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Delay Margin in Controlling a Furuta Pendulum

José-Enrique Hernández-Dı́eza, Silviu-Iulian Niculescub, César-Fernando Méndez-Barriosa,
Emilio-Jorge González-Galvána, Ambrocio Loredo-Floresc & Juan-Antonio Escarenod

Abstract— This paper focuses on the design of an LQR based
control scheme for the stabilization of the Furuta Pendulum in
its unstable equilibrium point at the upright position. More
precisely, we are interested in characterizing the corresponding
delay margin under the assumption that the feedback loop
includes time-delay. The paper provides an explicit tool to
compute the critical delay value in the state feedback loop
and a delicate tuning to reach larger delay values. In order
to illustrate the effectiveness of the proposed control scheme,
some numerical results are presented.

I. INTRODUCTION

In mechanical systems, one of the classical problems
of automatic control is the stabilization of the inverted
pendulum on its unstable equilibrium point at the upright
position. In this work we study this task in the case of the
so-called Furuta pendulum (see Fig. 1), also known as the
rotatory inverted pendulum.

In order to achieve this task, we propose the use of
some standard Linear Quadratic Regulation (LQR) controller.
Some insights concerning this control law for three underac-
tuated systems (inverted pendulum on a cart, inverted wedge
and ball and beam system) can be found in [1]. Furthermore,
we consider a time-delay in the state feedback loop which
can be inherent to the system due to data processing, or even
designed for performance requirements.

It is well known that adverse effects as oscillations,
instability and bandwidth sensitivity, among others, are the
consequence of the presence of delay in the control loop (see,
for instance, [2], [3]). However, it is worth mentioning that
there exist some situations when the delay may improve the
system stability as explained in the classical example [4], [5],
where an oscillator is controlled by one gain-delay “block”,
with positive gains and small delay values (a detailed analysis
of such an approach can be found in [6]). Finally, it is
worth noticing that even in the simple case of the inverted
pendulum, the presence of delays in the input may induce
some unexpected properties as, for instance a triple root at
the origin (see, for instance [7] and the references therein).
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In order to consider this scenario in the control scheme
design, we use the results shown in [8] for the inverted
pendulum and cart system. This shows a simple method
on how to compute the critical delay value in the state
feedback loop in which the closed-loop system loses sta-
bility. Moreover, we explore the behavior of the stability
conditions by considering an auxiliary pair of gains for the
position regulation of both angles of the Furuta pendulum.
Numerical simulations were conducted in Matlab-Simulink
to illustrate how sensitive the tuning of these parameters can
be. The main contribution of the paper is to construct some
appropriate tuning rules able to enlarge the delay margins.
Illustrative examples confirm such an approach.

The remaining part of this paper is organized as follows.
Section II concerns to the Furuta pendulum modelling and
the LQR control design for the stabilization in the delay-
free scenario. Section III-A shows a simple method easy
to implement for computing the critical time-delay value
in the state feedback loop at which the closed-loop system
loses stability. In Section III-B the stability boundaries for
two auxiliary gains and the time-delay are characterized.
Section IV shows some numerical results obtained on the
software “Matlab”. Finally, Sections V and VI discuss some
concluding remarks and future work, respectively.

Furthermore, we invite the reader to visit the website
refereed in Section IV, where illustrative support material
for the understanding of the results discussed in this paper
is proposed.

II. PREREQUISITES ON CONTROL SCHEME DESIGN

This section includes the basics of the design of an LQR
based control scheme in the delay-free scenario for the
Furuta pendulum stabilization problem. It covers the Furuta
pendulum modelling and the LQR controller gain tuning.

A. Furuta Pendulum Modeling

As discussed in the sequel, we introduce the Furuta
pendulum nonlinear model and a linear representation valid
uniquely around an operating point of interest.

Figure 1 depicts the representation of the Furuta pendu-
lum, also known as the rotatory inverted pendulum. This
mechanical system has two degrees of freedom and two
rotatory joints. It consists in three essential components:
a motor and two bars known as arm and pendulum. The
motor’s shaft is fixed at one end of the arm inducing a
rotatory movement of this bar. The pendulum is placed at the
opposite end to the motor’s shaft with a rotatory joint which
provides a free rotatory movement in a normal plane to the



arm. As shown in the schematic representation illustrated in
Fig. 1, θ0 and θ1 are the arm and pendulum angular positions,
respectively. θ0 is measured with respect of the X-axis and
θ1 with respect to the upright position. T concerns to the
torque applied to the arm and it is provided by the motor. I0
and J1 stands for the motor-arm and pendulum inertia values
and L0 and l1 represent the arm length and the pendulum’s
center of mass location, respectively. Finally, m1 represents
the mass of the pendulum, while g denotes the gravitational
acceleration.

Fig. 1. Furuta Pendulum Diagram ([9]).

As detailed in [9] (see also, [10] and [11]), the Lagrangian
formulation of the Furuta pendulum consists in the following:

M(q)q̈+C(q, q̇)q̇+g(q) = F, (1)

where:

M(q) :=
[

I0 +m1(L2
0 + l2

1 sin2
θ1) m1l1L0 cosθ1

m1l1L0 cosθ1 J1 +m1l2
1

]
,

C(q, q̇) :=
[

c11 c12
c21 0

]
, g(q) :=

[
0

−m1l1gsinθ1

]
,

c11 :=
1
2

m1l2
1 q̇2 sin(2q2),

c12 := −m1l1L0q̇2 sinq2 +
1
2

m1l2
1 q̇1 sin(2q2),

c21 := −1
2

m1l2
1 q̇1 sin(2q2),

F :=
[
T
0

]
, q :=

[
q1
q2

]
=

[
θ0
θ1

]
.

In this work we focus on the control problem of sta-
bilization and regulation of the solution pair (θ0(t),θ1(t))
around an operating point. Inspired by [9], we consider the
corresponding system’s linearization:

ẋ = Ax+Bu, (2)

where the state of the system x and the control variable u
are defined as:

x :=


x1
x2
x3
x4

=


θ0
θ̇0
θ1
θ̇1

 , u := T . (3)

The constant matrices A and B are given by:

A =


0 1 0 0
0 0 α 0
0 0 0 1
0 0 β 0

 , B =


0
γ

0
ε

 , (4)

where:

α :=
−gm2

1l2
1L0

I0(J1 +m1l2
1)+ J1m1L2

0
,

β :=
(I0 +m1L2

0)m1l1g
I0(J1 +m1l2

1)+ J1m1L2
0
,

γ :=
J1 +m1l2

1

I0(J1 +m1l2
1)+ J1m1L2

0
,

ε :=
−m1l1L0

I0(J1 +m1l2
1)+ J1m1L2

0
.

Notice that this system is valid for any operation close to
the unstable equilibrium point:

θ ∗0
θ̇ ∗0
θ ∗1
θ̇ ∗1

=


0
0
0
0

 , (5)

(that is, the pendulum is located at the upright position).

B. State Feedback Gain Design
As mentioned above, in order to stabilize the linear system

(2) through a state feedback control law we use a similar
approach to the one presented in [8]. This is known as the
standard LQR control problem. The technique consists in
computing the optimal solution for the linear quadratic cost
functional:

J = inf
u(t)∈L2(0,∞)

∫
∞

0

[
x(t)T Qx(t)+ ru(t)2]dt. (6)

In this expression, the weights Q ≥ 0 and r ≥ 0 are chosen
with the purpose of reducing the states x and the cost of
the control u. Qualitatively, if Q is a diagonal matrix, the
position of the greater value of this matrix represents the
most important state to be reduced. In the same manner, as r
is chosen with a greater value, in such a way that the energy
provided by the control law u must be lower.

The solution to the functional (6) is the state feedback
control law:

u(t) =−K∗x(t) = r−1BT Px(t), (7)

where:
K∗ = [ka,kb,kc,kd ] =−r−1BT P, (8)

and P is the unique symmetric positive-defined solution to
the Riccati equation:

AT P+PA−PBr−1BT P+Q = 0. (9)



III. COMPUTING DELAY MARGIN AND RETARDED
GAINS TUNNING

This section contains two stability analysis by considering
a time-delay in the state feedback loop. First, we compute
the critical delay value in the feedback loop for a proper
choice of K∗. Second, we propose two auxiliary gains which
will give us two degrees of freedom (2-DOF), allowing to
improve the system’s response.

A. Delay Margin and Robustness Issues

It is well known that in a closed-loop system, if the control
law is implemented by means of a digital platform, then,
there always be present a time-delay due to the computational
data processing. In this regard, the delay is a consequence of
sensor with built-in data processing. In this section we aim
to characterize this behavior by considering a time-delay in
the control law.

Having designed the vector gain K∗ as shown in the
previous section, we propose the following:

u(t) =−K∗x(t− τ), (10)

where τ > 0 is a fixed delay value. Furthermore, one may
notice that τ can be defined as τ := τp +τd where the time-
delay values τp and τd refers to the data processing and, to
a control design parameter, respectively.

Remark 1: It is well known that the stability of the closed-
loop system is directly related to the location of the roots of
the characteristic equation (see, [3], for further details). More
precisely, the closed-loop system is stable if and only if all
the roots of the characteristic equation are located in the LHP
(Left-Half Plane) of the complex plane.

Since for τ = 0 the closed-loop system is locally asymp-
totically stable around the origin, therefore, all of the roots
of the characteristic equation given by:

∆0(s) := det{sI− (A−BK∗)}= 0, (11)

have negative real parts. In other words, all of its roots
remain in the LHP of the complex plane for a proper choice
of K∗. Now, by taking into account the control law (10),
the characteristic equation of the closed-loop system can be
expressed as:

∆τ (s) = det
{

sI− (A−BK∗e−τs)
}
= 0, (12)

or more compactly as:

∆τ (s) = P(s)+Q(s)e−τs, (13)

where:

P(s) = s4−β s2,

Q(s) = (kbγ + kdε)s3 +(kaγ + kcε)s2

+ kb(αε−βγ)s+ ka(αε−βγ).

Remark 2: As mentioned by [3], this type of function
(∆τ(s)) is known as a quasi-polynomial, one of its main
differences with respect to a common polynomial, is that
it has an infinite number of roots. Furthermore, the roots
of ∆τ(s) move continuously with respect to variations of its

parameters (coefficients, delay) and there is always a finite
number of roots at the right side of any vertical line of the
complex plane.

The appropriate computation of the critical delay value at
which the closed-loop system loses stability is given below:

Proposition 1: The closed-loop system is asymptotically
stable for any delay value τ ∈ [0,τc), where:

τc = min
{

τ
∗ ∈ R

∣∣τ∗(ω∗)> 0,ω∗ ∈Ωp
}
. (14)

where:

τ
∗(ω∗) =

1
ω∗

[
arg
{

Q(iω∗)
P(iω∗)

}
+2nπ

]
, n ∈ Z, (15)

and where the set Ωp is defined as the set of all real roots
of the following equation:

|Q(iω∗)|2−|P(iω∗)|2 = 0. (16)
Proof: By taking into account Remark 2, and the fact

that the closed-loop system is stable for τ = 0 implies that for
τ > 0 sufficiently small all the roots of (13) will remain on
the LHP of the complex plane. Moreover, there is a critical
value τ such that (13) has at least one root on the imaginary
axis and hence, such a value induces to the closed-loop
system to lose stability.

As can be seen in [12], there exists a value τ such that
the quasi-polynomial ∆τ(s) has a root on the imaginary axis
in s = iω∗, if and only if, the following condition:∣∣∣∣Q(iω∗)

P(iω∗)

∣∣∣∣= 1, (17)

holds for some value ω∗ ∈R+. Moreover, the correspondent
time-delay value can be computed by (15). Furthermore,
notice that the condition (17) can be rewritten easily as (16),
which is a polynomial, implying that it has a finite number
of solutions. Finally, by defining Ωp as the set of all real
roots of (16), the critical delay value can be computed as in
(14).

B. Extended Controller (2-DOF)

In the previous section, we show a method for computing
the margin delay in order to maintain stability in the closed-
loop system. In this section, we propose a 2-DOF controller,
which will be shown to be useful when the inherent delay in
the system is larger than the critical delay computed above.

Let K∗ be a stabilizing gain for the delay-free scenario,
computed using the results shown in section II-B. We con-
sider as our new state feedback gain:

K = K∗+[k1,0,k2,0] , (18)

where k1,k2 ∈ R are compensating gains in both positions
(θ0,θ1) feedback loop. Considering this extended controller,
the characteristic function of the closed-loop system is given
by:

∆
∗
τ(s) = P(s)+

(
Q(s)+(αk1 + εk2)s2 + k1(αε−βγ)

)
e−τs.

Remark 3: It is worth noticing that the proposed state
feedback gain (18) has a particular structure which provides
two degrees of freedom in the positions regulation problem.



We are interested in such structure, since the appropriate
regulation of position implies the regulation of velocity to
the origin.

Now, we introduce some notation: let ρ(ω) := αε −
γ(ω2+β ) and, R(ω) and I(ω) be the real and imaginary part
of Q(iω), respectively. Furthermore, it is worth noticing that
P(iω) ∈ R, for all real ω . Having explained this approach,
the following result characterize the triplet (k1,k2,τ) at which
the system has at least one root on the imaginary axis.

Proposition 2: Let K∗ be a stabilizing gain of the delay-
free scenario and let ρ , I and R be as defined previously.
Then, the characteristic function ∆∗τ(s) has at least two roots
on the imaginary axis at s =±iω , if and only if:

τδ =
1
ω

sin−1
{
− I(ω)

P(iω)

}
, ∀ω ∈Ωd , (19)

where:

Ωd :=
{

ω ∈ R
∣∣∣∣∣∣∣∣ I(ω)

P(iω)

∣∣∣∣≤ 1
}
, (20)

and the gains k1 and k2 belong to the family of lines:

k2 =
1

εω2 {ρ(ω)k1 +R(ω)− I(ω)cot(τω)} , (21)

for any ω ∈ Ωd . Furthermore, it has a single root at the
origin, if and only if:

k1 =−ka. (22)
Proof: Consider the characteristic function ∆∗τ(s), by

setting s = iω the following equations system is obtained:

ℜ{∆∗τ(s)}= 0, ℑ{∆∗τ(s)}= 0, (23)

by trying to solve this system for k1 and k2, the following is
computed:[

ρ(ω)cos(τω) −εω2 cos(τω)
−ρ(ω)sin(τω) εω2 sin(τω)

][
k1
k2

]
= r(ω), (24)

where r(ω) is a vector-valued function which can be easily
deduced and for the sake of brevity is omitted. It is clear
to see that the determinant of the matrix related to equation
(24) is equal to zero and, therefore, does not have a unique
solution.

However, we can rewrite (23) as:

`(ω)cos(τω)+ I(ω)sin(τω)+P(iω) = 0, (25)
`(ω)sin(τω)+ I(ω)cos(τω) = 0, (26)

where:
`(ω) = ρ(ω)k1− εω

2k2 +R(ω). (27)

By solving the system of equations formed by (25) and
(26) for `(ω), and consequently comparing the obtained
expressions the following condition must be fulfilled:

P(iω)sin(τω)+ I(ω) = 0. (28)

On one hand, any pair (τ, ω̂) satisfying condition (28) also
induces to equations (25) and (26) to be equivalent. On the
other hand, for every ω̂ ∈R there exist an infinite set of pairs
(k1,k2) along the line (26), which also solves (25).

The proof ends by solving τ and k2 from (28) and (26)
and obtaining conditions (19) and (21), respectively. Fur-
thermore, condition (22) can be verified simply by solving
k1 from ∆∗τ(0) = 0 and the set Ωd is defined to consider only
real solutions of (19).

IV. ILLUSTRATIVE RESULTS

For further details on the examples proposed in the sequel,
we refer to the website 1. Such material is composed by a
variety of animations of the Furuta Pendulum system and
system response signals behavior. The support material is
listed below:
A.1 Free Motion Behavior of the Furuta Pendulum with

initial conditions:[
θ0(0), θ̇0(0),θ1(0), θ̇1(0)

]T
=
[

π

4
,0,

π

4
,0
]T

. (29)

A.2 Controlled Motion with a delay value τ = 0.
A.3 Controlled Motion with a delay value τ = 0.5τc.
A.4 Controlled Motion with a delay value τ = 0.9τc.
A.5 Unstable Response of the Furuta Pendulum with a delay

value τ = τc.
A.6 Smooth Time Delay Variation of the System Transient

Response from τ = 0 to τ = τc.
The parameters used in these simulations are taken from

the experimental test bench studied in [9] and are summa-
rized in Tab. I. The initial conditions settled for the following
numerical results are chosen near the origin as:[

θ0(0), θ̇0(0),θ1(0), θ̇1(0)
]T

=
[

π

10
,0,

π

9
,0
]T

.

TABLE I
PARAMETERS OF THE SYSTEM

Symbol Value Unit
g 9.81 m

s2

l1 129×10−3 m
L0 155×10−3 m
m1 22.18×10−3 Kg
J1 184.50×10−6 Kg.m2

I0 238.49×106 K f .m2

As stated in section II-B, in order to compute the state
feedback gain K∗ we need to chose the weights Q and r. We
set r = 1 and:

Q = 1×10−4


1 0 0 0
0 0.01 0 0
0 0 1 0
0 0 0 0.01

 , (30)

with the purpose of giving more importance to the conver-
gence of the states θ0 and θ1 than to the angular velocities
or the control effort. More precisely, we set the position
correspondent values in Q one hundred times larger than the
ones set for the angular velocities. Given this parameters, the
state feedback gain is computed as:

K∗ =− [0.0100,0.0049,0.1755,0.0161]T . (31)

1https://furutablind.wixsite.com/furuta



Now, as mentioned in section III-A, the proposed strategy
is meant to find the critical delay in the state feedback loop
such that the closed-loop system becomes unstable. Having
calculated the gain value K∗ and according to Proposition 1
we use equation (16) to compute the set Ωp. This consists
in one element ω∗ = 30.88. Second, we calculate the critical
delay value τc = 0.0344s from expression (14).

We show the results obtained under these considerations.
Fig. 2 exhibits the closed-loop system response under dif-
ferent time-delay values below the critical condition: τ =
0,0.5τc,0.9τc. The results are illustrated from the nonlinear
and linear model point of view. As can be seen in Fig. 2,
as the time-delay value tends to approximate to the critical
value τc, the system response tends to have a more oscillatory
behavior in both models. This can be explained from the
linear model perspective since as τ→ τc, the rightmost root
of the characteristic equation (13) approaches the imaginary
axis. Illustrative animations of the Furuta Pendulum for
this particular cases can be found in A.2, A.3 and A.4.
Furthermore, A.6 corresponds to the continuous change in
the transient response as τ → τc.

Fig. 2. Closed-Loop System Response Under Different Delay Values.

Moreover, in Fig. 3, we present an unstable response of
the closed-loop system by setting τ = τc. At this value, the
characteristic equation of the closed-loop system has at least
one pair of roots on the imaginary axis. One of the main
features of this test is that the nonlinear model clearly loses
stability against the linear model which behaves more similar
to a marginally stable system. The behavior of the Furuta
Pendulum in this conditions is illustrated in A-5.

Finally, we use the result shown in Proposition 2 to com-
pute the stability boundaries for the auxiliary gains k1 and
k2. The results are depicted in Fig. 4, notice that since K∗ is
a stabilizing gain for the delay-free scenario then, the origin
of this figure illustrated by A is a stable point. Moreover, by
remark 2 any variation of the parameters (k1,k2,τ) around
the origin without crossing any stability boundary is stable.
Therefore, the region around the origin delimited by the
stability boundaries is a stable region. The point B depicts
the parameters setting (0,0,τc) which corresponds to the
boundary of the previous analysis. As expected, this point
lays on the stability boundaries. Furthermore, the line from
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Fig. 3. Closed-Loop System Unstable Response Under a Critical Delay.

A to B corresponds to the test illustrated in Figs. 2 and 3.

Fig. 4. Stability Boundaries for (k1,k2,τ).

In order to verify this result, in Fig. 5 we explore the
region in which k1 = 0.005 illustrating the critical delay τc.
Furthermore, considering a larger delay τ = 0.04, we test
this regions by setting the parameters p1, p2 and p3 in the
closed-loop system with initial conditions:

[
θ0(0), θ̇0(0),θ1(0), θ̇1(0)

]T
=
[

π

20
,0,

π

20
,0
]T

.

The results are shown in Fig. 6, where is clear to see that
the system has a stable response when p1 and p2 are chosen
and an unstable response for p3.

V. CONCLUDING REMARKS

A methodology for the design of an LQR based control
scheme considering a time-delay value in the state feed-
back loop for the stabilization of the Furuta pendulum is
addressed. As stated, the design methodology can be applied
and developed straightforwardly, showing that the presented
results are easy to implement. Furthermore, support didactic
material in form of animations of this control scheme is also
addressed.



Fig. 5. Stability Boundaries for (0.005,k2,τ).
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Fig. 6. Closed-Loop System Response Setting the Tunning Parameters p1,
p2 and p3.

VI. FUTURE WORK

We are interested in study two different design features
for the Furuta pendulum stabilization problem, these are
discussed in the sequel:

First, we aim to solve the problem of designing a control
law such that the system can be driven from its stable
equilibrium point in rest, to at least near the unstable point at
the upright position. Moreover, considering a time-delayed
nature in such a control law.

Second, in order to use the least requirements, we are
interested in designing a P− δ -controller type as in [13],
which does not require the full state. Moreover, we aim to
attack this problem from a different point of view as made
in past works in [14], [15] considering also the controllers
fragility.
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González-Galván, and R. Hernández-Molinar, “A transparent bilateral
control scheme for a local teleoperation system using proportional-
delayed controllers,” in International Conference of Control and
Automation, 2016.


