Y. Xu and T. You, Minimizing thermal residual stresses in ceramic matrix composites by using Iterative MapReduce guided particle swarm optimization algorithm, Composite Structures, vol.99, pp.388-396, 2013.
DOI : 10.1016/j.compstruct.2012.11.027

Y. Xu and T. Gao, Optimizing thermal-elastic properties of C/CSiC composites using a hybrid approach and PSO algorithm, Materials, vol.9, issue.222, 2016.

Z. Jing, X. Fan, and Q. Sun, Stacking sequence optimization of composite laminates for maximum buckling load using permutation search algorithm, Composite Structures, vol.121, pp.225-236, 2015.
DOI : 10.1016/j.compstruct.2014.10.031

Z. Jing, Q. Sun, and V. V. Silberschmidt, A framework for design and optimization of tapered composite structures. Part I: From individual panel to global blending structure, Composite Structures, vol.154, pp.106-128, 2016.
DOI : 10.1016/j.compstruct.2016.05.095

M. Prechtel, G. Leugering, P. Steinmann, and M. Stingl, Towards optimization of crack resistance of composite materials by adjustment of fiber shapes, Engineering Fracture Mechanics, vol.78, issue.6, pp.944-960, 2011.
DOI : 10.1016/j.engfracmech.2011.01.007

G. X. Gu, L. Dimas, Z. Qin, and M. J. Buehler, Optimization of Composite Fracture Properties: Method, Validation, and Applications, Journal of Applied Mechanics, vol.83, issue.7, p.71006, 2016.
DOI : 10.1115/1.4033381

B. San and H. Waisman, Optimization of Carbon Black Polymer Composite Microstructure for Rupture Resistance, Journal of Applied Mechanics, vol.84, issue.2
DOI : 10.1115/1.4035050

M. P. Bendsøe and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Computer Methods in Applied Mechanics and Engineering, vol.71, issue.2, pp.197-224, 1988.
DOI : 10.1016/0045-7825(88)90086-2

J. D. Deaton and R. V. Grandhi, A survey of structural and multidisciplinary continuum topology optimization: post 2000, Structural and Multidisciplinary Optimization, vol.89, issue.5, pp.1-38, 2000.
DOI : 10.1016/0045-7825(91)90046-9

L. Xia and P. Breitkopf, Recent Advances on Topology Optimization of Multiscale Nonlinear Structures, Archives of Computational Methods in Engineering, vol.51, issue.1, pp.2017-227249
DOI : 10.1016/j.matdes.2013.05.014

J. Zhu, W. Zhang, and L. Xia, Topology Optimization in Aircraft and Aerospace Structures Design, Archives of Computational Methods in Engineering, vol.50, issue.4, pp.595-622, 2015.
DOI : 10.1007/s00158-014-1071-5

P. Duysinx and M. P. Bendsøe, Topology optimization of continuum structures with local stress constraints, International Journal for Numerical Methods in Engineering, vol.10, issue.8, pp.1453-1478, 1998.
DOI : 10.1007/978-94-015-7862-2

C. Le, J. Norato, T. Bruns, C. Ha, and D. Tortorelli, Stress-based topology optimization for continua, Structural and Multidisciplinary Optimization, pp.605-620, 2010.

X. Guo, W. Zhang, M. Wang, and P. Wei, Stress-related topology optimization via level set approach, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.47-48, pp.47-48, 2011.
DOI : 10.1016/j.cma.2011.08.016

Q. Xia, T. Shi, S. Liu, and M. Wang, A level set solution to the stress-based structural shape and topology optimization , Computers and Structures, pp.90-91, 2012.

M. Bruggi and P. Duysinx, Topology optimization for minimum weight with compliance and stress constraints, Structural and Multidisciplinary Optimization, pp.369-384, 2012.
DOI : 10.1007/s00158-012-0759-7

Y. Luo and Z. Kang, Topology optimization of continuum structures with Drucker???Prager yield stress constraints, Computers & Structures, vol.90, issue.91, pp.65-75, 2012.
DOI : 10.1016/j.compstruc.2011.10.008

Y. Luo, M. Y. Wang, and Z. Kang, An enhanced aggregation method for topology optimization with local stress constraints, Computer Methods in Applied Mechanics and Engineering, vol.254, pp.31-41, 2013.
DOI : 10.1016/j.cma.2012.10.019

S. Cai, W. Zhang, J. Zhu, and T. Gao, Stress constrained shape and topology optimization with fixed mesh: A B-spline finite cell method combined with level set function, Computer Methods in Applied Mechanics and Engineering, vol.278, pp.361-387, 2014.
DOI : 10.1016/j.cma.2014.06.007

S. Cai and W. Zhang, Stress constrained topology optimization with free-form design domains, Computer Methods in Applied Mechanics and Engineering, vol.289, pp.267-290, 2015.
DOI : 10.1016/j.cma.2015.02.012

V. J. Challis, A. P. Roberts, and A. Wilkins, Fracture resistance via topology optimisation, Structural and Multidisciplinary Optimization, pp.263-271, 2008.
DOI : 10.1007/s00158-007-0160-0

O. Amir and O. Sigmund, Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization, Structural and Multidisciplinary Optimization, pp.157-174, 2012.
DOI : 10.1007/s00158-012-0817-1

URL : http://orbit.dtu.dk/en/publications/reinforcement-layout-design-for-concrete-structures-based-on-continuum-damage-and-truss-topology-optimization(ea90a0fb-d546-4767-97bc-e24a9a0c01ae).html

O. Amir, A topology optimization procedure for reinforced concrete structures, Computers & Structures, vol.114, issue.115, pp.46-58, 2013.
DOI : 10.1016/j.compstruc.2012.10.011

M. Jansen, G. Lombaert, M. Schevenels, and O. Sigmund, Topology optimization of fail-safe structures using a simplified local damage model, Structural and Multidisciplinary Optimization, pp.657-666, 2013.

K. A. James and H. Waisman, Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model, Computer Methods in Applied Mechanics and Engineering, vol.268, pp.614-631, 2014.
DOI : 10.1016/j.cma.2013.10.022

Z. Kang, P. Liu, and M. Li, Topology optimization considering fracture mechanics behaviors at specified locations, Structural and Multidisciplinary Optimization, pp.1-18, 2016.
DOI : 10.1007/s00158-016-1623-y

P. Liu, Y. Luo, and Z. Kang, Multi-material topology optimization considering interface behavior via XFEM and level set method, Computer Methods in Applied Mechanics and Engineering, vol.308, pp.113-133, 2016.
DOI : 10.1016/j.cma.2016.05.016

C. F. Hilchenbach and E. Ramm, Optimization of multiphase structures considering damage, Structural and Multidisciplinary Optimization, pp.1083-1096, 2015.

J. Kato, A. Lipka, and E. Ramm, Multiphase material optimization for fiber reinforced composites with strain softening , Structural and Multidisciplinary Optimization, pp.63-81, 2009.
DOI : 10.1007/s00158-008-0315-7

J. Kato and E. Ramm, Multiphase layout optimization for fiber reinforced composites considering a damage model, Engineering Structures, vol.49, pp.202-220, 2013.
DOI : 10.1016/j.engstruct.2012.10.029

L. Li and K. , Design of fracture resistant energy absorbing structures using elastoplastic topology optimization, Structural and Multidisciplinary Optimization, pp.1-29, 2017.

F. Fritzen, L. Xia, M. Leuschner, and P. Breitkopf, Topology optimization of multiscale elastoviscoplastic structures, International Journal for Numerical Methods in Engineering, vol.2, issue.2, pp.430-453, 2016.
DOI : 10.1088/0965-0393/2/3A/011

L. Xia, F. Fritzen, and P. Breitkopf, Evolutionary topology optimization of elastoplastic structures, Structural and Multidisciplinary Optimization, pp.569-581, 2017.

Y. M. Xie and G. P. Steven, A simple evolutionary procedure for structural optimization, Computers & Structures, vol.49, issue.5, pp.885-896, 1993.
DOI : 10.1016/0045-7949(93)90035-C

X. Huang and Y. M. Xie, Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method, Finite Elements in, Analysis and Design, vol.43, issue.14, pp.1039-1049, 2007.

L. Xia, Q. Xia, X. Huang, and Y. Xie, Bi-directional evolutionary structural optimization on advanced structures and materials: A comprehensive review, Archives of Computational Methods in Engineeringdoi:10, pp.11831-11847, 1007.

L. Xia and P. Breitkopf, Concurrent topology optimization design of material and structure within <mml:math altimg="si25.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msup><mml:mrow><mml:mstyle mathvariant="normal"><mml:mi>FE</mml:mi></mml:mstyle></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> nonlinear multiscale analysis framework, Computer Methods in Applied Mechanics and Engineering, vol.278, pp.524-542, 2014.
DOI : 10.1016/j.cma.2014.05.022

L. Xia and P. Breitkopf, Multiscale structural topology optimization with an approximate constitutive model for local material microstructure, Computer Methods in Applied Mechanics and Engineering, vol.286, pp.147-167, 2015.
DOI : 10.1016/j.cma.2014.12.018

G. Francfort and J. Marigo, Revisiting brittle fracture as an energy minimization problem, Journal of the Mechanics and Physics of Solids, vol.46, issue.8, pp.1319-1342, 1998.
DOI : 10.1016/S0022-5096(98)00034-9

B. Bourdin, G. Francfort, and J. Marigo, The Variational Approach to Fracture, Journal of Elasticity, vol.125, issue.8, pp.5-148, 2008.
DOI : 10.1016/S1874-5717(06)80009-5

URL : https://hal.archives-ouvertes.fr/hal-00551079

V. Hakim and A. Karma, Laws of crack motion and phase-field models of fracture, Journal of the Mechanics and Physics of Solids, vol.57, issue.2, pp.342-368, 2009.
DOI : 10.1016/j.jmps.2008.10.012

C. Miehe, F. Welschinger, and M. Hofacker, Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, International Journal for Numerical Methods in Engineering, vol.55, issue.10, pp.1273-1311, 2010.
DOI : 10.1007/978-94-017-1957-5

C. Miehe, M. Hofacker, and F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.45-48, pp.45-48, 2010.
DOI : 10.1016/j.cma.2010.04.011

M. Borden, C. Verhoosel, M. Scott, T. Hughes, and C. Landis, A phase-field description of dynamic brittle fracture, Computer Methods in Applied Mechanics and Engineering, vol.217, issue.220, pp.220-77, 2012.
DOI : 10.1016/j.cma.2012.01.008

C. Miehe, L. Schanzel, and H. Ulmer, Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Computer Methods in Applied Mechanics and Engineering, vol.294, pp.449-485, 2015.
DOI : 10.1016/j.cma.2014.11.016

T. Nguyen, J. Yvonnet, Q. Zhu, M. Bornert, and C. Chateau, A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure, Engineering Fracture Mechanics, vol.139, pp.18-39, 2015.
DOI : 10.1016/j.engfracmech.2015.03.045

URL : https://hal.archives-ouvertes.fr/hal-01140963

T. Nguyen, J. Yvonnet, M. Bornert, C. Chateau, K. Sab et al., On the choice of parameters in the phase field method for simulating crack initiation with experimental validation, International Journal of Fracture, vol.59, issue.9, pp.213-226, 2016.
DOI : 10.1002/nme.857

URL : https://hal.archives-ouvertes.fr/hal-01258035

T. Nguyen, J. Yvonnet, M. Bornert, and C. Chateau, Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microCT experiments and phase field simulations, Journal of the Mechanics and Physics of Solids, vol.95, pp.320-350, 2016.
DOI : 10.1016/j.jmps.2016.06.004

URL : https://hal.archives-ouvertes.fr/hal-01331213

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, vol.3, issue.5, pp.577-685, 1989.
DOI : 10.1109/TPAMI.1984.4767596

URL : https://dash.harvard.edu/bitstream/handle/1/3637121/Mumford_OptimalApproxPiece.pdf?sequence=1

L. Ambrosio and V. Tortorelli, Approximation of functional depending on jumps by elliptic functional via t-convergence, Communications on Pure and Applied Mathematics, vol.17, issue.8, pp.999-1036, 1990.
DOI : 10.1080/01621459.1987.10478393

C. Miehe, M. Hofacker, L. Schanzel, and F. , Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic???plastic solids, Computer Methods in Applied Mechanics and Engineering, vol.294, pp.486-522, 2015.
DOI : 10.1016/j.cma.2014.11.017

C. Miehe and S. Mauthe, Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Computer Methods in Applied Mechanics and Engineering, vol.304, pp.619-655, 2016.
DOI : 10.1016/j.cma.2015.09.021

X. Huang and Y. M. Xie, Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials, Computational Mechanics, vol.45, issue.1, pp.393-401, 2009.
DOI : 10.1080/08905459708945415

K. Maute, S. Schwarz, and E. Ramm, Adaptive topology optimization of elastoplastic structures, Structural Optimization, vol.10, issue.2, pp.81-91, 1998.
DOI : 10.1007/978-94-010-9577-8_33

S. Schwarz, K. Maute, and E. Ramm, Topology and shape optimization for elastoplastic structural response, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.15-17, pp.15-17, 2001.
DOI : 10.1016/S0045-7825(00)00227-9

X. Huang and Y. M. Xie, Topology optimization of nonlinear structures under displacement loading, Engineering Structures, vol.30, issue.7, pp.2057-2068, 2008.
DOI : 10.1016/j.engstruct.2008.01.009

M. Bogomolny and O. Amir, Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling, International Journal for Numerical Methods in Engineering, vol.190, issue.2, pp.1578-1597, 2012.
DOI : 10.1016/S0045-7825(00)00278-4

J. Kato, H. Hoshiba, S. Takase, K. Terada, and T. Kyoya, Analytical sensitivity in topology optimization for elastoplastic composites, Structural and Multidisciplinary Optimization, pp.507-526, 2015.

T. Buhl, C. Pedersen, and O. Sigmund, Stiffness design of geometrically nonlinear structures using topology optimization, Structural and Multidisciplinary Optimization, vol.19, issue.2, pp.93-104, 2000.
DOI : 10.1007/s001580050089

S. Cho and H. Jung, Design sensitivity analysis and topology optimization of displacement???loaded non-linear structures, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.22-24, pp.22-23, 2003.
DOI : 10.1016/S0045-7825(03)00274-3

O. Sigmund, A 99 line topology optimization code written in Matlab, Structural and Multidisciplinary Optimization, pp.120-127, 2001.
DOI : 10.1007/s001580050176

URL : http://orbit.dtu.dk/en/publications/a-99-line-topology-optimization-code-written-in-matlab(b0794468-93a9-4cca-87b3-b4224938859a).html

X. Huang and Y. M. Xie, Topology Optimization of Continuum Structures: Methods and Applications, 2010.
DOI : 10.1002/9780470689486

T. Nguyen, J. Yvonnet, Q. Zhu, M. Bornert, and C. Chateau, A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography, Computer Methods in Applied Mechanics and Engineering, vol.312, pp.312-567, 2016.
DOI : 10.1016/j.cma.2015.10.007

URL : https://hal.archives-ouvertes.fr/hal-01213943