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Abstract

A Bayesian model may be relied on to the extent of its adequacy by minimizing the posterior expected

loss raised to the power of a discounting exponent. The resulting action is minimax under broad conditions

when the sample size is held fixed and the discounting exponent is infinite. On the other hand, for any

finite discounting exponent, the action is Bayes when the sample size is sufficiently large. Thus, the action

is Bayes when there is enough reliable information in the posterior distribution, is minimax when the

posterior distribution is completely unreliable, and is a continuous blend of the two extremes otherwise.

Keywords: Bayes action; blended inference; discounting coefficient; Lp norm; minimax action; relative risk

aversion



1 Introduction

According to the foundations of Bayesian decision making, an agent should choose the action that minimizes

posterior expected loss. That prescription has the advantage of operationally defining probability but often

cannot be freely carried out in applications of Bayesian statistics. That is because the prior distribution, if

not other aspects of the statistical model, is to some extent unreliable, for a number of reasons. For example,

the prior may be improper, at best approximating a probability measure and subject to the marginalization

paradox (Dawid et al., 1973). Or the prior, chosen for mathematical or computational tractability, may have

highly arbitrary elements. It is rarely feasible to explicitly account for all relevant sources of uncertainty.

As a result, prior distributions are considered tentative, subject to revision in light of model checking on

the basis of observed data (Gelman and Shalizi, 2013). What do the resulting posterior probabilities mean,

seeing that they are not necessarily reliable enough to use for taking the actions that minimize posterior

loss?

To address the problem of the unreliable prior distribution, various robust Bayesian solutions weaken or

discount the prior distribution to an extent determined by a discounting coefficient by replacing the prior

with a set of prior distributions in some neighborhood around it, with larger neighborhoods for larger values

of the coefficient (Augustin et al., 2014, §4.7). Since such solutions are complex and leave open the question

of how to report an estimate or prediction or to make another decision on the basis of the resulting set

of posterior distributions, Section 2 introduces a simple approach to decision making on the basis of an

unreliable prior. It prescribes the Bayes action when the prior is completely reliable, the minimax action

when the prior is completely unreliable, and otherwise an intermediate action that is discounted to the extent

that the prior is unreliable, with the Bayes and minimax actions at the ends of a continuum (cf. Bickel, 2015).

Some hypothesis-based examples illustrate the ideas and their applicability to set estimation (Section 3).

The last part of the paper focuses on asymptotics with illustrative examples. The minimin act as well as

the minimax act is a limiting special case as the degree of discounting becomes infinite (Section 4). Section

5 proves that the discounted action eventually converges to the Bayes action as the sample size increases.
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2 Discounted expected loss and discounted action

Consider a family F = {f (•|θ) : θ ∈ Θ} of sampling distributions such that f (•|θ) is a probability density

function on a sample space X (n) for a sample size of n observations and conditional on a parameter value θ

in some set Θ. The observed sample x ∈ X (n) is modeled as a realization of the random element X ∼ f (•|θ).

Let L : Θ×A → [0,∞[ be a loss function on Θ and a set A of possible actions.

A Bayesian model (F ,P), consisting of F and a prior distribution P of θ, is discounted to degree ∆ ∈ R,

the discounting exponent, as follows. For a measure ν that dominates P , the Radon-Nikodym derivative

p = dP /dν is the prior density. The corresponding posterior density is

p (θ|x) :=
f (x|θ) p (θ)∫

f (x|θ) p (θ) dν (θ)

where dν (θ) = dθ if ν is the Lebesgue measure, and the posterior distribution P (•|x) satisfies p (•|x) =

dP (•|x) /dν. For any ∆ ∈ {−∞,∞} ∪ R\ {0}, the ∆-discounted posterior expected loss and ∆-discounted

posterior action are

Ep
∆,a (L |x) =





(∫
L∆ (θ, a) p (θ|x) dν (θ)

)1/∆

if −∞ < ∆ < ∞,∆ 6= 0

ess sup
P(•|x)
θ∈Θ L (θ, a) if ∆ = ∞

ess inf
P(•|x)
θ∈Θ L (θ, a) if ∆ = −∞

â
p
∆ = arg inf

a∈A
Ep

∆,a (L |x) ,

where L∆ (θ, a) = (L (θ, a))
∆

, and ess sup
P(•|x)
θ∈Θ h (θ) is the essential supremum of a nonnegative-valued,

P (•|x)-measurable function h over Θ with respect to P (•|x), that is,

ess sup
P(•|x)
θ∈Θ h (θ) = inf {H > 0 : P ({θ ∈ Θ : h (θ) ≤ H} |x) = 1}

with inf ∅ = ∞. Similarly, ess inf
P(•|x)
θ∈Θ h (θ) is the essential infimum of h.

In the case of no discounting (∆ = 1) , âp
1 = arg infa∈A Ep

1,a (L |x) is called the Bayes action since it mini-

mizes Ep
1,a (L |x), the posterior expected loss. Under complete discounting (∆ = ∞), â

p
∞ = arg infa∈A ess sup

P(•|x)
θ∈Θ L (θ, a)

is the essential minimax action. Between them (1 < ∆ < ∞), the effect of the model (F ,P) on the action is
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reduced by amount ∆. That suggests 2, the harmonic mean of 1 and ∞, as a moderate default value of ∆. At

the opposite extreme, that of maximal inverse discounting (∆ = −∞), â
p
∞ = arg infa∈A ess inf

P(•|x)
θ∈Θ L (θ, a)

is the essential minimin action, which is of less practical interest.

3 Examples involving hypotheses

Example 1. In hypothesis testing, one infers whether (a = 1) or not (a = 0) the unknown value of θ is in

H, a measurable subset of Θ. A relevant loss function is

L (θ, a) =





1 if θ ∈ H, a = 0

c if θ /∈ H, a = 1

0 otherwise

, (1)

where the cost ratio c > 0, is the penalty for incorrectly inferring that θ ∈ H relative to that for incorrectly

inferring that θ /∈ H. Let χ{0} and χ{1} denote characteristic functions on {0, 1}. For any finite ∆ 6= 0,

Ep
∆,a (L |x) =

(∫

H

χ∆
{0} (a) p (θ|x) dν (θ) +

∫

Θ\H

c∆χ∆
{1} (a) p (θ|x) dν (θ)

)1/∆

=
(
P (H|x)χ{0} (a) + c∆ (1− P (H|x))χ{1} (a)

)1/∆

= P1/∆ (H|x)χ{0} (a) + c (1− P (H|x))1/∆
χ{1} (a)

â
p
∆ = arg inf

a∈{0,1}
Ep

∆,a (L |x) =





0 if
(

P(H|x)
1−P(H|x)

)1/∆

< c

1 if
(

P(H|x)
1−P(H|x)

)1/∆

> c

{0, 1} if
(

P(H|x)
1−P(H|x)

)1/∆

= c

,

suggesting that ω∆ (H|x) := (P (H|x) / (1− P (H|x)))1/∆ be reported as the ∆-discounted posterior odds

of θ ∈ H. The corresponding ∆-discounted posterior probability that θ ∈ H would then be P∆ (H|x) :=

1/ (1 + 1/ω∆ (H|x)), resulting in P1 (H|x) = P (H|x) and lim∆→∞ P∆ (H|x) = 1/2. At ∆ = 2, lower

posterior probabilities are discounted by more orders of magnitude than higher ones (Figure 1, left plot), as

is desirable given the unreliability of extremely small probabilities.
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Figure 1: The 2-discounted posterior probability P2 (H|x) as a function of the posterior probability P (H|x).
Left plot: probabilities small enough to be interesting as posterior probabilities of a null hypothesis. Right
plot: probabilities large enough for use as the posterior probabilities of credible sets.

Figure 2: The ∆-discounted posterior probability P∆ (H|x) as a function of the model’s dependability, the
reciprocal of its discounting exponent ∆. Left plot: P (H|x) = 5%. Right plot: P (H|x) = 10−6.

That is applicable not only to hypothesis testing but also to set estimation. A set estimate H (x) is a

(1− α) 100% ∆-discounted credible set if P∆ (H (x) |x) = (1− α) 100%. For example, a 95% 2-discounted

credible set would be an approximately 80% 1-discounted credible set, a standard 80% credible set without

discounting (Figure 1, right plot), whereas a 95% ∞-discounted credible set would be a 50% credible set.

Figure 2 displays discounted probabilities at other values of ∆. There, the dependability D (∆) of a model

is the reciprocal of the extent that it requires discounting: D (∆) = 1/∆. Thus, D (1) = 1, D (2) = 1/2,

D (4) = 1/4, and D (∞) = 0. N

Example 2. For H, a measurable subset of Θ, let χH denote a characteristic function on Θ. When estimating
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χH (θ), the indicator of whether θ is in H, with an action in A = [0, 1] as opposed to the A = {0, 1} of

Example 1, squared-error loss is appropriate:

L (θ, a) = (a −χH (θ))
2
.

For any finite ∆ 6= 0,

Ep
∆,a (L |x) =

(∫
(a −χH (θ))

2∆
p (θ|x) dν (θ)

)1/∆

=

(∫

H

(1− a)
2∆

p (θ|x) dν (θ) +

∫

Θ\H

a2∆ p (θ|x) dν (θ)

)1/∆

=
(
P (H|x) (1− a)

2∆
+ (1− P (H|x)) a2∆

)1/∆

â
p

∆ = arg inf
a∈[0,1]

P (H|x) (1− a)2∆ + (1− P (H|x)) a2∆

=

(
1 +

(
P (H|x)

1− P (H|x)

)−1/(2∆−1)
)−1

.

Although â
p
1 might be considered as an elicited posterior probability that θ ∈ H (cf. Lad, 1996, §6.6.3), the

â
p
∆ of this example differs in general from the P∆ (H|x) of Example 1. That may be illustrated using the

default ∆ = 2:

P2 (H|x)

1− P2 (H|x)
=

√
P (H|x)

1− P (H|x)
6=

(
P (H|x)

1− P (H|x)

) 1

3

= â
p
2 .

Nonetheless, â
p
1 = P (H|x) = P1 (H|x) and lim∆→∞ â

p
∆ = 1/2 = lim∆→∞ P∆ (H|x). N

4 Limiting cases of the discounting exponent

With n held fixed, the discounted posterior expected losses of finite ∆ approach those of ∆ = ±∞ under the

conditions of the following proposition, which needs Lemma 1 for its proof.

Lemma 1. If h is a nonnegative-valued, P (•|x)-measurable function on Θ such that ess sup
P(•|x)
θ∈Θ h (θ) < ∞,

5



then

lim
∂→∞

(∫
h∂ (θ) dP (θ|x)

)1/∂

= ess sup
P(•|x)
θ∈Θ h (θ) .

Proof. That directly follows from Aliprantis and Border (2006, Lemma 13.1).

Proposition 1. Suppose L (•, a) is nonnegative-valued and P (•|x)-measurable and that it satisfies

ess sup
P(•|x)
θ∈Θ L (θ, a) < ∞

ess sup
P(•|x)
θ∈Θ 1/L (θ, a) < ∞

for some a ∈ A. Then lim∆→±∞ Ep

∆,a (L |x) = Ep
±∞,a (L |x) .

Proof. By Lemma 1, lim∆→∞ Ep
∆,a (L |x) = Ep

∞,a (L |x), and

lim
∆→−∞

Ep
∆,a (L |x) = lim

∆→−∞

(∫
L−|∆| (θ, a) p (θ|x) dν (θ)

)−1/|∆|

= lim
∂→∞

(∫
L−∂ (θ, a) p (θ|x) dν (θ)

)−1/∂

=

(
lim
∂→∞

(∫
(1/L (θ, a))∂ P (θ|x)

)1/∂
)−1

=
(
ess sup

P(•|x)
θ∈Θ 1/L (θ, a)

)−1

= ess inf
P(•|x)
θ∈Θ L (θ, a) = Ep

−∞,a (L |x) .

The next example compares that discounted-model approach to minimaxity with one based on a degree

of risk aversion.

Example 3. Suppose W (θ, a) ≥ 0 would be the amount of future wealth in a portfolio if θ ∈ Θ is the future

state of the world and a ∈ A is the investment strategy. The loss corresponding to the power utility function
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(Campbell and Viceira, 2002, §2.1.2) is

L (θ, a) =





L0 +
1

ρ−1

(
1

Wρ −1(θ,a) − 1
)

if ρ 6= 1

L0 − lnW (θ, a) if ρ = 1

,

where ρ ∈ R is the relative risk aversion, and L0 ∈ R such that L (θ, a) ≥ 0 for all θ ∈ Θ and a ∈ A.

If W (θ, a) < 1 and if W (•, a) satisfies the conditions of Lemma 1, then the Bayes action in the limit of

increasing relative risk aversion is

lim
ρ→∞

â
p
1 = arg inf

a∈A
lim
ρ→∞

Ep
1,a (L |x)

= arg inf
a∈A

lim
ρ→∞

(∫ (
1

W ρ−1 (θ, a)
− 1

)
p (θ|x) dν (θ)

)1/ ρ

= arg inf
a∈A

ess sup
P(•|x)
θ∈Θ

1

W (θ, a)
= arg sup

a∈A
ess inf

P(•|x)
θ∈Θ W (θ, a) ,

which reduces to the special case of minimax reciprocal wealth or maximin wealth (cf. Arrow, 1973, pp.

256-257). On the other hand, Proposition 1’s limit of maximal discounting (∆ → ∞) gives, with a fixed

ρ 6= 1,

â
p
∞ = arg inf

a∈A
ess sup

P(•|x)
θ∈Θ

1

ρ−1

(
1

W ρ−1 (θ, a)
− 1

)

= arg sup
a∈A

ess inf
P(•|x)
θ∈Θ W (θ, a) ,

implying that limρ→∞ â
p
1 = â

p
∞. The same holds for ρ = 1. N

5 Convergence to the Bayes action as data arrive

Discounting the model leads to estimates and other actions that tend to be closer to the minimax action for

smaller samples but closer to the Bayes action for larger samples, once there are enough data to overwhelm

questionable aspects of the model.

Proposition 2. Let δθ0 denote the Dirac measure with its mass at a θ0 ∈ Θ, and let
weak
−−−→ denote weak

convergence as n → ∞. If X ∼ f (•|θ0), if P (•|X)
weak
−−−→ δθ0 , and if L (•, a) is continuous on Θ for some
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a ∈ A, then, for any finite ∆ 6= 0,

Ep
∆,a (L |X)− Ep

1,a (L |X)
weak
−−−→ 0.

Proof. For any finite ∆ 6= 0, the mapping theorem yields

Ep
∆,a (L |X) =

(∫
L∆ (θ, a) dP (θ|X)

)1/∆

weak
−−−→

(∫
L∆ (θ, a) d δθ0 (θ)

)1/∆

=
(
L∆ (θ0, a)

)1/∆

= L (θ0, a) .

Thus, Ep
∆,a (L |X)− Ep

1,a (L |X)
weak
−−−→L (θ0, a)− L (θ0, a).

The next example illustrates the result.

Example 4. Example 2, continued. Let p (θ|H) and p (θ|Θ\H) denote the prior probability densities

conditional on a null hypothesis that θ ∈ H and the alternative hypothesis that θ /∈ H, respectively. The

posterior odds of the null hypothesis is

P (H|x)

1− P (H|x)
=

P (H)

1− P (H)

∫
f (x|θ) p (θ|H) dν (θ)∫

f (x|θ) p (θ|Θ\H) dν (θ)
,

the right-hand side of which is the product of the prior odds and the Bayes factor. Both quantities typically

involve unverified assumptions that require some kind of discounting before decision making on the basis

of the resulting P (H|x). As a concrete form of Proposition 2, Figure 3 displays the convergence of the

discounted and Bayes estimates to the same value, 0 if the null hypothesis is false or 1 if it is true, for,

as n → ∞, the Bayes factor tends to decrease if the null hypothesis is false or increase if it is true. The

curves for â
p
2 and â

p
4 reflect the gradation of estimates between the extremes of the Bayes action â

p
1 and the

minimax action â
p
∞ = 1/2. N
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Figure 3: Each â
p

∆ as an estimate of χH (θ) for ∆ = ∞ (the horizontal line at 1/2), ∆ = 4 (the lighter thin
curve), ∆ = 2 (the darker thin curve), and ∆ = 1 (the thick curve). Following Benjamin et al. (2017), the
prior odds is 10:1.
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