A. Albuschäffer, Synergy of tactile and force sensing for grasping and safe human robot interaction, 2015.

P. Mittendorfer and G. Cheng, Open-loop self-calibration of articulated robots with artificial skins, 2012 IEEE International Conference on Robotics and Automation, pp.4539-4545, 2012.
DOI : 10.1109/ICRA.2012.6224881

G. Cannata, S. Denei, and F. Mastrogiovanni, Towards automated self-calibration of robot skin, 2010 IEEE International Conference on Robotics and Automation, pp.4849-4854, 2010.
DOI : 10.1109/ROBOT.2010.5509370

A. Roncone, M. Hoffmann, U. Pattacini, and G. Metta, Automatic kinematic chain calibration using artificial skin: Self-touch in the iCub humanoid robot, 2014 IEEE International Conference on Robotics and Automation (ICRA), pp.2305-2312, 2014.
DOI : 10.1109/ICRA.2014.6907178

Z. Guo, C. Hsu, J. Starek, W. Pointner, Y. Kumar et al., An artificial intelligent skin for autonomous robotic control, 2015.

D. Tsetserukou, N. Kawakami, and S. Tachi, Obstacle avoidance control of humanoid robot arm through tactile interaction, Humanoids 2008, 8th IEEE-RAS International Conference on Humanoid Robots, pp.379-384, 2008.
DOI : 10.1109/ICHR.2008.4755981

M. Fritzsche, N. Elkmann, and E. Schulenburg, Tactile sensing, Proceedings of the 6th international conference on Human-robot interaction, HRI '11, pp.139-140, 2011.
DOI : 10.1145/1957656.1957700

T. Wösch and W. Feiten, Tactile interaction between human and robot, " in Advances in Human-Robot Interaction, ser. Springer Tracts in Advanced Robotics, pp.23-34, 2005.

B. Robins and K. Dautenhahn, Tactile Interactions with a Humanoid Robot: Novel Play Scenario Implementations with Children with Autism, International Journal of Social Robotics, vol.14, issue.2, pp.397-415, 2014.
DOI : 10.1146/annurev-bioeng-071811-150036

URL : https://link.springer.com/content/pdf/10.1007%2Fs12369-014-0228-0.pdf

Q. Shen, K. Dautenhahn, J. Saunders, and H. Kose, Can Real-Time, Adaptive Human–Robot Motor Coordination Improve Humans’ Overall Perception of a Robot?, IEEE Transactions on Autonomous Mental Development, vol.7, issue.1, pp.52-64, 2015.
DOI : 10.1109/TAMD.2015.2398451

R. Calandra, S. Ivaldi, M. P. Deisenroth, and J. Peters, Learning torque control in presence of contacts using tactile sensing from robot skin, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp.690-695, 2015.
DOI : 10.1109/HUMANOIDS.2015.7363429

URL : https://hal.archives-ouvertes.fr/hal-01205501

G. Pugach, V. Khomenko, A. Melnyk, A. Pitti, P. Hénaff et al., Electronic hardware design of a low cost tactile sensor device for physical human-robot interactions, 2013 IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO), pp.445-449
DOI : 10.1109/ELNANO.2013.6552033

URL : https://hal.archives-ouvertes.fr/hal-00784892

B. Brown and A. Seagar, The Sheffield data collection system, Clinical Physics and Physiological Measurement, vol.8, issue.4A, pp.91-97, 1987.
DOI : 10.1088/0143-0815/8/4A/012

N. Hogan, Impedance Control: An Approach to Manipulation: Part I???Theory, Journal of Dynamic Systems, Measurement, and Control, vol.107, issue.1, pp.1-24, 1985.
DOI : 10.1115/1.3140702

V. Gullapalli, R. Grupen, and A. Barto, Learning reactive admittance control, Proceedings 1992 IEEE International Conference on Robotics and Automation, pp.1475-1480, 1992.
DOI : 10.1109/ROBOT.1992.220143

URL : http://www-robotics.cs.umass.edu/cgi-bin/getfile/pub/papers/vijay-ra92.ps.gz

C. Ott, R. Mukherjee, and Y. Nakamura, Unified Impedance and Admittance Control, 2010 IEEE International Conference on Robotics and Automation, pp.554-561, 2010.
DOI : 10.1109/ROBOT.2010.5509861

M. Beale, M. Hagan, and H. Demuth, Neural Network Toolbox 7.0.3: Users Guide, 2012.

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol.13, issue.1, pp.59-69, 1982.
DOI : 10.1007/BF00337288

C. Gallistel, The Organization of Learning, 1993.

D. Lieberman, Learning: Behavior and Cognition, 1993.

B. Widrow, J. Hoff, and M. E. , Adaptive switching circuits, IRE WESCON Convention Record, pp.96-104, 1960.
DOI : 10.21236/AD0241531

A. A. Melnyk, P. Henaff, S. Razakarivony, V. P. Borisenko, and P. Gaussier, Adaptive behavior of an electromechanical arm robot in a case of physical interaction with a human being, 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp.689-694, 2011.
DOI : 10.1109/AIM.2011.6027148

G. Pugach, A. Pitti, and P. Gaussier, Neural learning of the topographic tactile sensory information of an artificial skin through a self-organizing map, Advanced Robotics, vol.3, issue.21, pp.1393-1409, 2015.
DOI : 10.1088/0957-0233/12/8/316

URL : https://hal.archives-ouvertes.fr/hal-01254924

R. Calandra, S. Ivaldi, M. P. Deisenroth, E. Rueckert, and J. Peters, Learning inverse dynamics models with contacts, 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015.
DOI : 10.1109/ICRA.2015.7139638

URL : https://hal.archives-ouvertes.fr/hal-01131611

M. Hoffmann, H. Marques, A. Arieta, H. Sumioka, M. Lungarella et al., Body Schema in Robotics: A Review, IEEE Transactions on Autonomous Mental Development, vol.2, issue.4, pp.304-324, 2010.
DOI : 10.1109/TAMD.2010.2086454

A. Pitti, H. Alirezaei, and Y. Kuniyoshi, Cross-modal and scale-free action representations through enaction, Neural Networks, vol.22, issue.2, pp.144-154, 2009.
DOI : 10.1016/j.neunet.2009.01.007

URL : https://hal.archives-ouvertes.fr/hal-00737042

S. Mahé, R. Braud, P. Gaussier, M. Quoy, and A. Pitti, Exploiting the gain-modulation mechanism in parieto-motor neurons: Application to visuomotor transformations and embodied simulation, Neural Networks, vol.62, pp.102-111, 2015.
DOI : 10.1016/j.neunet.2014.08.009

A. Roncone, M. Hoffmann, U. Pattacini, and G. Metta, Learning peripersonal space representation through artificial skin for avoidance and reaching with whole body surface, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.3366-3373, 2015.
DOI : 10.1109/IROS.2015.7353846