongly con-
nected components, let nc be its number of state and go the only state of
C N Q. Let us assume that, for each strongly connected component C, there
exists a formula ¢, (¢, 2%) of length O (ncblog(ned)) which states that Ay
accepts wp [>4]. Then the formula ¢%=(¢’,z’%) is a disjunction of ¢ formulas
¢ =qc N op(d,2p) and its length is O (3 neblog(ned)) = O (nblog(nb)).

It is now explained how to construct ¢ (¢’,z). Since A € A, by Prop.
7?7 of Def. 77, strongly connected components of automata included in Qp 4
are either {gp 4}, {g0,1),4}, or a cycle. In the first two cases, ¢ (¢, 2) is the
formula False or True respectively. Let us consider the third cases. Let vy be the
word of size nc such that §(¢’,vy) = ¢'. Since C' is cycle, this word exists and
is a unique. Then let y = [v;’,]f = [vq/}{) / (b"¢ —1). Recall that the notations
f<,c and fBs ¢ are introduced in Def. ??. Then the formula ¢ (¢, z) states
that ¢ € C” and that either (2. < y and B< ¢ € Qo1),4), either (2% = y
and ¢’ € F), or (¢%z >y and B> ¢ € Qo),4)- It is indeed a formula of length
O (ncblog(ncb))

Finally, in order to reduce the size of the formula to O (nblog(nb)), it suffices
to replace the conjunctions of ¢;(xy,q) and of ¢r(q, xr, ¢ z') by a universal
quantifications, as explained in Lem. 77. O

6 Conclusion

In this paper, we proved that it is decidable in linear time whether a minimal
weak Biichi Real Number Automaton A reading a set of real number R recog-
nizes a finite union of intervals. It is proven that a quasi-linear sized existential-
universal formula defining R exists. And that a quasi-quadratic sized existential
formula defining R also exists.

The theorems of this paper lead us to consider two natural generalization. We
intend to adapt the algorithm of this paper to similar problems for automata
reading vectors of reals instead of automata reading reals. We also intend to
solve the similar problem of deciding whether an RNA accepts a FO [R, IN; +, <]-
definable set of reals. Solving this problem requires to solve the problem of de-
ciding whether an automaton reading natural number, beginning by the most-
significant digit, recognizes an ultimately-periodic set. Similar problems has al-
ready been studied, see e.g [?,?] and seems to be difficult. Finally, we also intend
to consider how to efficiently decide whether an automaton is a Real Number
Automaton or a Real Vector Automaton.

The author thanks Bernard Boigelot, for a discussion about the algorithm of
Theo. 7?7, which led to a decrease of the computation time. He also thanks the
anonymous referees of for their remarks and suggestion to improve the paper.



