L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle et al., Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films, Science, vol.49, issue.6, pp.6138-1311, 2013.
DOI : 10.1103/PhysRevB.49.16223

M. F. El-kady and R. B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage, Nature Communications, vol.11, p.1475, 2013.
DOI : 10.1021/cm981085u

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, vol.454, issue.7230, p.706, 2009.
DOI : 10.1038/nature07719

M. S. Mannoor, H. Tao, J. D. Clayton, A. Sengupta, D. L. Kaplan et al., Graphene-based wireless bacteria detection on tooth enamel, Nature Communications, vol.4, p.763, 2012.
DOI : 10.12989/sss.2008.4.5.531

URL : http://www.nature.com/articles/ncomms1767.pdf

W. Guo, C. Cheng, Y. Wu, Y. Jiang, J. Gao et al., Bio-Inspired Two-Dimensional Nanofluidic Generators Based on a Layered Graphene Hydrogel Membrane, Advanced Materials, vol.11, issue.42, pp.6064-6068, 2013.
DOI : 10.1039/c1lc20423h

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, pp.306-666, 2004.
DOI : 10.1126/science.1102896

J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu et al., Electromagnetic interference shielding of graphene/epoxy composites, Carbon, vol.47, issue.3, pp.922-925, 2009.
DOI : 10.1016/j.carbon.2008.12.038

H. Kim and C. W. Macosko, Processing-property relationships of polycarbonate/graphene composites, Polymer, vol.50, issue.15, pp.3797-3809, 2009.
DOI : 10.1016/j.polymer.2009.05.038

J. Hicks and A. B. , Ural, A computational study of tunneling-percolation electrical transport in graphene-based nanocomposites, Applied Physics Letters, vol.95, issue.21, 2009.

X. Qi, D. Yan, Z. Jiang, Y. Cao, Z. Yu et al., Enhanced Electrical Conductivity in Polystyrene Nanocomposites at Ultra-Low Graphene Content, ACS Applied Materials & Interfaces, vol.3, issue.8, pp.3130-3133, 2011.
DOI : 10.1021/am200628c

Y. Wang, J. W. Shan, and G. J. Weng, Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling, Journal of Applied Physics, vol.118, issue.6, p.65101, 2015.
DOI : 10.1002/app.28499

L. He and S. C. Tjiong, Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold, Nanoscale research letters Nanotechnology, vol.8, issue.365702, 2012.

E. Tkalya, M. Ghislandi, R. Otten, M. Lotya, A. Alekseev et al., Experimental and Theoretical Study of the Influence of the State of Dispersion of Graphene on the Percolation Threshold of Conductive Graphene/Polystyrene Nanocomposites, ACS Applied Materials & Interfaces, vol.6, issue.17, pp.15113-15121, 2014.
DOI : 10.1021/am503238z

C. Gao, S. Zhang, F. Wang, B. Wen, C. Han et al., Graphene Networks with Low Percolation Threshold in ABS Nanocomposites: Selective Localization and Electrical and Rheological Properties, ACS Applied Materials & Interfaces, vol.6, issue.15, pp.12252-12260, 2014.
DOI : 10.1021/am501843s

A. Trionfi, D. Wang, J. Jacobs, L. Tan, R. Vaia et al., Direct Measurement of the Percolation Probability in Carbon Nanofiber-Polyimide Nanocomposites, Physical Review Letters, vol.66, issue.11, 2009.
DOI : 10.1103/PhysRevB.68.041403

F. Du, J. E. Fischer, and K. I. Winey, Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites, Physical Review B, vol.72, issue.12, p.121404, 2005.
DOI : 10.1103/PhysRevB.43.3331

E. Charlaix, Percolation threshold of a random array of discs: a numerical simulation, Journal of Physics A: Mathematical and General, vol.19, issue.9, p.533, 1986.
DOI : 10.1088/0305-4470/19/9/013

M. Mathew, T. Schilling, and M. Oettel, Connectivity percolation in suspensions of hard platelets, Physical Review E, vol.85, issue.6, pp.2012-061407
DOI : 10.1063/1.2750339

M. B. Bryning, M. F. Islam, J. M. Kikkawa, and A. G. Yodh, Very Low Conductivity Threshold in Bulk Isotropic Single-Walled Carbon Nanotube-Epoxy Composites, Advanced Materials, vol.350, issue.9, pp.1186-1191, 2005.
DOI : 10.1051/jphys:0199000510220250500

N. Yousefi, M. M. Gudarzi, Q. Zheng, S. H. Aboutalebi, F. Sharif et al., Self-alignment and high electrical conductivity of ultralarge graphene oxide???polyurethane nanocomposites, Journal of Materials Chemistry, vol.442, issue.25, pp.25-2012
DOI : 10.1016/j.carbon.2008.12.038

W. Bauhofer and J. Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Composites Science and Technology, vol.69, issue.10, pp.1486-1498, 2009.
DOI : 10.1016/j.compscitech.2008.06.018

R. Haggenmueller, C. Guthy, J. R. Lukes, J. E. Fischer, and K. I. Winey, Single Wall Carbon Nanotube/Polyethylene Nanocomposites: Thermal and Electrical Conductivity, Macromolecules, vol.40, issue.7, pp.2417-2421, 2007.
DOI : 10.1021/ma0615046

A. B. Oskouyi, U. Sundararaj, and P. Mertiny, Current-voltage characteristics of nanoplatelet-based conductive nanocomposites, Nanoscale Research Letters, vol.9, issue.1, 2014.
DOI : 10.1063/1.2432283

P. Sheng, Fluctuation-induced tunneling conduction in disordered materials, Physical Review B, vol.30, issue.6, p.2180, 1980.
DOI : 10.1103/PhysRevLett.30.1319

R. H. Otten, P. Van, and . Schoot, Connectivity percolation of polydisperse anisotropic nanofillers, The Journal of Chemical Physics, vol.134, issue.9, p.94902, 2011.
DOI : 10.1063/1.1742067

G. Ambrosetti, C. Grimaldi, I. Balberg, T. Maeder, A. Danani et al., Solution of the tunneling-percolation problem in the nanocomposite regime, Physical Review B, vol.34, issue.15, p.155434, 2010.
DOI : 10.1063/1.1747510

W. Bauhofer and J. Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Composites Science and Technology, vol.69, issue.10, pp.1486-1498, 2009.
DOI : 10.1016/j.compscitech.2008.06.018

P. Castaneda and J. Willis, The effect of spatial distribution on the effective behavior of composite materials and cracked media, Journal of the Mechanics and Physics of Solids, vol.43, issue.12, pp.1919-1951, 1995.
DOI : 10.1016/0022-5096(95)00058-Q

Z. Fan, F. Gong, S. T. Nguyen, and H. M. Duong, Advanced multifunctional graphene aerogel ??? Poly (methyl methacrylate) composites: Experiments and modeling, Carbon, vol.81, pp.396-404, 2015.
DOI : 10.1016/j.carbon.2014.09.072

X. Xia, Y. Wang, Z. Zhong, and G. J. Weng, A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites, Carbon, vol.111, pp.221-230, 2017.
DOI : 10.1016/j.carbon.2016.09.078

Y. Wang, G. J. Weng, S. A. Meguid, and A. M. Hamouda, A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites, Journal of Applied Physics, vol.115, issue.19, 2014.
DOI : 10.1038/208638a0

C. Grimaldi and I. Balberg, Tunneling and Nonuniversality in Continuum Percolation Systems, Physical Review Letters, vol.26, issue.6, p.66602, 2006.
DOI : 10.1103/PhysRevLett.35.247

URL : http://arxiv.org/pdf/cond-mat/0602463

R. H. Otten, P. Van, and . Schoot, Continuum Percolation of Polydisperse Nanofillers, Physical Review Letters, vol.103, issue.22, p.225704, 2009.
DOI : 10.1063/1.1831275

URL : https://pure.tue.nl/ws/files/3300986/Metis233280.pdf

R. Hashemi and G. J. Weng, A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings, Carbon, vol.96, pp.474-490, 2016.
DOI : 10.1016/j.carbon.2015.09.103

X. Xia, Z. Zhong, and G. J. Weng, Maxwell???Wagner???Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites, Mechanics of Materials, vol.109, pp.42-50, 2017.
DOI : 10.1016/j.mechmat.2017.03.014

A. Manta, M. Gresil, and C. Soutis, Predictive Model of Graphene Based Polymer Nanocomposites: Electrical Performance, Applied Composite Materials, vol.21, issue.6, pp.281-300, 2017.
DOI : 10.1002/adma.200801758

X. Lu, J. Yvonnet, F. Detrez, and J. Bai, Multiscale modeling of nonlinear electric conductivity in graphene-reinforced nanocomposites taking into account tunnelling effect, Journal of Computational Physics, vol.337, pp.116-131, 2017.
DOI : 10.1016/j.jcp.2017.01.063

W. Krauth, Statistical mechanics: algorithms and computations, 2006.

S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Applied Mechanics Reviews, vol.55, issue.4, 2013.
DOI : 10.1115/1.1483342

J. Yvonnet, Q. He, and C. Toulemonde, Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface, Composites Science and Technology, vol.68, issue.13, pp.2818-2825, 2008.
DOI : 10.1016/j.compscitech.2008.06.008

URL : https://hal.archives-ouvertes.fr/hal-00692237

J. G. Simmons, Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film, Journal of Applied Physics, vol.50, issue.9, pp.2581-2590, 1963.
DOI : 10.1063/1.1753783

R. Rahman and P. Servati, Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films, Nanotechnology, vol.23, issue.5, p.55703, 2012.
DOI : 10.1088/0957-4484/23/5/055703

J. Wang, S. Yu, S. Luo, B. Chu, R. Sun et al., Investigation of nonlinear I???V behavior of CNTs filled polymer composites, Materials Science and Engineering: B, vol.206, pp.55-60, 2016.
DOI : 10.1016/j.mseb.2016.01.004

J. Y. Jiang, M. S. Kim, H. M. Jeong, and C. M. Shon, Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator, Composites Science and Technology, vol.69, issue.2, pp.186-191, 2009.
DOI : 10.1016/j.compscitech.2008.09.039

S. Ansari and E. P. Giannelis, Functionalized graphene sheet-Poly(vinylidene fluoride) conductive nanocomposites, Journal of Polymer Science Part B: Polymer Physics, vol.72, issue.9, pp.888-897, 2009.
DOI : 10.1002/polb.21695

G. Lu, Z. Ji, and . Yu, Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding, Polymer, vol.51, issue.5, pp.1191-1196, 2010.