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FORMAL DEFORMATIONS OF THE ALGEBRA OF JACOBI FORMS

AND RANKIN-COHEN BRACKETS

YOUNGJU CHOIE, FRANÇOIS DUMAS, FRANÇOIS MARTIN, AND EMMANUEL ROYER

Abstract. This work is devoted to the algebraic and arithmetic properties of Rankin-
Cohen brackets allowing to define and study them in several natural situations of
number theory. It focuses on the property of these brackets to be formal deformations of
the algebras on which they are defined, with related questions on restriction-extension
methods. The general algebraic results developed here are applied to the study of
formal deformations of the algebra of weak Jacobi forms and their relation with the
Rankin-Cohen brackets on modular and quasimodular forms.

Introduction

Appearing in the late 1950s in the study of modular forms, Rankin-Cohen brackets have
undergone considerable development in many related fields, giving rise to a very abundant
literature in recent decades. The initial problem was to construct bi-differential operators
in two variables in such a way that their evaluation at modular forms is still a modular
form. The preservation of this property of SL(2)-equivariance was the main objective
of the generalizations proposed for other algebras of functions of arithmetic origin (such
as quasimodular forms and Jacobi forms, see for example [12, 3, 4]) with respect to the
appropriate arithmetical parameters (weight, depth, index). It was also considered in
various contexts related to Lie theory, representation theory or differential geometry, see
for instance [20, 10, 9, 15]). But there is a second fundamental aspect of the families of
Rankin-Cohen brackets, namely the fact that they define formal associative deformations
of the algebras considered and thus appear as alternative versions of the families of
transvectants in the classical theory of invariants. This specific global property of Rankin-
Cohen brackets is the focus of this paper. Number theory is the main framework of this
work: both the motivations of the algebraization of the problem and the applications are
related to modular, quasimodular and Jacobi forms.

The fact that Rankin-Cohen brackets define a formal deformation on modular forms is
mentioned as a final remark by Eholzer in Zagier’s article [22]. This fact encodes a large
set of relations between the arithmetic functions build from the Fourier coefficients of the
modular forms. Understanding this set of relations is indeed the very first motivation
of the seminal work by Zagier [22] (see also [17]). This property and the resulting links
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between Rankin-Cohen brackets and quantization procedures have given rise to many
significant articles, among which we can cite Unterberger and Unterberger [19], Cohen,
Manin and Zagier [5], Connes and Moscovici [6], Bieliavsky, Tang and Yaol[1], with in
Pevzner [18] an enlightening perspective on their different points of view. It is impossible
to give here complete references on such a vast subject, but it is necessary for our study
to mention that the article [6] gives as a corollary of more general results an explicit
method to construct from any homogeneous derivation D on a graded algebra A formal
Rankin-Cohen brackets which give a deformation on A; this type of brackets correspond
to the notion of standard RC algebra in [22]. This general process cannot be applied
directly to the algebra M of modular forms because it is not stable by the complex
derivative. That’s why Zagier introduced in [22] (see also [23]) a more subtle argument
to define formal Rankin-Cohen brackets on the algebra M≤∞ of quasimodular forms
whose restriction to M gives precisely the classical Rankin-Cohen brackets. We give in
this paper a formalisation of this extension-restriction argument to the general framework
of abstract differential algebras and use it to extend the classical Rankin-Cohen brackets
on M into a deformation of the algebra of weak Jacobi forms.

The text is organized in five sections. The first is devoted to recalling the basic notions
and results on formal deformations and to formulate some of their corollaries in terms
adapted to our study; we specify in particular in Propositions 1.3.1 and 1.3.3 the notion
of formal Rankin-Cohen brackets associated with a homogeneous derivation of a graded
or bigraded algebra.

In the second section, we give two possible strategies to construct significant formal
deformations on a graded algebra A. The most direct one is to start with an homogeneous
derivation D of A and to consider the associated formal Rankin-Cohen brackets. The
second strategy is to embed A into an algebra R and consider a suitable derivation D
of R which is not a derivation of A, so that the formal Rankin-Cohen brackets on R
associated to D restrict into a deformation of A. This is the contents of Theorem 2.2.1.
In the particular case where A = M we apply the first strategy taking for D the Serre
derivative, and the second one with R = M≤∞ and D the complex derivative. We
prove in Proposition 2.3.2 that the two formal deformations of A obtained by these two
approaches are not isomorphic. We develop these two strategies for weak Jacobi forms
in the rest of the paper.

The third section gathers useful notions on the weak Jacobi forms for the full modular
group, according to [8]. The algebra of weak Jacobi forms J is a polynomial algebra in
four variables E4,E6,A and B over C, bigraded by the weight and the index, containing
M = C[E4,E6] as a subalgebra.

We define in the fourth section a family of derivations of J extending the Serre deriva-
tion on M from which we deduce in Theorem 4.1.1 a family parameterized by C

3 of
formal Rankin-Cohen brackets on J . We classify in Theorem 4.2.3 these deformations
of J up to modular isomorphism.

The last section deals with the natural problem of extending the classical Rankin-
Cohen brackets on M to a deformation of J . To do this, we implement the extension-
restriction method based on the Theorem 2.2.1. Here the considered extension is not
a polynomial extension as in the case of the embedding of M in M≤∞, but an ex-
tension by localization. More precisely we introduce the Laurent polynomial algebra
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K = C[E4,E6,A
±1,B] which contains J and also a copy Q = C[E4,E6,F2] of M≤∞,

where F2 = BA−1 is a scalar multiple of the Weierstraß function. We define in Theo-
rem 5.1.1 a family parameterized by C

2 of formal Rankin-Cohen brackets on K whose
restriction to M are the classical Rankin-Cohen brackets on M, and determine in The-
orem 5.2.1 the values of the parameters for which these brackets give deformations of
J .

1. Algebraic results on formal deformations

1.1. Formal deformations. In this section, we recall the basic properties of formal
deformations and their isomorphisms. Our main reference on this subject is [11, Chapter
13].

1.1.1. Definition and first properties. For any commutative C-algebra A, let A[[~]] be the
commutative algebra of formal power series in one variable ~ with coefficients in A. A
formal deformation of A is a family (µj)j≥0 of bilinear maps µj : A × A → A such that
µ0 is the product of A and such that the (non commutative) product on A[[~]] defined
by extension of

∀(f, g) ∈ A2 f ⋆ g =
∑

j≥0

µj(f, g)~
j (1)

is associative. This associativity is reflected in

∀n ≥ 0 ∀(f, g, h) ∈ A3
n
∑

r=0

µn−r(µr(f, g), h) =

n
∑

r=0

µn−r(f, µr(g, h)). (2)

If (µj)j≥0 is a formal deformation of A, if µ1 is skew-symmetric and µ2 is symmetric,
then µ1 is a Poisson bracket on A.

1.1.2. Isomorphic formal deformations. Let (µj)j≥0 and (µ′
j)j≥0 be two formal deforma-

tions of A. They are isomorphic if there exists a C-linear bijective map φ : A → A such
that

∀j ≥ 0 ∀(f, g) ∈ A2 φ(µj(f, g)) = µ′
j(φ(f), φ(g)). (3)

Assume that µ1 is skew-symmetric and µ2 is symmetric. Formula (3) for j = 0 and
j = 1 implies, in particular, that φ is an automorphism of the Poisson algebra (A,µ1).
We denote by ⋆ and # the products on A[[~]] respectively associated to the formal
deformations (µj)j≥0 and (µ′

j)j≥0. The C[[~]]-linear extension φ : A[[~]] → A[[~]] satisfies

∀(f, g) ∈ A2 φ(f ⋆ g) = φ(f) # φ(g). (4)

1.1.3. Example. It is well known that, if d and δ are two C-derivations of A satisfying
δd = dδ, then the sequence (Td,δ

n )n≥0 of formal transvectants T
d,δ
n : A × A → A defined

for any f, g ∈ A by

T
d,δ
n (f, g) =

n
∑

r=0

(−1)r

r!(n− r)!
dn−rδr(f)drδn−r(g) (5)

is a formal deformation of A. The next paragraph is devoted to the more complicated
situation where the two derivations don’t commute but generate the two dimensional
non abelian Lie algebra.
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1.2. Connes-Moscovici deformations. We recall in the following proposition a par-
ticular case of a theorem due to Connes & Moscovici which provides a general method
for constructing formal deformations.

Definition 1.2.1. Let A a commutative C-algebra, and ∆ and D two C-derivations of
A satisfying

∆D −D∆ = D. (6)

The Connes-Moscovici deformation on A associated to (D,∆) is the sequence (CMD,∆
n )n≥0

of bilinear maps A×A → A defined for any f, g ∈ A by

CM
D,∆
n (f, g) =

n
∑

r=0

(−1)r

r!(n− r)!
Dr(2∆ + r)〈n−r〉(f)Dn−r(2∆ + n− r)〈r〉(g), (7)

with convention 1 = IdA and for any function F : A → A the Pochhammer notation:

F 〈0〉 = 1 and F 〈m〉 = F (F + 1) · · · (F +m− 1) for any m ≥ 1. (8)

Proposition 1.2.2. Let D and ∆ be two derivations on A such that ∆D − D∆ = D.

Then, (CMD,∆
n )n≥0 is a formal deformation of A.

Proof. See [6, eq. (1.5)], also [21] and [1]. �

The relationship between Connes-Moscovici deformations and transvectants has been
examined in different works, see for example [21, Section II.2.C], [1, Section 3], [16] and
[14].

1.3. Formal Rankin-Cohen brackets. Applying the above general result to graded
situations gives rise to the following notion of formal Rankin-Cohen brackets.

Proposition 1.3.1. Let A =
⊕

k∈NAk be a graded commutative C-algebra, and D a

derivation of A such that D(Ak) ⊂ Ak+2 for any k ≥ 0. Let us consider the sequence

(FRCD
n )n≥0 of bilinear maps A×A → A defined by bilinear extension of

FRC
D
n (f, g) =

n
∑

r=0

(−1)r
(

k + n− 1

n− r

)(

ℓ+ n− 1

r

)

Dr(f)Dn−r(g), (9)

for any f ∈ Ak, g ∈ Aℓ. Then,

(i) (FRCD
n )n≥0 is a formal deformation of A.

(ii) FRC
D
n (Ak, Aℓ) ⊂ Ak+ℓ+2n for all n, k, ℓ ≥ 0.

(iii) The associated Poisson bracket is defined by bilinear extension of

FRC
D
1 (f, g) = kfD(g)− ℓgD(f) for all f ∈ Ak, g ∈ Aℓ.

Proof. The linear map ∆: A → A defined on each homogeneous component by ∆(f) =
1
2kf for any f ∈ Ak is a derivation of A which satisfies ∆D − D∆ = D. We compute

(2∆ + r)〈n−r〉(f) = (k+n−1)!
(k+r−1)! f and (2∆ + n− r)〈r〉(g) = (ℓ+n−1)!

(ℓ+n−r−1)!g. So

∀n ≥ 0, CM
D,∆
n = FRC

D
n (10)

and (i) follows from Proposition 1.2.2. Points (ii) and (iii) are obvious by construction.
�
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Definition 1.3.2. The deformation (FRCD
n )n≥0 of A defined in Proposition 1.3.1 is called

the sequence of formal Rankin-Cohen brackets on A associated to D.

The construction corresponding to Definition 1.3.2 appears in [22, Section 5]; the
same article mentions (in a note added in proof) a remark by Eholzer on the fact that it
defines a formal deformation. We will need in Section 3 the following result, which is a
parameterized version of the Proposition 1.3.1 for bigraded algebras.

Proposition 1.3.3. Let A =
⊕

k,p∈ZAk,p be a bigraded commutative C-algebra, and D

a derivation of A such that D(Ak,p) ⊂ Ak+2,p for any k, p ∈ Z. For any µ ∈ C, let

us consider the sequence (FRCD,µ
n )n≥0 of bilinear maps A × A → A defined by bilinear

extension of

FRC
D,µ
n (f, g) =

n
∑

r=0

(−1)r
(

k + µp+ n− 1

n− r

)(

ℓ+ µq + n− 1

r

)

Dr(f)Dn−r(g), (11)

for any f ∈ Ak,p, g ∈ Aℓ,q. Then,

(i) (FRCD,µ
n )n≥0 is a formal deformation of A.

(ii) FRC
D,µ
n (Ak,p, Aℓ,q) ⊂ Ak+ℓ+2n,p+q for all n ∈ N, k, ℓ, p, q ∈ Z.

(iii) The associated Poisson bracket is defined by bilinear extension of

FRC
D,µ
1 (f, g) = (k + µp)fD(g)− (ℓ+ µq)gD(f) for all f ∈ Ak,p, g ∈ Aℓ,q.

Proof. For any µ ∈ C, we introduce the weighted Euler derivation ∆µ of A defined by
linear extension of ∆µ(f) = 1

2(k + µp)f for all (k, p) ∈ Z
2 and f ∈ Ak,p. It satisfies

∆µD−D∆µ = D. Next, we apply Proposition 1.2.2 and similar calculations to those in

the proof of Proposition 1.3.1 prove that CM
D,∆µ
n = FRC

D,µ
n and give the results. �

2. An extension-restriction method on formal deformations and

Rankin-Cohen brackets on modular forms revisited

2.1. Original problem. The classical Rankin-Cohen brackets were originally developed
for modular forms and have since been used in a wide range of literature and applications.
We refer for example to [23] as a primary reference. Recall that, if f and g are modular
forms of respective weights k and ℓ, the differential polynomial

RCn(f, g) =

n
∑

r=0

(−1)r
(

k + n− 1

n− r

)(

ℓ+ n− 1

r

)

Dr
z(f)D

n−r
z (g) (12)

is a modular form of weight k+ ℓ+2n. Here Dz is the usual normalized derivation 1
2iπ∂z

related to the complex variable z.
It is important to observe that, since the algebra M of modular forms is not stable by

this derivation (the derivative of a modular form is not a modular form), the property
of the sequence of classical Rankin-Cohen brackets defined by (12) to be a formal defor-
mation of M cannot be obtained by direct application of Proposition 1.3.1. Zagier has
developed in [22] an argument to overcome this difficulty (see Paragraph 2.3 below). We
extend it in the following theorem to the general formal framework of Connes-Moscovici
deformations.
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2.2. A general argument about the restriction of some formal deformations.

Our goal is to prove the following theorem.

Theorem 2.2.1. Consider a commutative C-algebra R and a subalgebra A of R. Let ∆
and θ be two C-derivations of R such that ∆θ − θ∆ = θ. We assume that

(i) ∆(A) ⊆ A and θ(A) ⊆ A;

(ii) there exists h ∈ A such as ∆(h) = 2h;

(iii) there exists x ∈ R,x /∈ A such that ∆(x) = x and θ(x) = −x2 + h.

Then, the derivation D := θ+2x∆ of R satisfies ∆D−D∆ = D and the Connes-Moscovici

deformation (CMD,∆
n )n≥0 of R defines by restriction to A a formal deformation of A.

An obvious calculation shows that ∆D − D∆ = D. We consider in R the Connes-
Moscovici deformation (CMD,∆

n )n≥0 defined by (7). The proof of the theorem is based
on the following two lemmas.

Lemma 2.2.2. The assumptions and notations are those of Theorem 2.2.1. We introduce

for any integer n ≥ 0 the linear map θ[n] : R → R defined by

θ[n] =

n
∑

ℓ=0

(−1)n−ℓ

(

n

ℓ

)

xn−ℓDℓ(2∆ + ℓ)〈n−ℓ〉. (13)

Then, for all n ≥ 1, we have,

(i) θ[n+1] = θθ[n] + nhθ[n−1](2∆ + n− 1).

(ii) θ[n](A) ⊆ A.

Proof. We directly check that θ[1] = θ and θ[2] = θ2 + 2h∆ which shows (i) for n = 1.
We then proceed by induction. It follows from θ(x) = −x2 + h that

θθ[n] = I + II + h · III

with notations


















I =
∑

ℓ(−1)n+1−ℓ
(n
ℓ

)

(n− ℓ)xn−ℓ+1Dℓ(2∆ + ℓ)〈n−ℓ〉,

II =
∑

ℓ(−1)n−ℓ
(n
ℓ

)

xn−ℓθDℓ(2∆ + ℓ)〈n−ℓ〉,

III =
∑

ℓ(−1)n−ℓ
(

n
ℓ

)

(n− ℓ)xn−ℓ−1Dℓ(2∆ + ℓ)〈n−ℓ〉.

We have

III = −n
∑

ℓ

(−1)n−1−ℓ

(

n− 1

ℓ

)

xn−1−ℓDℓ(2∆ + ℓ)〈n−1−ℓ〉(2∆ + n− 1)

so
θθ[n] + nhθ[n−1](2∆ + n− 1) = I + II.

We replace θ by D − 2x∆ in II to obtain II = II1 + II2 with






II1 = −
∑

ℓ(−1)n−ℓ
( n
ℓ−1

)

xn+1−ℓDℓ(2∆ + ℓ− 1)〈n+1−ℓ〉

II2 = −2
∑

ℓ(−1)n−ℓ
(

n
ℓ

)

xn+1−ℓ∆Dℓ(2∆ + ℓ)〈n−ℓ〉.

We replace ∆Dℓ by Dℓ∆+ ℓDℓ to write II2 = II21 + II22 with
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





II22 = −2
∑

ℓ(−1)n−ℓ
(n
ℓ

)

ℓxn+1−ℓDℓ(2∆ + ℓ)〈n−ℓ〉

II21 = −2
∑

ℓ(−1)n−ℓ
(n
ℓ

)

xn+1−ℓDℓ∆(2∆ + ℓ)〈n−ℓ〉.

By 2∆ = 2∆+ (ℓ− 1)− (ℓ− 1) we finally find II21 = II211 + II212 with







II211 = −
∑

ℓ(−1)n−ℓ
(n
ℓ

)

xn+1−ℓDℓ(2∆ + ℓ− 1)〈n+1−ℓ〉

II212 =
∑

ℓ(−1)n−ℓ
(

n
ℓ

)

(ℓ− 1)xn+1−ℓDℓ(2∆ + ℓ)〈n−ℓ〉.

So we obtain

II1 + II211 =
∑

ℓ

(−1)n+1−ℓ

(

n+ 1

ℓ

)

xn+1−ℓDℓ(2∆ + ℓ− 1)〈n+1−ℓ〉

and

I + II22 + II212 =
∑

ℓ

(−1)n+1−ℓ

(

n+ 1

ℓ

)

(n+ 1− ℓ)xn+1−ℓDℓ(2∆ + ℓ)〈n−ℓ〉.

Then, we compute

(2∆ + ℓ− 1)〈n+1−ℓ〉 + (n+ 1− ℓ)(2∆ + ℓ)〈n−ℓ〉

= (2∆ + ℓ− 1)(2∆ + ℓ)〈n−ℓ〉 + (n+ 1− ℓ)(2∆ + ℓ)〈n−ℓ〉

= (2∆ + n)(2∆ + ℓ)〈n−ℓ〉

= (2∆ + ℓ)〈n+1−ℓ〉.

We conclude

I + II =
∑

ℓ

(−1)n+1−ℓ

(

n+ 1

ℓ

)

xn+1−ℓDℓ(2∆ + ℓ)〈n+1−ℓ〉,

which completes the proof of (i) of the lemma. As a consequence, we get (ii). �

Lemma 2.2.3. The assumptions and notations are those of Theorem 2.2.1. We introduce,

for any integer n ≥ 0, the bilinear map Θn : R×R → R defined by

Θn(f, g) =

n
∑

r=0

(−1)r

r!(n− r)!

(

θ[r](2∆ + r)〈n−r〉
)

(f)
(

θ[n−r](2∆ + n− r)〈r〉
)

(g) (14)

for all (f, g) ∈ R2. Then, we have (CMD,∆
n )n≥0 = (Θn)n≥0 .

Proof. We express Θn depending on D using (13), (14) and Lemma 2.2.2. We find

Θn(f, g) =
∑

r,ℓ,t

(−1)n+r−t−ℓ

r!(n− r)!

(

r

ℓ

)(

n− r

t

)

xn−t−ℓ

×Dℓ(2∆ + ℓ)〈r−ℓ〉(2∆ + r)〈n−r〉(f)Dt(2∆ + t)〈n−r−t〉(2∆ + n− r)〈r〉(g).
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Using (2∆ + ℓ)〈r−ℓ〉(2∆ + r)〈n−r〉 = (2∆ + ℓ)〈n−ℓ〉and (2∆ + t)〈n−r−t〉(2∆ + n − r)〈r〉 =

(2∆ + t)〈n−t〉, we obtain

Θn(f, g) =

∑

ℓ,t

(−1)n−t

(n− t− ℓ)!ℓ!t!
Dℓ(2∆+ℓ)〈n−ℓ〉(f)Dt(2∆+t)〈n−t〉(g)xn−t−ℓ

∑

r

(−1)r−ℓ

(

n− t− ℓ

r − ℓ

)

.

The inner sum indexed by r is equal to (1− 1)n−t−ℓ, so we obtain

Θn(f, g) =
∑

ℓ

(−1)ℓ

ℓ!(n− ℓ)!
Dℓ(2∆ + ℓ)〈n−ℓ〉(f)Dn−ℓ(2∆ + n− ℓ)〈ℓ〉(g) = CM

D,∆
n (f, g),

and the proof is complete. �

Proof of Theorem 2.2.1. We know from Proposition 1.2.2 that (CMD,∆
n )n≥0 is a formal

deformation of R but it is not clear that CM
D,∆
n (f, g) ∈ A for f, g ∈ A. The sequence

(Θn)n≥0 satisfies, by construction, that Θn(f, g) ∈ A for f, g ∈ A but it is not clear from
its definition that it is a formal deformation of R. Thus, Theorem 2.2.1 follows from the
equality CM

D,∆
n = Θn proved in Lemma 2.2.3. Let us observe that the subalgebra A of

R is stable by ∆, is not necessarily stable by D, but is stable by any bilinear application
CM

D,∆
n . �

2.2.1. Extension-restriction method. Theorem 2.2.1 is formulated in terms of restriction
from an algebra R to a subalgebra A. In the following number-theoretical applications,
it will be applied in terms of extension from A to R either by polynomial extension (see
paragraph 2.3.2 for modular forms) or by localization (see Section 5 for weak Jacobi
forms).

2.3. Application to modular forms. A reference for details on this section is [12].

2.3.1. Reminder and notations on modular and quasimodular forms. It is well known
that the C-algebra of holomorphic modular forms M associated to the full modular
group SL(2,Z) is the weight-graded polynomial algebra

M = C[E4,E6] =
⊕

k∈2Z≥0, k 6=2

Mk with Mk =
⊕

4i+6j=k

CEi
4 E

j
6 (15)

where E4 and E6 are the Eisenstein series of respective weights 4 and 6. The Eisenstein
series E2 is not a modular form but a quasimodular form (of weight 2 and depth 1) and
the algebra M≤∞ of quasimodular forms can be described as the polynomial algebra

M≤∞ = M[E2] = C[E4,E6,E2] =
⊕

k∈2Z≥0

k/2
⊕

s=0

Mk−2s E
s
2 (16)

graded by the weight k and filtered by the depth s (corresponding to the degree in E2).
We denote by Dz the normalized complex derivative Dz =

1
2iπ∂z. Ramanujan relations

are

Dz(E4) = −
1

3
(E6 −E4 E2), Dz(E6) = −

1

2
(E2

4 −E6 E2), Dz(E2) = −
1

12
(E4−E2

2)

(17)
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In particular the subalgebra M of M≤∞ is not stable by the derivation Dz of M≤∞.
We introduce the Serre derivative, which is the derivation Se of M≤∞ defined by linear
extension of

Se(f) = Dz(f)−
k

12
E2 f for any f ∈ M≤∞ of weight k. (18)

We have

Se(E4) = −
1

3
E6, Se(E6) = −

1

2
E2
4, Se(E2) = −

1

12
(E2

2+E4). (19)

In particular M is stable by Se and the restriction of Se to M = C[E4,E6] is the derivative
θ = −1

3 E6 ∂E4
− 1

2 E
2
4 ∂E6

.

2.3.2. Application of the extension-restriction method to modular forms. We apply here
the general result of Theorem 2.2.1 to give another proof of the following well-known
result.

Proposition 2.3.1. The sequence of classical Rankin-Cohen brackets (12) defines a for-

mal deformation of the algebra M.

Proof. We choose for A the algebra of modular forms M = C[E4,E6], for θ the restriction
to M of the Serre derivative Se and for ∆ the weight-derivative defined by ∆(f) = k

2f
for any f ∈ Mk. We have ∆θ − θ∆ = θ. We introduce

h = −
1

144
E4 ∈ M and x =

1

12
E2 ∈ M≤∞.

We consider the polynomial extension R = M[x], which is, by (16), the algebra of
quasimodular forms M≤∞. We extend ∆ and θ to M≤∞ by ∆(x) = x and θ(x) = −x2+h.
In other words

∆(E2) = E2 and θ (E2) = −
1

12
E2
2−

1

12
E4 .

Then, the extensions ∆ and θ are the derivations of M≤∞ such that

∆(f) =
k

2
f for any f ∈ M≤∞ of weight k, and θ = Se on M≤∞,

and they also satisfy ∆θ − θ∆ = θ. By (18) the derivation θ + 2x∆ of M≤∞ is equal
to the derivative Dz. Applying Theorem 2.2.1, we deduce that the formal deformation
(CMDz ,∆)n≥0 of M≤∞ defines by restriction a formal deformation of M. On the one

hand CM
Dz ,∆
n = FRC

Dz
n on M≤∞ by (10). On the other hand, the restriction of FRCDz

n

to M is the classical Rankin-Cohen bracket RCn defined by (12). So we get a proof of
the property that (RCn)n≥0 is a formal deformation of M. �

As observed at the end of the proof of Theorem 2.2.1, the algebra M is stable by ∆,
is not stable by Dz, but is stable by any Rankin-Cohen brackets FRC

Dz
n = CM

Dz ,∆
n .



10 YOUNGJU CHOIE, FRANÇOIS DUMAS, FRANÇOIS MARTIN, AND EMMANUEL ROYER

2.3.3. Serre Rankin-Cohen brackets. Another strategy to overcome the fact that M is not
stable by the derivation Dz is to change the derivation and apply directly Proposition 1.3.1
to a weight 2 homogeneous derivation of M, for instance the Serre derivation Se on M.
So we define with (9) the Serre-Rankin-Cohen brackets (SRCn)n≥0 = (FRCSe

n )n≥0 on M
by bilinear extension of

SRCn(f, g) =

n
∑

r=0

(−1)r
(

k + n− 1

n− r

)(

ℓ+ n− 1

r

)

Ser(f) Sen−r(g) (20)

for (f, g) ∈ Mk×Mℓ. This is by Proposition 1.3.1 a formal deformation of M satisfying

∀n ≥ 0 SRCn(Mk,Mℓ) ⊂ Mk+ℓ+2n. (21)

It follows from the definition that SRC0 = RC0 and SRC1 = RC1 on M. The following
proposition clarifies the relationship between the Serre-Rankin-Cohen brackets and the
usual Rankin-Cohen brackets (12).

Proposition 2.3.2. The two formal deformations (RCn)n≥0 and (SRCn)n≥0 of M are

not isomorphic.

Proof. If ϕ is an isomorphism between the formal deformations
(

M, (SRC)n≥0

)

and
(

M, (RC)n≥0

)

then it is a Poisson automorphism of (M,RC1) since SRC1 = RC1. Then

ϕ = idM by Proposition 7 of [7]. This is contradicted by

SRC2(f, g) = RC2(f, g) +
1

288
kℓ(k + ℓ+ 2)fg E4 for (f, g) ∈ Mk ×Mℓ. (22)

�

2.3.4. Formal deformations on quasimodular forms. Using (19), the formal Rankin-Cohen
brackets (SRCn)n≥0 on M defined by (20) extend canonically to M≤∞. Many other for-
mal deformations of M≤∞ can be constructed using Proposition 1.2.2 and the systematic
study of such analogues of Rankin-Cohen brackets on M≤∞ is the subject of the article
[7] under the additional arithmetical assumption of depth conservation. It is not satisfied
by (SRCn)n≥0 because for instance SRC1(E2,E4) = 1

3(E4 E
2
2 −2E6 E2 +E2

4) is of depth

2. However, the deformations of M≤∞ appearing in Theorems B and D of [7] will play
some role in the study of the deformations on the Jacobi forms in the following section.

3. The algebra of weak Jacobi forms

3.1. The notion of weak Jacobi form. The aim of this part is to gather the notions we
shall need on weak Jacobi forms. The main reference is [8]. Let H be the upper half plane,
k an integer and m a nonnegative integer. The Jacobi group SL(2,Z)J = SL(2,Z) ⋉ Z

2

acts on functions f : H×C → C as follows: if γ =
(

a b
c d

)

∈ SL(2,Z) and (λ, µ) ∈ Z
2, then

f‖
k,m

((γ, (λ, µ)))(τ, z) =

(cτ+d)−k exp

(

2πim

(

−
c(z + λτ + µ)2

cτ + d
+ λ2τ + 2λz + λµ

))

f

(

aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)

for all (τ, z) ∈ H × C.
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A weak Jacobi form of weight k and index m is a holomorphic function Φ: H×C → C

invariant by the action ‖
k,m

of the Jacobi group and whose Fourier expansion has the
shape

Φ(τ, z) =
+∞
∑

n=0

∑

r∈Z
r2≤4nm+m2

c(n, r)e2πi(nτ+rz). (23)

The vector space Jk,m of such functions is finite dimensional. We identify functions on
H × C that are not depending on the second variable with functions on H. On this
subspace, the action ‖

k,0
of SL(2,Z)J induces the classical modular action of SL(2,Z)

denoted by |
k
. The space Jk,0 = Mk is the space of holomorphic modular forms of

weight k on SL(2,Z) defined in 2.3.
The principal object of our study is the bigraded algebra of weak Jacobi forms

J =
⊕

k∈2Z
m≥0

Jk,m. (24)

3.2. Generators of the algebra of the weak Jacobi forms. The algebra J is a
polynomial algebra on two generators over the algebra M of modular forms. We describe
these two generators.

For m = 0, we already mentioned in (15) that the Eisenstein series E4 and E6 generate
the algebra of modular forms: M = C[E4,E6]. If m 6= 0, the Eisenstein series Ek,m of
Jk,m of even weight k ≥ 4 and index m is

Ek,m(τ, z) =
1

2

∑

(c,d)∈Z2

(c,d)=1

∑

λ∈Z

(cτ + d)−k exp

(

2iπm

(

λ2aτ + b

cτ + d
+ 2

λz − cz2

cτ + d

))

.

Let us define

Φ10,1 =
1

144 (E6 E4,1−E4 E6,1) ∈ J10,1, Φ12,1 =
1

144 (E
2
4 E4,1 −E6 E6,1) ∈ J12,1,

and

∆ =
1

1728
(E3

4−E2
6) ∈ M12.

We define in J the elements

A =
Φ10,1

∆
∈ J−2,1 and B =

Φ12,1

∆
∈ J0,1. (25)

By [8, Theorem 9.3], we have

J = M[A,B] = C[E4,E6,A,B].

Using the algorithm proven in [8, p. 39], we can compute the Fourier expansion of Φ10,1

and Φ12,1 and deduce the ones of A and B.



12 YOUNGJU CHOIE, FRANÇOIS DUMAS, FRANÇOIS MARTIN, AND EMMANUEL ROYER

3.3. A localization of the algebra of the weak Jacobi forms. We introduce the
algebra

K = C[E4,E6,A
±1,B] ⊃ J . (26)

This is the localization of J with respect to the powers of A. The notions of weight and
index naturally extend to K defining a bigraduation

K =
⊕

k∈2Z
m∈Z

Kk,m. (27)

We set

F2 = BA−1, (28)

which satisfies

K = C[E4,E6,F2,A
±1] = C[E4,E6,F2][A

±1]

and leads to introduce the subalgebra

Q = C[E4,E6,F2].

The elements of Q appear as the elements in K of index zero. The following table
summarizes the weights and indices attached to these different generators.

E4 E6 A B F2

weight 4 6 -2 0 2

index 0 0 1 1 0

3.4. Number-theoretic interpretation, relationship with quasimodular forms.

The function F2 has a number-theoretic meaning since

F2 = −
3

π2
℘ (29)

where ℘ is the Weierstraß function [8, Theorem 3.6] and hence Q is the subalgebra
generated by modular forms and the Weierstraß function

Q = M[℘]. (30)

Another arithmetical point of view consists in seeing Q as a formal analogue to the
algebra M≤∞ = M[E2] of quasimodular forms. The algebra isomorphism involved is

ω : Q → M≤∞, P (E4,E6,F2) 7→ P (E4,E6,E2). (31)

The degree related to F2 of any f ∈ Q is the depth of the quasimodular form ω(f) and
we have

M ⊂ M≤∞ ≃ Q ⊂ K.

The isomorphism ω and (30) emphasize that, from an algebraic point of view, the Weier-
straß function ℘ is similar to the Eisenstein series E2.
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3.5. Summary. We can summarize the relationships between the different function al-
gebras under consideration by the following diagram:

J = C[E4,E6,A,B] �
�

// K = C[E4,E6,F2,A
±1]

M = C[E4,E6]
� �

//

?�

OO

Q = C[E4,E6,F2] ≃ M≤∞
?�

OO

This is the framework for our study of formal deformations of J .

3.6. Problem. Our goal is to construct families of Rankin-Cohen brackets on weak Ja-
cobi forms,

(i) which are deformations of the algebra J (this was not the case for some other
construction, appearing in the literature),

(ii) which extend Rankin-Cohen brackets on modular forms,
(iii) which are coherent with the weight and the index (that is preserve the index and

increase the weight by two).

Two main methods can be used following the two points of view illustrated above in the
case of modular forms.

(i) The first strategy is to start from a derivation of J and to use the canonical
construction of Proposition 1.3.3. This method gives rise in Section 4 to a family
of deformations of J extending the Serre-Rankin-Cohen brackets on M (defined
in Section 2.3.3).

(ii) The second one is to apply the extension-restriction process of Theorem 2.2.1.
So we start from a suitable derivation D of the extension K of J which doesn’t
stabilize J . We thus construct in Section 5 a family of deformations stabilizing J
and extending the classical Rankin-Cohen brackets on M (defined in Section 2.1).

4. A first family of Rankin-Cohen deformations on weak Jacobi forms

In this section, we define and study a family of Rankin-Cohen deformations on J
whose restriction to M is the sequence of Serre-Rankin-Cohen brackets.

4.1. Construction of the deformations. We first define an extension of the Serre
derivative to the weak Jacobi forms. For any a, b ∈ C we denote by Sea,b the derivation
of J = C[E4,E6,A,B] defined by

Sea,b(E4) = −
1

3
E6, Sea,b(E6) = −

1

2
E2
4, Sea,b(A) = aB, Sea,b(B) = bE4A . (32)

This is by (19) the only way to extend the Serre derivation Se on M into a derivation of
J preserving the index and increasing the weight by two.

We use the general process described in Section 1.3 to construct formal Rankin-Cohen
brackets on J .

Theorem 4.1.1. For all (a, b, c) ∈ C
3, for any n ≥ 0, let {·, ·}

[a,b,c]
n be the bilinear map

from J × J to J defined by bilinear extension of

{f, g}[a,b,c]n =

n
∑

r=0

(−1)r
(

k + cp+ n− 1

n− r

)(

ℓ+ cq + n− 1

r

)

Sera,b(f) Se
n−r
a,b (g) (33)
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for all f ∈ Jk,p and g ∈ Jℓ,q. Then,

(i) The sequence
(

{·, ·}
[a,b,c]
n

)

n≥0
is a formal deformation of J .

(ii) We have {Jk,p,Jℓ,q}
[a,b,c]
n ⊂ Jk+ℓ+2n,p+q for all k, ℓ ∈ 2Z, p, q, n ≥ 0.

(iii) The subalgebra of modular forms M is stable by {·, ·}
[a,b,c]
n and its restriction to

M×M is the Serre-Rankin-Cohen bracket SRCn.

Proof. For any (a, b) ∈ C
2, the derivation Sea,b of J satisfies Sea,b(Jk,m) ⊂ Jk+2,m.

Then, (i) and (ii) follow from Proposition 1.3.3 since {·, ·}
[a,b,c]
n = FRC

Sea,b,c
n . If f, g are

modular forms of respective weights k, ℓ, we have p = q = 0 in formula (33) which doesn’t
depend on c in this case. Moreover Sea,b(f) = Se(f) and Sea,b(g) = Se(g) by (32) and

(19). Hence {f, g}
[a,b,c]
n doesn’t depend on (a, b) and is by (20) equal to SRCn(f, g). �

4.2. Classification and separation results. The formal deformations ({·, ·}
[a,b,c]
n )n≥0

depend on three parameters. We can classify them, up to a suitable specialization of the
notion of isomorphic deformations (see paragraph 1.1.2) with respect to the arithmetical
context.

Definition 4.2.1. Two formal deformations
(

{·, ·}
[a,b,c]
n

)

n≥0
and

(

{·, ·}
[a′,b′,c′]
n

)

n≥0
of J

are modular-isomorphic if there exists a C-linear bijective map φ : J → J such that

(i) φ({f, g}
[a,b,c]
j ) = {φ(f), φ(g)}

[a′ ,b′,c′]
j for all j ≥ 0 and f, g ∈ J .

(ii) φ preserves the index and the weight of homogeneous weak Jacobi forms

In particular φ is a C-algebra automorphism of J and a Poisson isomorphism from

(J , {·, ·}
[a,b,c]
1 ) to (J , {·, ·}

[a′ ,b′,c′]
1 ).

Lemma 4.2.2. If two formal deformations ({·, ·}
[a,b,c]
n )n≥0 and ({·, ·}

[a′ ,b′,c′]
n )n≥0 are modular-

isomorphic, then c = c′, and there exists ξ ∈ C
∗ such that a′ = ξa and b′ = ξ−1b.

Proof. Let φ : J → J be as in Definition 4.2.1. It induces a Poisson isomorphism from
(

J , {·, ·}
[a,b,c]
1 )

)

to
(

J , {·, ·}
[a′,b′,c′]
1

)

. We have φ (M) ⊂ M by (ii) and RC1 = SRC1 =

{·, ·}
[a,b,c]
1 on M. Then, the restriction of φ to M is a Poisson modular automorphism of

(M,RC1). By [7, Proposition 7], this is the identity of M.
Let f ∈ Jk,p. Then, φ(f) ∈ Jk,p. The restriction of Sea,b to M is Se. The kernel of Se

is C[∆] (see, for example, [7, Proposition 8]) and φ(∆) = ∆. We deduce that

φ
(

{f,∆}
[a,b,c]
1

)

= −12∆φ (Sea,b(f)) and {φ(f), φ(∆)}
[a′ ,b′,c′]
1 = −12∆Sea′,b′ (φ(f))

and hence

φ ◦ Sea,b = Sea′,b′ ◦φ. (34)

It follows that, for all f ∈ Jk,p and g ∈ Jℓ,q, we have

{φ(f), φ(g)}
[a′ ,b′,c′]
1 = φ

(

(k + c′p)f Sea,b(g)− (ℓ+ c′q)g Sea,b(f)
)

and (i) leads to

(c′ − c) (pf Sea,b(g)− qg Sea,b(f)) = 0.
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We apply this equality to f = AE4 and g = E6 to obtain c′ = c. Let λ and µ be defined
in C

∗ by φ(A) = λA and φ(B) = µB. Equation (34) applied to A and B gives aµ = a′λ
and b′µ = bλ. The proof is complete setting ξ = µ/λ. �

Theorem 4.2.3. Let (a, b, c) ∈ C
3. The formal deformation ({·, ·}

[a,b,c]
n )n≥0 of J is

modular-isomorphic to one of the following formal deformations,

(1) The formal deformation ({·, ·}
[1,b′ ,c′]
n )n≥0 for some (b′, c′) ∈ C

2.

(2) The formal deformation ({·, ·}
[0,1,c′]
n )n≥0 for some c′ ∈ C.

(3) The formal deformation ({·, ·}
[0,0,c′]
n )n≥0 for some c′ ∈ C.

These deformations are pairwise non modular-isomorphic for different values of the pa-

rameters.

Proof. For any (λ, µ) ∈ C
∗2, denote by φλ,µ the C-algebra automorphism of J fixing E4

and E6 and such that φλ,µ(A) = λA and φλ,µ(B) = µB. By the same calculations as in
proof of lemma 4.2.2 we have, for any (a, b, a′, b′) ∈ C

4,

(φλ,µ ◦ Sea,b = Sea′,b′ ◦φλ,µ) if and only if (aµ = a′λ and bλ = b′µ). (35)

By (33), if one of the equivalent conditions of (35) is satisfied, then the formal de-

formations {·, ·}[a,b,c] and {·, ·}[a
′,b′,c′] are isomorphic. Since it follows from (35) that

φa,1 ◦ Sea,b = Se1,ab ◦φa,1 for any a 6= 0, and φ1,b ◦ Se0,b = Se0,1 ◦φ1,b for any b 6= 0, the

proof that ({·, ·}
[a,b,c]
n )n≥0 is modular-isomorphic to one of given formal deformations is

complete. The separation of the different cases up to modular isomorphism follows from
a direct application of Lemma 4.2.2. �

4.3. Oberdieck’s derivation and a new way to build Jacobi forms. The extended
Serre derivation Sea,b is a generalization of an already known derivation of the algebra
of weak Jacobi forms that preserves the index, increases the weight by 2, and has an
analytic expression: the Oberdieck derivation [13]. For the convenience of the reader, we
only briefly describe this derivation here. The interested reader will find details in the
unpublished note [2].

For all τ ∈ H, let Λτ = Z⊕ τZ. The ζ function associated to Λτ is defined by

∀z ∈ C− Λτ ζ(τ, z) =
1

z
+

∑

ω∈Λτ
ω 6=0

(

1

z − ω
+

1

ω
+

z

ω2

)

. (36)

Let J1 and J2 be the two functions defined by

∀τ ∈ H, ∀z ∈ C, z /∈ Z+ τZ J1(τ, z) =
1

2πi
ζ(τ, z) +

πi

6
z E2(τ),

and

J2 =
1

2πi
∂z J1 −

1

12
E2 +J21

where ∂z is the derivative with respect to the second variable.
We define an application on J by

Ob(f) =
1

2πi
∂τ (f)−

k

12
E2 f −

1

2πi
J1 ∂z(f) +m J2 f
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for any f in the space Jk,m. It can be shown that this application is a derivation of J
satisfying Ob (Jk,m) ⊂ Jk+2,m. Computing the values of Ob at E4, E6, A and B, we see
that Ob = Se−1/6,−1/3.

The existence of an analytic expression for Ob provides an explicit way to build new
Jacobi forms from old ones. For examples, E6 is obtained from E4 by Ob and B is
obtained from A by Ob.

4.4. Relationship with deformations on quasimodular forms. The deformations
we have built on the algebra of weak Jacobi forms produce deformations on the algebra
of quasimodular forms. More precisely they extend from J to K and then, restrict to
Q = C[E4,E6,F2]. For any a, b ∈ C, the derivation Sea,b extends canonically to K by

Sea,b(A
−1) = −A−2 Sea,b(A) = −aA−2 B .

This implies by (28)

Sea,b(F2) = bE4−aF2
2 .

It follows that the algebra Q is stable by Sea,b. Hence {f, g}
[a,b,c]
n ∈ Q for all n ≥ 0 and

f, g ∈ Q. These expressions do not depend on c since the functions of Q have index 0.
We denote simply

{f, g}[a,b]n =
n
∑

r=0

(−1)r
(

k + n− 1

n− r

)(

ℓ+ n− 1

r

)

Sera,b(f) Se
n−r
a,b (g) (37)

for all homogeneous f, g ∈ Q of respective weights k and ℓ. This defines a deformation
of Q. We consider three cases,

(1) If a = b = 0, the deformation ({f, g}
[0,0]
n )n≥0 of Q corresponds up the isomorphism

ω defined in (31) between Q and M≤∞ to the deformation of M≤∞ studied in
[7, Theorem D] for the particular case b = 0 and α = −2

3 of the parameters used
in this theorem.

(2) If a = 0 and b 6= 0, we can by Theorem 4.2.3 reduce to the deformation

({f, g}
[0,−1/12]
n )n≥0 of Q which corresponds up the isomorphism ω to the defor-

mation of M≤∞ studied in [7, Theorem B] for the particular case a = 0 of the
parameter used in this theorem.

(3) If a 6= 0, the deformation of M≤∞ obtained from ({f, g}
[a,b]
n )n≥0 through the

isomorphism ω does not correspond to any bracket defined in [7]. The reason
is that the study of [7] was devoted to deformations preserving the depth of the
quasimodular forms. This is not the case here since for instance

{E4,F2}
[a,b]
1 = 4bE2

4 +
2

3
E6 F2−4aE4 F

2
2

is of F2-degree two whereas E4 and E2 are of respective depth 0 and 1 in M≤∞.

5. A second family of Rankin-Cohen deformations on weak Jacobi forms

In this section, we define and study a family of Rankin-Cohen deformations on J
whose restriction to M is the sequence of classical Rankin-Cohen brackets. The method
consists in applying the extension-restriction principle described in Paragraph 2.2.1 to
some family of formal deformations of K.



DEFORMATIONS OF JACOBI FORMS 17

5.1. Construction of the deformations. Recall that ω : Q → M≤∞ is the algebra
isomorphism that sends (E4,E6,F2) to (E4,E6,E2). The usual complex derivative Dz

defines a derivation on the algebra M≤∞ of quasimodular forms. We define a derivation
on Q by ∂ = ω−1 Dz ω. Ramanujan equations (17) become

∂(E4) = −
1

3
(E6 −E4 F2), ∂(E6) = −

1

2
(E2

4−E6 F2), ∂(F2) = −
1

12
(E4 −F2

2). (38)

The unique way to extend ∂ into a derivation ∂u of K preserving the index and increasing
the weight by 2 is to set

∀f ∈ Q ∂u(f) = ∂(f) and ∂u(A) = uAF2 (39)

for some u ∈ C. We compute

∂u(B) = ∂u(AF2) = (u+
1

12
)BF2 −

1

12
E4 A . (40)

For any u ∈ C, the derivation ∂u does not restrict into a derivation of M nor into a
derivation of J .

Applying the process described Section 1.3, we define, using ∂u, the following defor-
mation of K.

Theorem 5.1.1. For any complex parameters u and v, let (J·, ·Ku,vn )n≥0 be the sequence

of maps K ×K → K defined by bilinear extension of

Jf, gKu,vn =
n
∑

r=0

(−1)r
(

k + vp+ n− 1

n− r

)(

ℓ+ vq + n− 1

r

)

∂r
u(f)∂

n−r
u (g), (41)

for all homogeneous f ∈ Kk,p and g ∈ Kℓ,q. Then, for all (u, v) ∈ C
2,

(i) The sequence (J·, ·Ku,vn )n≥0 is a formal deformation of K.

(ii) JKk,p,Kℓ,qK
u,v
n ⊂ Kk+ℓ+2n,p+q.

(iii) The subalgebra M of modular forms is stable by J·, ·Ku,vn , its restriction to M being

the classical Rankin-Cohen bracket RCn.

Proof. For any u ∈ C, the derivation ∂u of K satisfies ∂u (Kk,m) ⊂ Kk+2,m. Then, (i)

and (ii) follow from Proposition 1.3.3 since J·, ·Ku,vn = FRC
∂u,v
n . If f, g are modular forms

of respective weights k, ℓ, we have p = q = 0 in formula (41) which doesn’t depend on v in

this case. Moreover ∂u(f) = ∂(f) = Dz(f) and ∂u(g) = ∂(g) = Dz(g). Hence Jf, gK
[u,v]
n

doesn’t depend on (u, v) and is by (12) equal to RCn(f, g), which proves (iii). �

Remark 5.1.2 (classification and separation result). Using arguments similar to those

in 4.2, we can show that two formal deformations (J·, ·Ku,vn )n≥0 and (J·, ·Ku
′,v′

n )n≥0 of K
are modular isomorphic if and only if (u, v) = (u′, v′). The details of the proof are left
to the reader.

Remark 5.1.3 (relationship with deformations on quasimodular forms). The subalgebra
Q is stable by the brackets J·, ·Ku,vn . However, their restrictions to Q do not preserve the
degree in F2 (so up to the isomorphism ω, they do not preserve the depth of quasimodular
forms). For this reason, the restrictions of J·, ·Ku,vn to the subalgebra Q can not coincide
with the brackets previously studied in [7].
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5.2. Restriction to weak Jacobi forms. Although the subalgebra J is not stable by
the derivation ∂u, the question arises whether J can be stable by (J·, ·Ku,vn )n≥0 for some
values of the parameters u and v. Since

JB,E4K
u,v
1 =

1

3
(v − (12u + 1)) BE4 F2 −

1

3
vE6 B+

1

3
E2
4 A,

a necessary condition is v = 12u + 1. We use the general method of Theorem 2.2.1 to
prove that this condition is sufficient.

Theorem 5.2.1. For any complex number u, the sequence
(

J·, ·Ku,12u+1
n

)

n≥0
defines by

restriction a deformation of the algebra J of weak Jacobi forms, whose restriction to the

subalgebra M of modular forms is the sequence of classical Rankin-Cohen brackets.

Proof. We consider the derivation ∆u of J defined by ∆u(f) =
1
2(k + (12u + 1)p)f for

any weak Jacobi form f of weight k and index p. We have

∆u(E4) = 2E4, ∆u(E6) = 3E6, ∆u(A) =

(

6u−
1

2

)

A, ∆u(B) =

(

6u+
1

2

)

B .

We also denote by ∆u its canonical extension as a derivation of K, which satisfies:

∆u(F2) = ∆u(B)A
−1 −B∆u(A)A

−2 = F2 .

We denote θ = Se 1

12
,− 1

12

in the sense of (32). So we have

θ(E4) = −
1

3
E6, θ(E6) = −

1

2
E2
4, θ(A) =

1

12
B, θ(B) = −

1

12
E4 A,

and its canonical extension as a derivation of K satisfies:

θ(F2) = θ(B)A−1 −B θ(A)A−2 = −
1

12
F2
2 −

1

12
E4 .

The derivations ∆u and θ of K satisfy ∆uθ−θ∆u = θ, and by construction the subalgebra
J of K is stable par ∆u et θ. The element h = − 1

144 E4 of J satisfies ∆u(h) = 2h. Then,

the element x = 1
12 F2 of K satisfies x /∈ J , ∆u(x) = x and θ(x) = −x2+h. Thus we can

apply Theorem 2.2.1. The derivation D := θ+2x∆u of K is such that ∆uD−D∆u = D
and J is stable by the Connes-Moscovici deformation (CMD,∆u

n )n≥0 of K.

On the one hand, D(Kk,p) ⊂ Kk+2,p. Then (CMD,∆u
n )n≥0 = (FRCD,12u+1

n )n≥0 on K by
Proposition 1.3.3. Hence we have for any f ∈ Jk,p and g ∈ Jℓ,q,

CM
D,∆u
n (f, g) =

n
∑

r=0

(−1)r
(

k + (12u + 1)p+ n− 1

n− r

)(

ℓ+ (12u + 1)q + n− 1

r

)

Dr(f)Dn−r(g).

On the other hand, the calculation of the values of D on the generators of K gives

D(E4) =
1

3
(E4 F2 −E6), D(E6) =

1

2
(E6 F2−E2

4), D(A) = uAF2, D(F2) =
1

12
(F2

2 −E4).

We deduce by (38) and (39) that D is equal to the derivation ∂u and then, by (41) that

(CMD,∆u
n )n = ([[·, ·]]u,12u+1

n )n.

We conclude that J is stable by the formal deformation ([[·, ·]]u,12u+1
n )n of K.
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The fact that the restriction to M of this deformation of J is the sequence of classical
Rankin-Cohen brackets follows from (iii) of Theorem 5.1.1. �
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