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Abstract. Image-guided external beam radiotherapy (EBRT) allows radiation dose

deposition with a high degree of accuracy and precision. Guidance is usually achieved

by estimating the displacements, via image registration, between cone beam computed

tomography (CBCT) and computed tomography (CT) images acquired at different

stages of the therapy. The resulting displacements are then used to reposition the

patient such that the location of the tumor at the time of treatment matches its

position during planning. Moreover, ongoing research aims to use CBCT-CT image

registration for online plan adaptation.

However, CBCT images are usually acquired using a small number of X-Ray projections

and/or low beam intensities. This often leads to the images being subject to low

contrast, low signal-to-noise ratio and artifacts, which ends-up hampering the image

registration process. Previous studies addressed this by integrating additional image

processing steps into the registration procedure. However, these steps are usually

designed for particular image acquisition schemes, therefore limiting their use on a

case-by-case basis.

In the current study we address CT to CBCT and CBCT to CBCT registration

by the means of the recently proposed EVolution registration algorithm. Contrary

to previous approaches, EVolution does not require the integration of additional

image processing steps in the registration scheme. Moreover, the algorithm requires

a low number of input parameters, is easily parallelizable and provides an elastic

deformation on a point-by-point basis. Results have shown that for typical CBCT

images, the intrinsic image artifacts only have a sub-millimeter impact on the accuracy

and precision of the estimated deformation. In addition, the algorithm has low

computational requirements, which are compatible with online image-based guidance

of EBRT treatments.
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Submitted to: Phys. Med. Biol.



Non-rigid CT/CBCT to CBCT registration 2

1. Introduction

Image-guided external beam radiotherapy (EBRT) provides the possibility of radiation

cancer treatment delivery with a high degree of geometric precision and accuracy

(Gupta & Anand Anand Narayan 2012). This is facilitated by the capability of the

current treatment machines to provide onboard 3D imaging of the target pathology

and its surroundings. Due to its cost effectiveness and typically low radiation dose

to the patient, cone beam computed tomography (CBCT) has been integrated for

therapy guidance purposes, in most state-of-the-art therapeutic linear accelerator (linac)

solutions (Guckenberger 2011). During EBRT treatments, a CBCT image is usually

acquired at the start of a radiation fraction and compared to a high-resolution computed

tomography (CT) image acquired during the planning phase of the treatment (Thilmann

et al. 2006). The outcome of this comparison is a set of displacements indicating the

anatomical situation at the time of treatment relative to therapy planning. These

displacements are currently used to reposition the patient such that the pathology

at the time of treatment is approximately at the same location as during planning

(Thilmann et al. 2006, Oldham et al. 2005, Lehmann et al. 2007). Also, in case of high

fraction doses or long treatment times, an additional CBCT image is acquired after the

radiation fraction delivery, in order to determine whether significant motion occurred

during treatment delivery.

However, depending on the imaged anatomy and rotation speed of the linac gantry,

the acquisition of both CT and CBCT images may be hampered by physiological

motion (Keall et al. 2006, Marchant et al. 2011). Respiratory motion, in particular, can

induce large displacements of the organs situated in the thorax and upper abdomen.

If not taken into consideration, this can lead to motion-induced blurring effects in the

acquired images, increasing the uncertainties related to the location of the pathology

and organs-at-risk (Keall et al. 2006, Li et al. 2006). In this sense, a common practice

is to continuously acquire X-ray projections over a longer period of time, as the linac

gantry rotates around the patient, and reorder them according to the respiratory phase

in which they were acquired (Sonke et al. 2005, Dietrich et al. 2006, Jia et al. 2012).

The reordered X-ray projections are then used to reconstruct a 4D (3D + time) image

series, providing the configuration of the imaged anatomy over the respiratory cycle.

Estimation of respiratory displacements based on a 4D CT/CBCT series could be

useful, for example, for providing patient-specific motion models which, in turn, can

be used to adapt treatment margins on a case-by-case basis (Coolens et al. 2008, Dhou

et al. 2015, Cai et al. 2016). This usually results in a more conformal radiation dose for

the target pathology while at the same time improving the sparing of healthy tissues.

The displacements between CT and CBCT images acquired during the different

phases of EBRT can be estimated using a process called image registration (Mani &

Arivazhagan 2013). The output of the registration process between two images is a

transformation that allows mapping one of the images, called the moving image, to the

other image, called reference, leading to a spatial consistency between the two images. A
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different number of degrees-of-freedom can be imposed on the estimated transformation,

which is usually chosen depending on the mobility of the imaged anatomical site. A

rigid transformation which has a low number of degrees-of-freedom is, for example,

more suitable for static anatomies such as the brain or parts of the skeletal system

(Hill et al. 2001). For mobile and/or deformable organs, on the other hand, a rigid

transformation may be sub-optimal. Thus, the number of degrees-of-freedom of the

estimated transformation may have to be increased in order to capture the complex

deformation underwent by these organs. Regardless of the nature of the estimated

transformation, however, registration of CBCT images is a challenging task, especially

for registration methods which rely on image intensity. This is due to the fact that,

in order to reduce the radiation dose related to imaging and the required acquisition

time, CBCT images are acquired/reconstructed using a low number of X-ray projections

and/or low beam intensities. This, in turn, leads to the images containing so-called

streaking artifacts while at the same time being affected by a low contrast and a

low signal-to-noise ratio (SNR) (Ahmad et al. 2009, Schulze et al. 2011). Streaking

artifacts become especially problematic when CT-CBCT intensity-based registration

is of interest, due to the intrinsic intensity inconsistencies they introduce between

the CT and the CBCT image (Li et al. 2016). Previous studies address this issue

by incorporating intensity correction/matching procedures into existing intensity-based

registration algorithms such as demon registration (Nithiananthan et al. 2011, Zhen

et al. 2012, Park et al. 2017) or optical flow (Ostergaard et al. 2008, Li et al. 2016).

The efficiency of such approaches, however, depends on the particularities of the

artifacts hampering the CBCT images on a case-by-case basis. More precisely it

depends on the type, amount and spatial distribution of the artifacts. Thus, they

may provide reliable results only in a limited amount of cases. Even though CT

and CBCT images are acquired using the same modality, previous studies have also

addressed CT-CBCT registration using methods that are typically used for aligning

images acquired with different modalities. Due to their functioning principle, such

methods relax the assumptions made on image intensity and align the images based

on other criteria such as mutual information (MI) or normalized cross correlation

(NCC) (Greene et al. 2009, Rubeaux et al. 2009, Lou et al. 2013). However, both

MI and NCC are evaluated on a global level. Therefore, while such approaches may

perform well for estimating rigid displacements, they may become sub-optimal for elastic

deformations. Moreover, such methods typically imply high computational demands and

optimization of several input parameters, limiting their use in a clinical setting with the

patient still on the interventional table. A different approach to CT-CBCT registration

involves aligning the images based on a set of common features/landmarks. It is,

for example, current clinical practice that several CT/CBCT-visible fiducial markers

are implanted inside the tumor and its proximity (Kothary et al. 2009, Timmerman

& Xing 2010, Marchant et al. 2012). The markers are then either automatically or

manually identified and re-aligned in order to estimate a displacement between the

images. Besides the implantation procedure involving discomfort for the patient (since
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in some cases it is performed without anesthesia), this only allows a rigid alignment

between the images. Other methods which rely on naturally occurring anatomical

markers (Paquin et al. 2009, Kearney et al. 2015) are sensitive to the number and

the discriminative properties of the landmarks. The number of landmarks also limits

the degrees-of-freedom of the estimated transformation. In addition, both implanted

and natural markers are only surrogates for the tumor position. There is a possibility

that the tumor shifts relative to the markers, leading to misalignments between the

images.

In the current study, the issue of both CT-CBCT and CBCT-CBCT registration is

addressed via the EVolution registration algorithm, recently proposed by Denis de

Senneville et al in (Denis de Senneville et al. 2016). In simplistic terms, the EVolution

method estimates a deformation between two images, by locally matching similar

contrast patterns. Thus, contrary to intensity-based methods, the algorithm is by

construction robust to local and/or global intensity changes from one image to the other.

Also, it does not require the implantation, detection and/or identification of a set of

features/markers. At the same time it is capable of providing an elastic transformation

between the registered images on a voxel-by-voxel basis. The method requires a small

number of input parameters and implies a fast numerical scheme rendering it as an

attractive solution for online therapy guidance.

The contribution of the current work is fourfold:

(i) A validation procedure is proposed, which allows quantifying the impact of the

artifacts and low SNR of the CBCT images on the motion estimates.

(ii) The performance of the EVolution algorithm is evaluated qualitatively and

quantitatively for CT to CBCT registration.

(iii) The algorithm’s performance for CBCT-based 3D respiratory motion estimation

was investigated.

(iv) An implementation with low computational demands is performed for the EVolution

method, making it suitable for use in a clinical setting for online therapy guidance.

2. Method description

2.1. The EVolution registration algorithm

2.1.1. Functioning principle EVolution is a variational multi-modal registration

algorithm (Weickert et al. 2003), capable of estimating a non-rigid deformation between

two images. It was recently proposed by Denis de Senneville et al (Denis de Senneville

et al. 2016) and it provides the displacement between two images as the optimizer of

the following functional:

E(T ) =

∫

Ω

e−C(T ) +
α

2

(

‖~∇u‖22 + ‖~∇v‖22 + ‖~∇w‖22

)

d~r (1)
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with

C(T ) =

∫

Γ

∣

∣

∣

~∇I(T (~r)) · ~∇J(~r)
∣

∣

∣
d~r

∫

Γ
‖~∇I(T (~r))‖2‖~∇J(~r)‖2d~r

(2)

where T = (u, v, w) is the 3D displacement, I and J are the two images to be aligned, Ω

is the image domain, Γ is a cubic local neighborhood around the voxel being processed,

~r is a spatial location, ~∇ is the 3D gradient operator, ‖ · ‖2 is the Euclidean norm and

α is an algorithm parameter whose purpose will be detailed shortly. Notice that the

functional optimized by the EVolution algorithm (Eq. 1) is defined by two terms. The

first term of the integral, also known as the data fidelity term (or simply data term), is

a measure of the similarity between the images. The rationale behind using this term

as a similarity metric becomes apparent if C(T ) is re-written under the following form:

C(T ) =

∫

Γ
wT (~r) |cos(∆θT (~r))| d~r

∫

Γ
wT (~r)d~r

(3)

with wT (~r) and ∆θT (~r) given by:

wT (~r) = MI(T (~r))MJ(~r)

∆θT (~r) = θI(T (~r))− θJ(~r)
(4)

where MI and MJ are the magnitudes of the spatial gradients of the two images and

∆θ is the phase difference between the gradient orientations. Therefore, the term wT (~r)

favors the alignment of edges/gradients that are present in both images, while |cos(∆θ)|

provides a measure for the angle between the gradient orientations, favoring parallel and

anti-parallel gradients and implicitly similar local contrast patterns. The optimization

of the data term alone is generally an ill-posed problem with an infinity of solutions.

This was addressed by adding a regularization term to the functional in Eq. 1, which

constrains the estimated deformation to be spatially smooth/differentiable. The amount

of smoothness is controlled by the parameter α: the larger the value of α, the smoother

the resulting deformation will be.

2.1.2. Numerical scheme In the current work, the functional in Eq. 1 was optimized

using an approach similar to the one proposed in the seminal paper of Denis de Senneville

et al. In effect, its minimizer was found by solving the associated Euler - Lagrange

equations. This ultimately implied finding the solution of a non-linear system.

In order to reduce the non-linearity of the functional, a coarse-to-fine strategy was

employed, which iterated the algorithm from a 32-fold downsampled version of the

images step-by-step to the original resolution. The motion field estimated at each step

was used as an initialization for the next higher resolution level. At each resolution level,

the algorithm was considered to have converged when the average difference between

the displacements estimated at the current and the previous iteration was smaller than

10−3 voxels. For a more detailed and technical description of the numerical scheme,

please consult (Denis de Senneville et al. 2016).
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2.2. Experimental setup

In order to test the capability of the EVolution algorithm for CBCT-based motion

estimation, several experiments were conducted:

(i) The performance of the EVolution algorithm was initially evaluated for CT to

CT registration and put in perspective with respect to a state-of-the-art method

(namely the optical flow algorithm (Zachiu et al. 2015)). This evaluation was of

interest due to the fact that CT to CT registration played an important role for

quantifying the accuracy and precision of the EVolution method for both CT-CBCT

and CBCT-CBCT registration.

(ii) A validation procedure was developed, based on CBCT images synthesized from

high resolution CT images. Accuracy and precision of the method was then

evaluated for CT - synthetic CBCT registration, with the synthesized CBCT

containing an increasing amount of streaking artifacts.

(iii) A qualitative evaluation of the algorithm was performed for registering CT to CBCT

images, each acquired with their respective imaging hardware.

(iv) Finally, the algorithm’s performance for 3D respiratory motion estimation based

on synthesized CBCT images was investigated.

The following sections will provide details on each of the 4 experiments.

2.2.1. Validation of the EVolution algorithm for CT to CT registration As it will be

detailed in the following sections, CT to CT registration plays an important role, in

the current work, for quantifying the accuracy and precision of the EVolution algorithm

for CT to CBCT and CBCT to CBCT registration. For this reason, a preliminary

experiment was conducted on CT data acquired on 5 head-and-neck cancer patients.

Each data set contained a pair of CT images acquired at different time instants

(more than 1 week apart). On each of the CT images, an experienced radiation

therapist delineated both pathological areas and organs-at-risk (OAR). The 5 pairs

of CT images were then registered using both EVolution and the optical flow algorithm

(Zachiu et al. 2015) (used for comparison). For both registration methods, the Dice

Similarity Coefficient (DSC) (Li et al. 2017), normalized cross correlation (NCC) (Luo &

Konofagou 2010), structural similarity index (SSIM) (Wang et al. 2004) were evaluated

after registration for several anatomical sites. In addition, the voxel-wise error in flow

endpoint (FEP) between the EVolution and the optical flow motion fields was evaluated

(Baker et al. 2011):

FEP (~r) = ‖uEVo(~r)− uOF(~r)‖2 (5)

where uEVo = (uEV o, vEV o, wEV o) and uOF = (uOF , vOF , wOF ) are the 3D motion fields

estimated by the EVolution and the optical flow algorithms, respectively, ‖ · ‖2 is the

Euclidean norm and ~r is the voxel position.

For computational purposes, the images and organ delineations were projected on a

256× 256× 256 lattice with a voxel size of 1.5× 1.5× 1.5 mm3. The axes of the lattice
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were aligned with the axes of the DICOM patient coordinate system (NEMA PS3 / ISO

12052 2017).

2.2.2. Validation of the EVolution algorithm using synthetic CBCT images

Gold standard selection In order to evaluate the precision and accuracy of the

EVolution algorithm for CT to CBCT and CBCT to CBCT registration, the

selection/establishment of a ground truth deformation was necessary. In general,

obtaining an in-vivo gold standard is a challenging task, especially for deformable/elastic

anatomies. In the current work, a particular validation strategy was developed in

this sense. In a first step, two high resolution CT images acquired at different time

points are registered to one another using the EVolution algorithm, with the resulting

displacements being established as gold standard. One or both of the images are then

used to synthesize CBCT volumes (the synthesis procedure will be described in the next

section) and then the images are registered to one another a second time. The resulting

displacements are then compared to the gold standard. For CT to CT registration, the

EVolution algorithm was already put into perspective with respect prior art (see section

2.2.1). Therefore, this process will provide the individual impact the undersampling

of the sinogram has on CT-CBCT and CBCT-CBCT registrations performed using

EVolution.

Synthesis of CBCT images from high-resolution CT volumes In order to synthesize

a CBCT from a high resolution CT image, the freely available TIGRE CBCT

reconstruction toolbox was employed (Biguri et al. 2009, Feldkamp et al. 1984). The

software allows a basic simulation of a CBCT acquisition and reconstruction, using any

image as input, while at the same time providing access to the associated acquisition

and reconstruction parameters. In particular, this allows control over the number of

X-Ray projections used to reconstruct the CBCT volume. Therefore, the quality of the

motion estimates as a function of the number of projections of can be investigated.

Performance evaluation of the EVolution algorithm for CT to synthetic CBCT

registration The capability of the EVolution algorithm for registering CT to synthesized

CBCT images was evaluated on data acquired on a head-and-neck cancer patient. The

data initially consisted in a pair of CT images acquired on different occasions. In a first

step towards the evaluation, the dependency of the estimation errors on the amount

of the streaking artifacts present in the synthetic CBCT image was investigated. For

this purpose, one of the CTs was used to synthesize a CBCT image with an increasing

amount of streaking artifacts. The CBCT image was reconstructed using 360, 120, 72,

50 and 36 projections, which corresponds to an acquisition with an angular increment

of 1◦, 3◦, 5◦, 7◦, and 10◦, respectively. The other CT from the pair was then registered

via the EVolution algorithm to each of the synthesized CBCT images and the resulting

motion field was compared to the established gold standard (see sections 2.2.1 and 2.2.2
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(a) (b)

Figure 1: Streaking artifacts in CBCT images: A transverse slice selected from a (a)

CT (b) CBCT image acquired on a lung cancer patient. Compared to the CT image,

the CBCT is visibly altered by streaking artifacts (indicated by the red arrows), which

obstruct/degrade finer details of the anatomy and introduce intensity variations.

for details on the gold standard). The comparison between the gold standard and the

estimated motion field was performed in terms of the spatial distribution of the voxel-

wise error in flow endpoint (FEP):

FEP (~r) = ‖u(~r)− ugold(~r)‖2 (6)

where u = (u, v, w) is the estimated 3D displacement, ugold = (ugold, vgold, wgold) is

the gold standard 3D displacement. Following this initial part of the experiment,

the performance of the algorithm was investigated in more detail for a CBCT image

synthesized using 72 projections. This case was of particular interest, since a

reconstruction using 72 projections provides an image quality towards the lower end

of what a typical CBCT system would provide.

For computational purposes the images were projected, prior to registration, on a

256 × 256 × 256 lattice with a voxel size of 1.5 × 1.5 × 1.5 mm3. The axes of the

lattice were aligned with the axes of the DICOM patient coordinate system.

2.2.3. CT to clinical CBCT image registration This experiment aimed to evaluate

the algorithm’s capabilities for registering CT to clinical CBCT images. In effect, the

algorithm was employed for the registration of a high resolution planning CT image to

one of the daily CBCT images. This was carried-out for two pairs of CT - CBCT images:

one acquired on a kidney cancer patient and the other on a lung cancer patient. The

performance of the algorithm was assessed both by visual inspection and quantitative

evaluation. The latter was achieved by manual annotation of 10 landmarks in both the

kidney and the lung data sets. The resulting manually determined displacements were

then compared in terms of the FEP to the displacements estimated by the EVolution

algorithm. As an additional registration error metric, the normalized cross correlation

(NCC) between the images before and after registration was also calculated.
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Before registration, all the images were projected on a 256 × 256 × 256 lattice with

a voxel size of 0.9 × 0.9 × 0.9 mm3. This was carried-out not only for computational

purposes, but also, more important, due to the fact that the original CT and the CBCT

images were reconstructed with different voxel sizes. Moreover, for both patients, part

of the CT images was masked-out since their field-of-view was considerably larger than

the one of the CBCTs, which increases the risk of the algorithm converging towards a

local minimum.

2.2.4. Synthetic CBCT-based respiratory motion estimation using EVolution A 4D CT

dataset was acquired on a renal cell carcinoma patient. The images sample the anatomy

of the upper abdomen at 10 phases of the patient’s respiratory cycle, between 0% and

90% of the cycle with a 10% increment. The 4D series was registered using the EVolution

algorithm to a reference position provided by the CT image acquired at the 0% phase

of the respiratory cycle. The resulting displacements were then stored and used as a

gold standard. A 4D CBCT series was then synthesized based on the original CT series,

and registered to the CBCT image corresponding to the 0% respiratory cycle phase.

The resulting displacements were then compared to the aforementioned gold standard,

in terms of the temporally averaged FEP.

Additional validation was performed by analyzing the CBCT-estimated 3D trajectory

of two landmarks over the respiratory cycle. The first of the landmarks was one of the

fiducial markers implanted in one of the kidneys, while the second marker corresponded

to the centroid of the contralateral kidney. For the implanted marker, the ground truth

was considered to be the trajectory provided by the EVolution algorithm on the original

4D CT series. However, for the centroid of the contralateral kidney, the trajectory

estimated on the synthetic 4D CBCT series was compared to a manually determined

trajectory. The estimated and the gold standard trajectories were again compared in

terms of the FEP for the selected landmarks.

The 4D CBCT images were synthesized using 120 and 72 projections respectively, which

produced images of average to low quality compared to what most clinical systems

provide. Three scenarios were investigated: 1) All CBCT images were synthesized using

120 projections, 2) The reference image was reconstructed using 120 projections while

the rest of the images were synthesized using 72 projections and 3) All CBCT images

were reconstructed using 72 projections.

For computational purposes, the original 4D CT images were downsampled from

512× 512× 123 to a size of 256× 256× 123 with a 2× 2× 3 mm3 voxel size.

2.3. Hardware, implementation and algorithm configuration

The EVolution algorithm was implemented on a graphical processing unit (GPU) using

the compute unified device architecture (CUDA) platform. The implementation was

then executed on an nVidia Tesla K20 graphics card.

EVolution requires as input two parameters, namely α and Γ (see Eq. 1 and 2). A
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procedure was developed in the scope of the current work in order to calibrate the two

parameters. Three landmarks were manually tracked in the 4D CT series described in

section 2.2.4. These landmarks consisted in two of the fiducial makers implanted at

different locations in the ipsilateral kidney and the centroid of the contralateral kidney.

The 4D series was registered to the CT image acquired at the 0% phase of the respiratory

cycle, while varying the value of α in the 0.05 - 1.0 range, with a 0.05 increment and

the size of Γ in the 3× 3× 3 - 21× 21× 21 range with an increment of 2× 2× 2. The

combination of α and Γ which provided the smallest average FEP between the estimated

and the manually determined displacements for the three landmarks was chosen for use.

A similar procedure was carried-out in order to calibrate α and Γ for CT - CBCT

registration, with the difference that the reference image was replaced with a synthetic

CBCT volume, generated from the CT image acquired at the 0% phase of the respiratory

cycle. The CBCT image was synthesized using 72 projections.

For the optical flow algorithm, used in the experiment described by section 2.2.1, an

implementation similar to the one described in (Zachiu et al. 2015) was carried-out.

The optical flow algorithm provides motion estimates as the minimizers of the following

functional:

EOF((u)) =
∑

~r∈Ω

(

(I(~r)− J(~r + u(~r)))2 + β2‖~∇u(~r)‖22

)

(7)

where I and J are the reference and the moving image, (u) = (u, v, w) is the 3D set of

displacements, ~r is a spatial location, Ω is the image domain, ~∇ is the gradient operator,

‖·‖2 is the Euclidean norm and β is a parameter linking the two terms of the functional.

Details related to the numerical scheme used to solve Eq. 7 can be found in (Zachiu

et al. 2015). Similar to α and Γ, the input parameter β was calibrated via an exhaustive

search for the value which provided the smallest FEP between the estimated and the

manually determined displacements of the same three landmarks. During the search,

the value of β was varied in the 0.01 - 1.0 interval, with an increment of 0.05 (except

for the first incrementation which was 0.04).

3. Results

Section 3.1 provides an evaluation of the EVolution algorithm’s capability for registering

high resolution CT images. In addition, the associated results are put in perspective

with respect to the optical flow algorithm. Sections 3.2 and 3.3 showcase the algorithm’s

performance for registering CT to CBCT images for both synthetic and clinical CBCT

images. The potential of the method to perform CBCT-based 3D respiratory motion

estimation is showcased in section 3.4, followed by a report on the computational

requirements of the EVolution method in section 3.6.

3.1. Assessment of the EVolution algorithm for CT to CT registration

Table 1 reports the DSC, NCC and SSIM for several volumes-of-interest, after registering

pairs of CT images acquired at different time instants on 5 head-and-neck cancer
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patients. Registration was performed using both the EVolution and the optical flow

algorithm. Note that, with very few exceptions, the DSC for both methods remains

above 0.7 for all anatomies under consideration, with a consistent value of ∼0.98 for

the body contour itself. Moreover, it can be observed that in the majority of cases, the

two registration algorithms provide comparable DSC values. Concerning the NCC and

SSIM global criteria, the two methods again provide similar results.

Table 2 reports the FEP between the motion fields provided by the EVolution and the

optical flow algorithms. Evaluation was performed for the same CT data analyzed in

Table 1. In the majority of cases, the mean and the standard deviation of the FEP

between the two methods remains sub-millimeter. Note that the higher FEP values in

Table 2 also correspond to a larger DSC difference between the two methods in Table

1.

Criterion VOI Method P#1 P#2 P#3 P#4 P#5

DSC

Body
OF 0.98 0.98 0.98 0.97 0.97

EVo 0.98 0.98 0.98 0.98 0.98

Spinal Cord
OF 0.77 - 0.84 0.7 0.78

EVo 0.8 - 0.83 0.71 0.8

Right Parotid
OF 0.85 0.85 0.85 0.71 0.73

EVo 0.86 0.84 0.86 0.81 0.63

Left Parotid
OF 0.84 0.83 0.88 0.74 0.77

EVo 0.85 0.82 0.9 0.82 0.76

CTV
OF 0.69 0.83 0.87 0.89 0.77

EVo 0.7 0.82 0.87 0.89 0.73

Lymph Node #1
OF 0.83 0.82 0.89 0.76 0.8

EVo 0.84 0.82 0.87 0.75 0.83

Lymph Node #2
OF 0.8 - 0.87 0.66 0.8

EVo 0.8 - 0.86 0.67 0.88

NCC Entire Volume
OF 0.98 0.99 0.99 0.97 0.99

EVo 0.98 0.98 0.99 0.97 0.98

SSIM Entire Volume
OF 0.93 0.96 0.97 0.92 0.93

EVo 0.92 0.95 0.96 0.91 0.92

Table 1: DSC, NCC and SSIM after the registration of pairs of CT images acquired on

5 head-and-neck cancer patients. The images were registered using both the optical flow

(OF) and the EVolution (EVo) algorithm. Results are reported for several volumes-of-

interest (VOI). The missing values indicate that delineations were not available for the

respective anatomies.
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VOI
FEP between OF and EVo [mm]

P#1 P#2 P#3 P#4 P#5

Body 0.84± 0.58 0.86± 0.78 0.81± 0.67 0.89± 0.64 0.77± 0.73

Spinal Cord 0.27± 0.13 - 0.31± 0.12 0.3± 0.13 0.34± 0.16

Right Parotid 0.83± 0.37 0.27± 0.15 0.38± 0.19 1.37± 0.56 1.39± 0.56

Left Parotid 0.63± 0.35 0.53± 0.17 0.39± 0.14 1.02± 0.59 0.9± 0.51

CTV 0.71± 0.36 0.42± 0.2 0.64± 0.27 0.26± 0.2 1.07± 0.38

Lymph Node #1 0.62± 0.27 0.33± 0.2 0.96± 0.38 0.58± 0.22 0.77± 0.3

Lymph Node #2 0.57± 0.22 - 0.7± 0.34 0.71± 0.4 1.24± 0.72

Table 2: FEP between the motion fields provided by the EVolution and the optical flow

methods, respectively. Reporting is made under the format mean ± standard deviation,

for the same CT data used to generate Table 1.

3.2. Algorithm performance for CT to synthesized CBCT registration

The accuracy and precision of the EVolution algorithm following the alignment of a CT

to synthesized CBCT images was evaluated for a head-and-neck cancer patient (more

precisely Patient #1 from Table 1). Methodological details related to the evaluation

can be found in section 2.2.2.

Fig. 2(a) - 2(e) illustrate a transverse slice from the synthetic CBCT images. More

precisely, the images were synthesized using 360, 120, 72, 50 and 36 projections. From

a visual analysis it can be observed that as the number of projections decreases, the

streaking artifacts in the synthesized CBCT images become stronger. Fig. 2(f) - 2(j)

on the other hand, showcase the spatial distribution of the FEP associated to each of

the images from Fig. 2(a) - 2(e). Notice that, especially in homogeneous areas, the

alignment errors have a tendency to increase with the amount of artifacts present in the

images, coming close to 5 mm when 36 projections are used for the reconstruction of

the CBCT image.

The registration errors were analyzed in more detail for a CBCT image reconstructed

using 72 projections (see section 2.2.2 for details). Fig. 3(a) - 3(c) displays a coronal,

a sagittal and a transverse slice selected from this CBCT image. The red overlay on

the three images corresponds to the location of the clinical tumor volume (CTV). Fig.

3(d) - 3(f) illustrate the spatial distribution of the FEP prior to registration. This was

evaluated by setting u(~r) in Eq. 6 to zero. Since ugold(~r) is assumed to be the true

motion, by setting u(~r) equal to zero the FEP provides the misalignments that would

occur in the absence of a registration procedure. It can be observed that, locally, the

alignment errors come close or even exceed 25 mm. The spatial distribution of the FEP

after registration is illustrated in Fig. 3(g) - 3(i). With a few exceptions, the alignment

errors rest well beneath 1.5 mm, which corresponds to the image voxel size.

A statistical analysis of the FEP for the pathological tissues and several organs-

at-risk was also performed. This is reported, before and after registration, in the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2: (a) - (e) Effect of the number of projections on the CBCT images: Transverse

slice from a CBCT image synthesized/reconstructed using (a) 360 (b) 120 (c) 72 (d)

50 (e) 36 projections. The original CT image used to synthesize the illustrated CBCT

images, was acquired on a head-and-neck cancer patient. (f) - (j) Performance of the

EVolution algorithm when registering a high resolution CT to CBCT images synthesized

using a decreasing number of projections: The spatial distribution of the FEP between

the estimated displacements and the gold standard, following the registration of a CT

to a synthetic CBCT image reconstructed using (f) 360 (g) 120 (h) 72 (i) 50 (j) 36

projections. The alignment errors are illustrated as an overlay for the transverse slice

in Fig. (a) - (e).

second and third columns of Table 3. The error statistics are provided under the

format mean±standard deviation of a set that includes the pooled FEP in all the voxels

contained by the analyzed anatomical structures. On average, after registration, the

alignment errors remain sub-voxel. The same observation can be made for the precision

of the estimated motion, indicated by the FEP standard deviation. The DSC values

before and after registration are reported in columns 4 and 5 of Table 3. Improvements

can be observed after registration, for all VOIs, with DSC values ranging from 0.7 for

the smaller structures such as the CTV, up to 0.98 for the body itself. An evaluation

of the NCC before and after image registration also showcases an increase from 0.89 to

0.96.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Performance of the EVolution algorithm for registering a CT image from

a head-and-neck cancer patient to a synthesized CBCT image: (a) - (c) A coronal, a

sagittal and a transverse slice selected from the synthetic CBCT image. The red overlay

indicates the location of the CTV. (d) - (f) The spatial distribution of the FEP before

registration in the slices displayed in (a) - (c). (g) - (i) The spatial distribution of the

FEP in the slices from (a) - (c) after registration. Note that for illustration purposes,

two different color scales were used in the error maps from (d) - (f) and (g) - (i). Also,

the patient’s face was masked in the sagittal slice for privacy reasons.

3.3. Algorithm performance for registering CT to clinical CBCT images

Fig. 4 displays a coronal (first row), a sagittal (second row) and a transverse (third row)

slice selected from a planning CT - daily CBCT pair of images acquired on a renal cell

carcinoma patient. Each column contains the following (from left to right): a slice from
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VOI FEP before[mm] FEP after[mm] DSC DSC

(mean±stdev) (mean±stdev) before after

CTV 16.58± 2.2 0.31± 0.18 0.4 0.7

Lymph node 1 15.85± 1.27 0.7± 0.37 0.27 0.84

Lymph node 2 14.38± 1.68 0.65± 0.33 0.56 0.8

Body 16.1± 3.45 0.66± 0.6 0.91 0.98

Spinal cord 16.21± 1.74 0.15± 0.09 0 0.8

Left parotid 16.38± 1.63 0.73± 0.42 0.38 0.84

Right parotid 12.7± 1.12 0.65± 0.35 0.58 0.85

Table 3: Qualitative and quantitative evaluation of the algorithm performance when

registering a CT to a CBCT image synthesized using 72 projections. Statistical

distribution of the FEP is reported in columns 2 and 3 for the anatomical sites indicated

in the first column, before and after registration. The fourth and fifth column of the

table report the DSC for the indicated anatomies before and after registration.

the CBCT image, a slice from the CT image, checkerboard overlap between the images

before registration and checkerboard overlap between the images after registration. An

improvement in image alignment can be observed, especially for the implanted fiducial

markers (whose coherence is restored after registration), for the skeletal structures

and at organ boundaries. As specified in section 2.2.3, 10 landmarks were manually

identified in both the CBCT and the CT image. Comparing the manually determined

displacements for the landmarks to the ones provided by the EVolution algorithm lead

to the observation that the FEP in the 10 landmarks was reduced from 9.57± 1.61 mm

in the absence of registration, to 1.18± 0.3 mm after registration. The alignment errors

in the absence of registration were computed by setting u in Eq. 6 to 0. In addition,

after registration, the NCC showcased an increase from 0.86 to 0.94.

A set of images following the same arrangement as the ones in Fig. 4 is illustrated in

Fig. 5, however, the kidney case was replaced with images acquired on a lung cancer

patient. Similar to the kidney case, a notable improvement in image alignment can be

observed after registration, especially in the lung parenchyma, the skeletal structures

and the organ boundaries. Manual tracking of 10 landmarks revealed a decrease of the

alignment errors from 6.58± 1.54 mm in the absence of registration, to 0.94± 0.3 mm

with registration. After registration, the NCC also increased from 0.81 to 0.96.

3.4. Synthetic CBCT-based 3D respiratory motion estimation

As detailed in section 2.2.4, for this particular experiment, CBCT images were

synthesized using as a base a 4D CT series covering one respiratory cycle of a renal

cell carcinoma patient. Fig. 6(a) - 6(c) illustrate a coronal, a sagittal and a transverse

slice, selected from the CBCT image used as reference during the registration process.

Fig. 6(d) - 6(f) and Fig. 6(g) - 6(i) display for the slices illustrated in Fig. 6(a) - 6(c)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: (a) - (b) A coronal, (e) - (f) a sagittal and (i) - (j) a transverse slice selected

from a CBCT (first column) and a CT image (second column), acquired on a renal cell

carcinoma patient. (c) - (d) A coronal, (g) - (h) a sagittal and (k) - (l) a transverse

slice selected from a checkerboard overlap between the CBCT and the CT images before

(third column) and after registration (fourth column).

the temporally averaged FEP, before and after registration. It can be observed that

errors which exceed 5 mm in moving organs such as the liver and kidneys, are reduced,

in most areas, to values smaller than ∼1.5 - 2 mm. Note that the results illustrated in

Fig. 6 were obtained from a 4D CBCT series synthesized using 120 projections.

The performance of the EVolution algorithm for CBCT-based respiratory motion

estimation was further evaluated by analyzing the estimated 3D trajectory of two

landmarks, over the respiratory cycle. One of the landmarks was a fiducial gold marker
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5: (a) - (b) A coronal, (e) - (f) a sagittal and (i) - (j) a transverse slice selected

from a CBCT (first column) and a CT image (second column) acquired on a lung

cancer patient. (c) - (d) A coronal, (g) - (h) a sagittal and (k) - (l) a transverse slice

selected from a checkerboard overlap between the CBCT and the CT images, before

(third column) and after registration (fourth column).

(indicated by the red arrow in Fig. 6), while the second landmark was the centroid

of the contralateral kidney (delineated by the blue dashed line in Fig. 6). The gold

standard trajectory for the fiducial marker was provided by an estimation on the original

4D CT image series, while for the contralateral kidney centroid, manual tracking was

performed. Fig. 7 illustrates the trajectory of the two landmarks in the head - foot,

anterior - posterior and the left - right directions. It can be observed that, with very

few exceptions, the distance between the estimated curves and the gold standard remain

sub-millimeter. Note that the CBCT images were synthesized from the original 4D CT
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M

(a)

M

(b)

M

(c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Performance of the EVolution algorithm for CBCT-based respiratory motion

estimation: (a) - (c) A coronal, a sagittal and a transverse slice selected from the CBCT

image used as reference during the registration process. Point M indicates one of the

implanted fiducial gold markers, while the blue contour delineates the contralateral

kidney. (d) - (f) The spatial distribution of the temporally averaged FEP in the slices

from (a) - (c), before aligning the synthetic 4D CBCT series to the reference image. (g)

- (i) The spatial distribution of the temporally averaged FEP in the slices from (a) -

(c), after registering the 4D series to the reference position.

series using 120 projections.

Table 4 reports the errors between the trajectories estimated for the landmarks and

their corresponding gold standard trajectory, for three scenarios: 1) Both the reference
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Figure 7: Performance of the EVolution algorithm for CBCT-based respiratory motion

estimation: Trajectory of a fiducial gold marker and the centroid of the contralateral

kidney over the respiratory cycle in the (a) - (b) head - foot, (c) - (d) anterior - posterior

and (e) - (f) left - right directions. The red curves correspond to the trajectories

estimated on the synthetic 4D CBCT series, while the blue curves plot their respective

gold standards. The ordinate of the graphs indicate the displacement in millimeters,

while the abscissa indicates the percentage phase within the respiratory cycle.
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and the moving CBCT images were synthesized using 120 projections (second row); 2)

The reference image was synthesized using 120 projections, while the moving images

were synthesized using 72 projections (third row); 3) Both the reference and the moving

images were synthesized using 72 projections (fourth row). The first row in the table

reports the FEP for the two landmarks, without registering the 4D synthetic CBCT

series. The FEP is reported in the mean ± standard deviation format, with the statistics

computed on the pooled FEPs from all the sampled phases of the respiratory cycle.

Notice that for the two scenarios in which the reference CBCT image is reconstructed

using 120 projections, the errors remain approximately in the sub-millimeter range,

regardless of the amount of the streaking artifacts in the moving images. However,

when both the reference and the moving images were synthesized using 72 projections,

the quality of the motion estimates in the contralateral kidney is affected.

Registration errors [mm]

Registration type mean ± stdev

Marker Contralateral kidney centroid

No registration 4.65 ± 3.8 5.01 ± 2.9

CBCT120 to CBCT120 0.55 ± 0.38 0.89 ± 0.6

CBCT72 to CBCT120 0.44 ± 0.4 0.85 ± 0.5

CBCT72 to CBCT72 0.32 ± 0.19 2.03 ± 1.24

Table 4: FEP between the trajectories estimated for the implanted marker and the

contralateral kidney, for different amounts of streaking artifacts added to the synthesized

4D CBCT images. The first row indicates the FEP for the two landmarks, in the absence

of a registration scheme. The subsequent rows report the errors between the estimated

and the gold standard trajectories for the cases in which both the reference and the

moving images were synthesized using 120 projections (second row), the reference image

was synthesized using 120 projections and the moving images were synthesized using

72 projections (third row) and when both the reference and the moving images were

reconstructed using 72 projections (fourth row).

3.5. Input parameter calibration for the EVolution and optical flow algorithm

The EVolution algorithm requires α and Γ as input parameters (see Eq. 1 and 2), while

the optical flow algorithm requires the calibration of the regularization parameter β (see

Eq. 7). Details related to the manner in which these input parameters were optimized

can be found in section 2.3.

The dependency between estimation accuracy and the parameters α and Γ for both CT

to CT and CT to synthetic CBCT registration via the EVolution algorithm is displayed

in Fig. 8. The highest accuracy of 0.63 mm and 0.67 mm, respectively, is achieved

for the combination (α,Γ) = (0.6, 11 × 11 × 11) for both calibrations. It can also be

observed that the accuracy remains close to its optimal value for a rather wide range of
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Figure 8: Accuracy of the EVolution algorithm as a function of the input parameters α

and Γ: (a) For CT - CT registration. (b) For CT - synthetic CBCT registration.

values of α and Γ. A rapid decrease in algorithm accuracy can be noticed as the value

of α drops under 0.25 - 0.3.

Fig. 9 illustrates, in the scope of this study, the relationship between the accuracy of

the optical flow algorithm and the regularization parameter β. It can be observed that

the best accuracy is ∼1.2 mm, which is achieved for a value of β equal to 0.05 (value

which was employed in the present work).

3.6. Computational performance of the algorithm

Following the benchmarking of the computational requirements of the EVolution

algorithm it was found that for images of size 256×256×256, the algorithm converges

on average in approximately 60 s.
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Figure 9: Accuracy of the optical flow algorithm as a function of the regularization

parameter β.

4. Discussion

Several concepts in image guided radiotherapy, such as day-to-day positioning

compensation (Thilmann et al. 2006, Oldham et al. 2005, Lehmann et al. 2007), “virtual

couch shifts” (Bol et al. 2013), dose accumulation (Richter et al. 2008, Sykes et al. 2013)

or delineation propagation (Rubeaux et al. 2009) often rely on establishing a spatial

coherence, using image registration, between a planning high-resolution CT and a daily

CBCT image and/or between CBCT images acquired at different time instants. In order

to limit the radiation dose associated to imaging, which is of particular importance for

pediatrics (Olch 2013), the CBCT volumes are frequently reconstructed using a low

number of X-Ray projections and/or a low amount of beam intensity. This leads to

low SNR images altered by streaking artifacts, which is problematic for state-of-the-

art registration algorithms relying on gray-level intensity conservation. Moreover, the

registration process is also often hampered by the low soft-tissue contrast, which is

intrinsic to the CT and CBCT images. The current work demonstrates, that despite

such constraints on image quality, the recently proposed EVolution algorithm (Denis de

Senneville et al. 2016) is fully capable of providing reliable estimates of the deformation

between the images, with a high degree of precision and accuracy.

In an initial step, however, prior to investigating the performance of the EVolution

algorithm for CT-CBCT and CBCT-CBCT registration, the current study evaluates

its capabilities for re-aligning CT images, since CT to CT registration played a key

role during the validation procedures employed in the current work (see, for example,

section 2.2.2). This was achieved by evaluating the post-registration DSC, NCC and
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SSIM provided by the EVolution algorithm, for several anatomical structures on CT

data acquired on 5 head-and-neck cancer patients. During this experiment, the use of

the DSC, NCC and SSIM as registration quality evaluation metrics is argued by their

previous use in several independent studies focusing on CT and CBCT image registration

(Kumarasiri et al. 2014, Rigaud et al. 2015, Li et al. 2017, Park et al. 2017), providing

a means to relate the obtained results to prior art. In the current work, the obtained

DSC, NCC and SSIM values were also put in perspective with the ones provided by

a pre-existing optical flow algorithm. The latter was selected as a point-of-comparison

due to its prior evaluation and validation for CT to CT registration in the study of

Ostergaard et al (Ostergaard et al. 2008). Therein it was demonstrated that the optical

flow algorithm can achieve an accuracy of ∼1.1 mm, value which was concluded to be

acceptable for registering CT volumes. Such results are also in good correspondence

with the ones obtained in the current work (see section 3.5). In the scope of this study,

both the EVolution and the optical flow algorithm provided similar DSC, NCC and

SSIM values. The DSC in particular ranged from ∼0.7 for smaller structures up to

0.98 for the body contour. These values are overall comparable with the ones provided

by other state-of-the-art methods (Kumarasiri et al. 2014). Also, an evaluation of the

FEP between the motion fields provided by the EVolution and the optical flow applied

on the same CT datasets, resulted on average in sub-millimeter values (see Table 2).

There are, however, a few isolated cases with rather large discrepancies between the

DSC values provided by the EVolution and the optical flow algorithm (see, for example,

left and right parotid in patients #4 and #5 from Table 1). These discrepancies are also

in good correspondence with large FEP values in Table 2. This can be explained by the

different fundamental principles on which the two algorithms rely for performing motion

estimation. While EVolution assumes the conservation of contrast between the reference

and the moving image, the optical flow algorithm assumes voxel intensity conservation.

Therefore, depending on which of the two assumptions is locally violated, one or the

other algorithm will perform poorer in a particular area. This may also explain the

rest of the smaller differences between the DSC values provided by the two compared

algorithms. It is also worth noting that, in the current work, validation of the EVolution

algorithm for CT to CT registration was performed solely for confirmation purposes,

since this aspect was already addressed in the seminal work of Denis de Senneville et al

(Denis de Senneville et al. 2016).

Over the course of the presented work, two quality criteria were employed for evaluating

the outcome of image registration: the DSC and the FEP. The reason for which one

was chosen over the other depended on the gold standard which was available. For CT

to CT registration on the head-and-neck cancer patient data, the only available ground

truth were the structure delineations made on the reference and the moving image. This

does not allow the calculation of the FEP, since gold standard displacements were not

available for these data sets. Therefore, the DSC was chosen as a quality evaluation

metric in this case. The downside of the DSC is that it only provides a qualitative

measure of registration performance. On the other hand, for the experiments where
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displacements or point-to-point correspondences were available as a gold standard,

the FEP was chosen for use, since it provided a quantitative measure of registration

accuracy and precision. Nevertheless, it should be noted that, in case of a severely

low number of gold standard displacements or point-to-point correspondences between

the reference and the moving image, the DSC may be a better choice (since it usually

encompasses a larger number of voxels). In the scope of this paper, the performance of

the EVolution algorithm for CT to CBCT registration was evaluated using three gold

standards: the motion fields provided by the registration of high resolution CT images,

the DSC for several anatomical structures, including pathological tissues and OARs

and manually annotated landmarks. Qualitative visual criteria were also employed

for the evaluation, in particular for the study described in section 2.2.3. Fig. 2

showcases the impact on the motion estimates of an increasingly coarse sampling of

the sinogram for the reconstruction of the analyzed CBCT image. Note that even for

CBCT images reconstructed using only 72 projections, leading to an image quality at the

lower end of what a typical clinical system would provide, the additional registration

errors remain predominantly sub-millimeter. Even for less than 72 projections, only

a few error peaks start occurring in the more homogeneous areas of the image. The

body contour and skeletal muscle are still correctly re-aligned. These observations were

further confirmed during the more in-depth analysis conducted on one of the head-

and-neck cancer patients. Fig. 3 showcases the spatial distribution of the alignment

errors in the aforementioned patient, following the registration of a CT to a CBCT

image reconstructed using 72 projections. The errors are illustrated in three planes

intersecting approximately midway into the CTV. Noteworthy is that the alignment

errors remain mostly sub-millimeter, including for the nasal and air cavities, which have

proven problematic in previous related studies (Paquin et al. 2009, Park et al. 2017, Zhen

et al. 2012). The only locations in which the errors of the EVolution method have a

tendency to increase is in areas devoid of contrast, such as deep into the brain and

isolated into the shoulder muscles. There are basically two factors which contribute

to this: For one, the lack of intrinsic contrast in the CTs in these areas shifts the

burden of the registration process towards the regularization term. Second, since the

CBCT artifacts in such areas are dominant compared to ’‘true’‘ anatomical contrast,

they counteract the effect of the regularization, which as a net-effect degrades the

quality of the registration in these domains. Nevertheless, even in these regions, with

few exceptions, the errors remain close to the voxel size (∼1.5 mm). The statistical

distribution of the alignment errors for the pathology and several of the organs-at-

risk of the same patient is reported in Table 3. Following registration, sub-millimeter

precision and accuracy was achieved for all analyzed anatomical structures. Also, by

comparing the post-registration DSC values reported in Table 3 to the ones in Table

1 (Patient #1) it can be observed that, despite the additional artifacts and low SNR

altering the CBCT image, the DSC remains approximately the same (≥0.7 for smaller

anatomies up to 0.98 for the body contour) as if a CT acquisition would have been used

instead. The good performance of the EVolution algorithm for CT-CBCT registration is
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further confirmed by the kidney and lung cases illustrated in Fig. 4 and 5, respectively.

Following registration, in both cases, a high degree of spatial continuity from one square

to the next in the composite images can be observed for the visible features. The most

obvious are the implanted fiducials in the kidney cancer patient, the parenchyma of the

lung cancer patient and the organ boundaries and skeletal structures in both patients.

Comparing the manually determined displacements for 10 landmarks in each of the two

data sets to the ones provided by the EVolution algorithm revealed an accuracy and

precision of the algorithm comparable to the voxel size. In addition, both cases have

demonstrated after registration an increase of the NCC to values which are in good

correspondence with the state-of-the-art (Park et al. 2017).

Concerning its capability for CBCT-based 3D respiratory motion estimation (i.e. for

CBCT to CBCT image registration), the EVolution algorithm was validated against

two gold standards: the motion fields resulting from the alignment of the CT images

used to synthesize the 4D CBCT series and the trajectory of two landmarks over a

respiratory cycle. Fig. 6 displays the spatial distribution of the temporally averaged

alignment errors for the 4D CBCT series. In particular for the kidneys, which were the

organs of interest in the illustrated data, it can be observed that after the alignment

of the 4D series, the errors remain mostly sub-millimeter. On a global scale, except for

a few isolated areas, the post-registration misalignments rest under the in-plane voxel

size (2 mm). The good capabilities for respiratory motion estimation of the EVolution

algorithm are further emphasized in Fig. 7, where it can be observed that the estimated

3D trajectory of the selected landmarks closely follows the gold standard trajectory. A

more quantitative evaluation of the errors between the estimated and the gold standard

trajectories is provided in Table 4. In the table it is shown that, as long as the sinogram

sampling of both CBCT images (reference and moving image) resides above a particular

threshold, sub-millimeter precision and accuracy can be achieved. Also, asymmetric

registrations with a high-quality reference image and a “faster” CBCT image of lower

quality maintains an accuracy and precision below one millimeter. It is only when

both the reference and the moving images of the 4D CBCT series are reconstructed

using 72 projections that the algorithm performance starts to degrade below the native

image resolution. An interesting aspect is that, as the quality of the synthetic CBCT

images degrades, only the registration errors for the centroid of the contralateral kidney

have a tendency to increase (see Table 4). This can be explained by the presence of

the implanted fiducial markers in the ipsilateral kidney, which appear as hyper-intense

features in the images. Therefore, despite an increase in the magnitude of the streaking

artifacts, the fiducial markers provide sufficient contrast in the synthetic CBCT images,

facilitating and accurate and precise tracking.

An issue which was generally overlooked by previous related studies is that the CT and

the CBCT images are often acquired using different geometries (e.g. FOV, image size,

voxel size, etc.). If not taken into account, this can frequently lead to unreliable motion

estimates. In the current study this was addressed by regridding the images into a

common coordinate system prior to registration. The dimensions and voxel size of the



Non-rigid CT/CBCT to CBCT registration 26

new lattice were chosen such that the entire FOV of the original images is also covered

by the regridded images. Obviously, the two lattice parameters (i.e. image and voxel

size) can also be optimized with respect to computational performance since, in general,

the computational time required by the EVolution algorithm depends on the size of the

images. In addition, for the kidney and lung cancer patients (see Fig. 4 and 5) the FOV

of the CBCT images was considerably smaller than that of the CT images, which is

often the case in clinical practice. If not taken into consideration, this may impair the

convergence of the algorithm to the global minimum. In the scope of this paper, this

was addressed by imposing border conditions on the CBCT image such that all voxels

that are outside or on the border of the FOV are excluded from the registration process.

One of the traits that makes EVolution an attractive option for motion estimation in

a clinical setting is the low number of input parameters it requires: the regularization

parameter α and the patch size Γ (see Eq. 1 and 2). A noteworthy fact is that, once Γ

and α were optimized, their value was maintained constant during all experiments, with

a consistent good quality of the motion estimates. Moreover, both the calibration for

CT to CT registration and for CT to synthetic CBCT registration provided the same

optimal values for α and Γ (see Fig. 8). So it is fair to say that for the problem at

hand, no inter-individual adjustments of the parameters were necessary. Therefore, we

hypothesize, that once the acquisition scheme of the CBCT images is fixed, the values

of α and Γ could be optimized prior to the intervention, making algorithm configuration

completely transparent to the clinician delivering the therapy. One elegant way to

optimize the value of the input parameters prior to the intervention is, for example,

to register two CT images acquired on a patient and establish the resulting motion

field as gold standard. One or both of the images (depending on whether CT-CBCT

or CBCT-CBCT registration is of interest) could then be used to synthesize CBCT

volumes using the same acquisition parameters as the clinical system. Offline CT -

synthetic CBCT or synthetic CBCT - synthetic CBCT registration is then repeatedly

performed while exhaustively searching for the optimal values of α and Γ. The search

is then stopped when the configuration that provides the best similarity between the

estimated displacements and the gold standard is found.

An aspect which may prove to be slightly problematic for the EVolution algorithm is

estimating motion in the proximity of sliding interfaces. The quadratic nature of the

regularization term included in the functional from Eq. 1, constrains the estimated

displacements to be spatially smooth. For soft tissues in particular, such an assumption

is physically justified since they are incompressible and elastic and thus, shearing motion

will in general not occur. On the other hand, at interfaces between organs and the

abdominal or thoracic wall or between the organs themselves, sliding motion usually

occurs, which locally violates the smoothness assumption. For example, during the

experiment addressing CBCT-based respiratory motion compensation, this lead to a

propagation of the displacements estimated for the kidneys and liver, ∼2 - 3 voxels

into the quasi-static abdominal and thoracic wall. However, this only had a local effect

without notably affecting the overall performance of the algorithm. Nevertheless, as a
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source of misregistration this aspect may have to be monitored and can make the object

of future studies.

An important feature for registration algorithms in general is the required computational

time. This is of particular interest when registration is employed for online therapy

guidance, with the patient still on the interventional table. Already from a

numerical point-of-view, the EVolution algorithm facilitates an implementation with

low computational demands since its optimization scheme is easily and massively

parellelizable. This is due to the fact that the functional in Eq. 1 is an integral

over a set of convex functions (one for each voxel of the image). It is a know result

from convex optimization theory that the independent optimization of each of these

functions leads to a global optimum of the functional. Therefore, the optimization

of each function can and was delegated to a separate processing core, with all voxels

being processed simultaneously. Moreover, while not illustrated in the presented work,

all operations required by the numerical scheme of the EVolution algorithm can be

implemented by using convolutions, which again render themselves easily parallelizable.

As reported in section 3.6, for images of size 256 × 256 × 256 the algorithm requires

∼60 s per registration. This duration may scale with the image size, the extent of the

displacements between the registered images and the available hardware.

In order to correct for physiological motion and/or positioning errors, the current

clinical standard for CBCT-guided radiotherapy implies the alignment of CT/CBCT

images acquired at different stages of the treatment based on implanted fiducial

markers. Besides causing discomfort to the patient during the implantation process,

the marker-based alignment only accounts for rigid displacements, which may be sub-

optimal for deformable anatomies. By employing the EVolution algorithm instead,

elastic deformation fields become available for both pathological tissues and organs-at-

risk, providing the possibility of improved corrections due to the additional positional

information. Moreover, this circumvents the implantation of fiducial markers, since the

EVolution algorithm is purely image-based. We also anticipate that the dense elastic

deformation fields could be used for adaptive replanning in the sense that the daily

radiation dose could be delivered in accordance with the position of the pathology and

the organs-at-risk at the time of treatment. Also, the daily dose can be projected with

respect to the estimated displacements into the reference space of the planning CT

image. This way, therapy progress could be monitored with respect to the initial plan

and, if necessary, the remaining therapeutic dose can be adapted accordingly.

5. Conclusion

For an accurate and precise therapeutic dose delivery, image-guided radiotherapy

treatments often rely on establishing a spatial coherence via image registration between

CBCT and CT or CBCT images acquired at different stages of the therapy. Due to

imaging-related radiation constraints, CBCT images are generally acquired using a low

number of X-Ray projections and/or low beam intensities. This leads to acquisitions
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altered by streaking artifacts and a low SNR, which renders their registration using

intensity-based methods challenging. The current study addresses both CT to CBCT

and CBCT to CBCT registration by the means of the recently proposed EVolution

algorithm. The method was validated in several complementary experiments where it

was demonstrated that the artifacts associated to the sparse sampling of the CBCT

sinogram only have a minimal impact, of sub-millimeter order, on the quality of

the motion estimates. Compared to previous studies, the EVolution algorithm was

proven to be capable of registering CBCT images of a considerably inferior quality. At

the same time it did not require the integration of an additional intensity correction

scheme. Moreover, the current study provides a robust quantification of the additional

registration errors introduced by the artifacts present in the CBCT images. The

EVolution algorithm requires the configuration of only two input parameters which,

in practice, can be optimized prior to the therapy. Their values can then be maintained

across different patients and anatomies, making the configuration of the method

completely transparent to the clinician. In addition, the investigated method implies low

computational demands, which is rarely the case for registration algorithms providing an

elastic deformation between two images on a point-by-point basis. It can be therefore

concluded that the EVolution algorithm is potentially an attractive asset for online

motion compensation of CBCT-guided external beam radiotherapy treatments.
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