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Touch-based Admittance Control of a Robotic Arm using Neural
Learning of an Artificial Skin

Ganna Pugach®2, Artem Melnyk!, Olga Tolochko®, Alexandre Pitti' and Philippe Gaussier!

Abstract— Touch perception is an important sense to model
in humanoid robots to interact physically and socially with
humans. We present a neural controller that can adapt the
compliance of the robot arm in four directions using as input
the tactile information from an artificial skin and as output the
estimated torque for admittance control-loop reference. This
adaption is done in a self-organized fashion with a neural
system that learns first the topology of the tactile map when
we touch it and associates a torque vector to move the arm in
the corresponding direction. The artificial skin is based on a
large area piezoresistive tactile device (ungridded) that changes
its electrical properties in the presence of the contact. Our
results show the self-calibration of a robotic arm (2 degrees
of freedom) controlled in the four directions and derived
combination vectors, by the soft touch on all the tactile surface,
even when the torque is not detectable (force applied near the
joint). The neural system associates each tactile receptive field
with one direction and the correct force. We show that the
tactile-motor learning gives better interactive experiments than
the admittance control of the robotic arm only. Our method
can be used in the future for humanoid adaptive interaction
with a human partner.

I. INTRODUCTION

The sense of touch is a powerful feature to endow hu-
manoid robots in order to interact closely with humans and to
collaborate with them. According to Albu-Schffer [1], robots
without the sense of touch will remain far from the perfor-
mance of human beings. For instance, it can be interesting
to have robots capable of using their tactile information to
self-calibrate the physical limits of their body [2], [3], [4],
to prevent the risks of causing of its physical damage by
an obstacle [5], [6] or of causing bodily harm to human
using the safety-rated information on contact [7]. It is also
advantageous to have robots that comply to an imposed
direction that a person wants the robot to follow. Moreover,
tactile modality can contribute not only for general robotic
services [8] but also for careful interactions during robot-
assisted plays in the context of autism therapy [9]. Tactile
modality also helps robots to improve motor coordination
behaviors during interaction with humans as well as the per-
son own’s perception of the robot presence and action [10].
However, it can be difficult for robot designers to model
correctly the interactive control since the robot geometry
has to be known in advance as well as the type of physical
interactions the robot will have with a person.
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The measures of the joint torques are important to build
the control loops for robot interaction with a human. The
joint torque is usually measured by pervasive joint built
sensor contains the information about applied torque by
the electrical drive and the torque caused by the physical
interaction with a human or robot environment. Thus, adding
the humans interaction complicates the organization of the
interaction control loop. It is advantageous to have informa-
tion about the applied force and its direction, which can be
successfully implemented by introducing admittance loop,
that will handle the measured force on the entire surface of
skin equipped robot link. To our knowledge, only Calandra
et al. [11] proposed the demonstration of how joint torques
can be learned on a humanoid robot iCub, equipped with
tactile and force/torque sensors in the presence of contacts.

Machine learning techniques, instead, can help to have an
adaptive control of the robot limbs by estimating the spatial
location and the amplitude of the applied force. To this
purpose, we propose to use a neural architecture that learns
the admittance control of a robotic arm covered with a tactile
skin to orient it safely. We use two artificial neural networks
that learn in an unsupervised manner (/) the topological
configuration of the tactile device not known in advance and
(2) the force compliance to apply when a tactile signal has
been detected. The first neural network corresponds to the
Kohonen self-organizing map (SOM) with neurons that learn
the topology of the un-gridded tactile device; each tactile
neuron will learn a specific receptive field [12]. The second
neural network, based on the neuron model of the Perceptron,
will learn to estimate from the position on the tactile surface
and from the pressure applied to it the actual compliant
forces to apply to control our two degrees of freedom
robotic arm in the four directions. Our main goal is to
achieve the development of multimodal body representations,
tactile and proprioceptive, in humanoid robots for physical
interactions with persons and environment. It is the first step
to integrating other modalities like vision and more degrees
of freedom.

The paper is organized as follows. Section II presents
our experimental setup with our robotic arm and the tac-
tile device used in our experiments. The Methods section
presents the equations of the admittance control used to
control the arm and the definition of the neural networks
implemented to locate the tactile force on the arm and to
estimate the counter-force to apply on it. Section III consists
of three experiments. The first step in our experimental study
is to identify the joint torques during physical contact with
robot link. The second experiment serves to learn the tactile



map on the arm in a self-organized manner by touching the
robot with a SOM. The third experiment serves to learn the
complete sensorimotor loop with a second neural network
that associates tactile information with its corresponding
proprioception. The results are the dynamical control of
the robotic arm by a person in the four directions and
their combinatory vectors, on all its surface, even with light
touches.

II. MATERIALS
A. Robotic arm

We use robotic arm Jaco from Kinova company with
seven degrees of freedom (DoF). Each axis is controlled
independently and driven by a brushless DC motor and a
gear system. The firmware of the robot arm Jaco provides
Cartesian or angular trajectory control measuring the angular
positions and calculating the errors every 10ms. In our work,
we use only the angular position control mode. The speed
of each motor is controlled by a high-level controller in the
arm and, therefore, cannot be controlled directly.

B. ’Artificial skin’ tactile sensor

In order to design the artificial skin for a robot, we intro-
duced a low-cost system based on the Electrical Impedance
Tomography (EIT) method for data acquisition from the
conductive fabric [12]. In our experiments, we use the
conductive material (Velostat film (3M)) with the volume
resistivity around 500 Q-cm?. It is made of opaque, volume-
conductive, carbon impregnated polyolefin whose resistance
decreases when pressured. Sixteen electrodes are attached
uniformly along the perimeter of the rectangular conductive
layer of dimension 250 x 320 mm. The EIT is a non-invasive
technique particularly used in medical imaging to measure
iteratively the voltages resulting from rotating injection of
small electrical currents through electrodes placed on the
circumference of the investigated object. In order to es-
timate the conductivity and permittivity distribution in an
electrically conductive material, we applied the neighboring
method which is one of the popular EIT technique [13]. A
simple multiplexer/demultiplexer circuit is used to retrieve
the resistance field from the pairwise electrodes injecting
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Fig. 1. Jaco Arm whose only one link is covered with skin: a - flat

conductive fabric with the electrodes and calibration stimulus on it; b- robot
link wrapped in the conductive fabric

the direct current (200pA) and the electrodes measuring
the output voltage from the conductive fabric, see Fig. 1
a. A microcontroller governs the injection of the current and
measurement of the voltage output patterns and performs
its 12-bit analog-digital conversion. The spatial patterns of
the tactile contact can be acquired and localized in real-time
(40Hz). We show in Fig. 1 b the Jaco Arm with one section
covered by an artificial skin. This section (forearm-like) was
chosen for its convenience and usability in physical human-
robot ineraction. On the long term, we plan to cover all the
arm with the skin.

III. METHODS

In control theory, interaction control is the general ap-
proach used to regulate the robot’s dynamic behavior with
the environment [14], for which the most common forms are
to regulate the manipulators impedance or admittance. The
admittance controller accepts a force as input and reacts with
a displacement that is a unique solution for position guided
robot control system. Admittance control can be combined
with other techniques to improve the control under real-world
conditions of uncertainty and noise [15].

In this paper, we present two admittance controllers: (/)
a classical controller using measured joint torques and (2)
a neural controller using perceptron predicted joint torques
associated with tactile patterns from the artificial skin.

A. Admittance control using measured joint torque

As we mentioned before the firmware of the robot arm
Jaco provides angular trajectory control i.e. position control
loop, see Fig. 2 and the robot behaves like a mechanical
impedance [16]. For this reason, the interaction controller is
designed to be a mechanical admittance.

Position-Controlled System
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Fig. 2. Block scheme of a structure to control a robot joint with admittance
control (inspired by [16])

Let’s consider a single degree-of-freedom system in which
a mass interacts with an environment. Let m and x be the
generalized inertia and displacement of the mass, respec-
tively, and let F' and F.,; be the control force and external
force of the environment acting on the mass. The equation
of motion of the mass can be written as follows:

mj:F‘FFext (1)

The control objective for Impedance and Admittance Control
consists in of designing the control force F,.; that provides
a given relationship between the external force Fp,; and
the deviation e = (x — () based on a desired equilibrium



trajectory xg. Generally, a linear second-order relationship is
considered:
Maé+ Dgé + Kqe = Feay 2

where the positive constants My, Ky and Dy are the desired
or virtual inertia, the stiffness and the damping, respectively.

While the interaction control allows producing a general
behavior, in many robot applications the restriction of the
desired behavior to the linear is sufficient [16].

B. Admittance control using neural learning and an artificial
skin

In this section, we propose a neural architecture for
admittance control of the Kinova arm (2 DoF) using a
self-organizing map (SOM) and the perceptron neurons, see
Fig. 3. We use the SOM to reconstruct the spatial location
of a contact point on an artificial skin from the distribution
of the resistance density. The voltage signals from the tactile
device (208 values) are used for the learning of the self-
organizing map (unsupervised learning, see section III-B.1).
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Fig. 3. Neural architecture for admittance control of a robotic arm using
an artificial skin based on a Kohonen map to categorize the tactile patterns
into a spatial topology. This tactile SOM is then used to feed a LMS neuron
to predict the torque signal of the robot arm based on the tactile location
of an applied force when we touch the tactile surface.

In addition to the SOM that encodes tactile information
inputs, we use a Least Mean Square (LMS) neural algorithm,
which is a Perceptron without softmax output filtering. The
LMS predicts the two joint torques depending on the spatial
location of a contact point provided by the tactile map.
During learning stage, the measured torques (4 values) are
used as an unconditional stimulus and the SOM output as
conditional stimulus (supervised learning, see section III-
B.2). The predicted torque values (LMS output) serve for
the admittance control. The SOM and perceptron neural
networks have respectively 16 x 16 neurons and only 4
neurons for the four directions.

1) Tactile neural network: SOMs consist of elements
called ’nodes’ or neurons connected topologically, see Fig.
3. Each node ¢« € N, with N the dimension of the neural
network, is connected to the input vector j € M, with M
the dimension of the input vector, via synapses, a vector
of weights w;; with 4,7 € N x M and each node has
a local influence on its direct neighbours. Learning takes
place iteratively as follows. At each cycle, the distance d;
between all weights and the input vector is computed; see

Eq. (3). The neuron with the smallest distance is called the
winning neuron. Its weights and those of its direct neighbors
are modified to reduce the distance to the input vector; see
Eq. (4), also, their output is computed as the inverse of the
distance; see Eq. (5). The position of the neurons on a 2-
dimensional grid determines the Kohonen map topology.

During the training stage, a distance d (usually an Eu-
clidian or L1 distance) between the input vector x and the
neurons’ weights w is associated with each output neuron y
as in Eq. (3):

3)

where z; is the j-th component of the input vector x
and M is the dimension of the input vector z; d; is the
distance associated with ¢-th neuron within a population of
N neurons. The smaller d is, the closer is the receptive field
of the neuron to that input vector. The output neuron with
the smallest distance d} = argmin(d;) is written ¢* and is
then considered as the winner neuron. Its weights are updated
following Eq. (4) as well as the neurons within a certain
neighborhood radius A~ [17]:

wij(t+1) = w;j(t) + cheiz;(t) —wi(t) @)

where ¢ is the learning rate, for iteration time ¢.

The Kohonen learning rule Eq. (4) changes the weights of
the winner neuron and its neighbors [18], [19], [20], which
get closer to the input vector and cause the decreasing of
the distance to it. As a result, the Kohonen network learns
to classify topologically similar vectors. The output value y;
of the neuron 7 is the inverse of the distance d; measured in
Eq. (5):

1

- 1+d; ©)

Yi
2) Tactile-motor neural architecture: The Least Mean
Square (LMS) neural network is used in conditional learning
paradigms. It learns to predict a desired output derived from
an unconditionnal stimulus and associate this output with
a conditionnel stimulus. The group of the neurons uses a
modified Widrow-Hoff learning rule [21] described in Eq.
(6). The output of each neuron is computed as described in
Eq. (7).
dt
where D; is the desired activity of the neuron j (i.e., the
torque), u(t) is the learning rate, W; ; the weights and Y;
the predicted output. The equation to compute the neural
activity is:

= u(t) - (D; ~ ¥y) (6)

Yi(t) = fO_ Wiy - X)) (7)

where X is the vector input (i.e., the tactile neurons of
the SOM) and f the unitary function. This architecture
is equivalent to a Pavlovian conditioning or reinforcement
learning, which associates the prediction of one articular
couple with the activity of the tactile map.



IV. EXPERIMENTS
A. Experiment I — Interaction control for Jaco manipulator

The goal of this experiment is to realize a classical ad-
mittance control using measured joint torque, that presented
in III-A. This experiment consists of two parts.

First part aims to estimate the response of the position-
driven robot arm to a series of unknown external force
perturbations exerted by a human (in the horizontal plane)
and to verify the usability of the algorithm [22] that allows
robot control without knowledge of any measures of force
or torque. The results are shown in Fig. 4. The force Fi.;
applied at the extremity of the robot link (I = 0.41m)
by a human, and its value reaches 40/N. There is a delay
At = 1s between the occurrence of the disturbance and
the response of the system to this disturbance until external
force; its value reaches 13,8 N (in both directions) before
joint torque starts to change. Position-controlled joint keeps
the reference ©,.¢ and the interactional perturbation is
rejected. The joint remains stiff, and there is a negligible
displacement ©,,.s = 1ldeg. Proposed in [22] adaptive
algorithm cannot be implemented for Jaco robotic arm due to
the high joint stiffness. This is the reason why we implement
the admittance control loop in this work.
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Fig. 4. Dependences of position controlled joint angle variation Opmes(t)
(blue line), the reference 6,4(t) (black line) and joint torque 7;(t) (red line)
in case of the external force perturbation Fe.¢ (green line).

The second part of this experiment aims to implement
an admittance control in order to adjust the behavior of the
manipulator’s joint to an external force caused by a physical
interaction with a human. Fig. 5 shows the joint parameters
of the admittance controller during two phases of interaction.
The actual joint position is the desired position, and there is
no joint torque caused by physical interaction on the time
range 0 to 4.1s. Here, the system is in equilibrium state
until a physical contact occurs and that an induced torque
acts on the robot’s joint. During first period 4.1 to 11.4s,
the human pushes the robot link with increasing force F,;
that the mean is 30/N. The admittance controller provides the
new reference for the position controller, after a time lag of
At = 1s external force 13.8 N and the robot starts to move
in the same direction with the applied force. After ¢ = 11.1s,

Parameter values per unit

5 10 15 20 25
Time {s)

Fig. 5. Dependences of admittance controlled joint angle variation Opmes(t)
(blue line), the reference 64(t) (black line) and joint torque 7;(t) (red line)
in case of the external force perturbation Feg¢ (green line).

there is no joint motion because the physical interaction is
over. During second period 14.3 to 22.4s, the human pushes
again the robot link in another direction with increasing force
F..: that the mean is 34N. Joint reacts after a time lag of
At = 1s on the external force 13.8N, and the robot starts
to move in the same direction with the applied force.

B. Experiment 2 — Learning stage on tactile neural network
self-organization

In previous work [23], we conducted experiments with
a self-organizing neural network which is adapted to the
structure of a flat round-shaped tactile sheet. In this paper,
we use a Kohonen map to learn the topology of the square-
shaped artificial skin curved on the Kinova arm (2 DoF). One
of the advantages of the Kohonen map is that it can adapt
dynamically to the topology of the incoming structure of a
tactile sheet and spatial resolution of the input tactile device.
Moreover, the spatial location of a contact point cannot be
determined using the parametric methods if the shape of the
tactile surface is unknown or modified.

The learning stage is done as follows. We touch the tactile
sheet on all its surface and we retrieve the voltage signals
from the tactile device (208 values) for the learning of the
self-organizing map and the reconstruction of the spatial
localisation of a contact point. At the same time, we collect
the torque which will be used as the conditional stimulus for
LMS learning, see Fig. 3.

To illustrate the results of a reconstruction of the spatial
localisation of a contact point, we display in Fig. 6 the
activity of the SOM after learning (right column) and for
five different locations around the arm (left column). As
observed in a previous work [23], the Kohonen map learns
the topological configuration of the tactile sheet without
giving its XY coordinates. The resolution here is just 16 x 16
although, it is possible to go higher. When we go from
one side of the tactile map to the other, the winner neuron
and its neighbors in red follows the motion displacement of
the human partner. Once the tactile neurons have learned
their receptive fields, the second neural network can use this
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information for the admittance control.

C. Experiment 3 — Experiment of learning admittance con-
trol for a skin-covered articulation

We present in this experiment the control of the robotic
arm using the tactile SOM. Four LMS perceptron-like neu-
rons learn the association between the tactile information
from the Kohonen map and the measured joints torque.
Depending on the position of the physical contact with the
tactile sensor, each LMS neuron estimates the corresponding
value and direction of the torque on the two axes. We plot in
Fig. 7 the average activity of the tactile map for each LMS
neuron, which also corresponds to their respective receptive
fields.

Kohonen Tactile Map for LMS Torque Control
LMS1 LEFT LMS2 RIGHT

NN [idx]
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15
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LMS4 DOWN
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Fig. 7. Tactile receptive fields of the LMS Torque neurons. Projection of
the averaged tactile map activity when the LMS Torque neurons fire. The
LMS neurons have learned the spatial distribution of their force direction
depending on the tactile information on the SOM.

The tactile receptive fields of LMS 1, corresponding to
the torque control in the left direction, has a large pattern
anisotropic on the Y axis on a right-side column. The
receptive field of LMS 2, corresponding to the torque control
on the right direction, has a pattern centered more on the left-
side. Those of LMS 3 and LMS 4, respectively up and down
directions, are more sensitive to tactile activity in the middle
region and on the external sides where the tactile sheet is
wrapped. From this figure, each LMS neuron has learned
a distinct spatial distribution of the torque and direction
depending on the tactile information on the SOM. The four
LMS neurons have learned a body map that links orientation
with tactile signals.

After convergence, the LMS neurons are capable of esti-
mating the torque value from the tactile input to implement
the admittance control loop for the robotic arm without real
torques measures. The direction of motion of robot arm
defines by the maximal value of LMS neurons activations.
We plot in Fig. 8 the estimated torque value (solid blue line)
by the four LMS neurons with the corresponding measured
torque value (dotted red line) — the output and input of LMS,
respectively. The subplots correspond to four possible motion
directions (right, left, up and down) that linked with the
activity of specific LMS neuron respectively to a number
of the subplot.

The first time range from 0 to 2s has a significant variance
estimated and real values of the joints torques that indicate
physical contact on the robot link. The applied force is not
perpendicular to any robot axis and is decomposed into two
torques (left and down) due coupling effects among rotational
joints. We can observe that only the fourth neuron is active
(red dotted line) it means that the contact is detected on the
bottom of the tactile sensor, thus, the arm moves up. The
second time range from 2 to 8s the robot arm moves to
the right (contact is detected on the left side of the tactile
sensor). From 6s has a small activity of the third neuron, it
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Fig. 8. Estimation of the torque of 2-DoF robot arm by the LMS neurons
based on tactile activity in the Kohonen map. The obtained results are
shown for all possible contact points if we move along a link arm and then,
gradually move across the full surface of the artificial skin. The positive
values of first and second joint torque are represented by the activity in the
first and the third LMS neurons. The negative values of the joints torques
presented as positives in the second and fourth neurons. Furthermore, the
torque values are normalized between 0 and 1 with the scaling factor of
15N -m.

means that the interactional force is no longer perpendicular
to any robot axis. However, the robot continues to move the
same direction because the value of torque predicted by the
second neuron exceeds the value of the third neuron. The
neural controller exhibits the same behavior of robot arm for
other cases depicted in the Fig. 8.

Further, we plot in Fig. 9 the histogram of the torque
estimation error for the four LMS neurons, and the histogram
of the torque direction error; resp. a) and b). It is the
difference between the measured torque which is the input
of LMS and the estimated torque at the output of LMS. The
graph in Fig. 9 a) shows that the LMS makes most of the
error for small torque under 1 NV - m whereas * makes less
error to estimate the higher torque value. This small error is
explained partly by the resolution and the size of the SOM, as
the SOM gets bigger, the categorization error will be reduced
on the tactile surface.

We consider now the diagram of the torque direction error
estimated by the LMS neurons on the robot arm, see Fig. 9
b). The diagram displays a strong correlation between the
estimated direction of the torque by the four neurons and
the real ground truth direction. The neurons are robust in 70
percent of the time.These results show that the LMS neurons
re-transcribe better the directionality of the torque than the
amplitude of the torque, and this for significant torque values
rather than for small torques. Let us note that this error is
much less than the minimum torque required (1 /NV-m) for the
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Fig. 9. Error histograms of the torque estimated by LMS neurons (a) and
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Fig. 10. Torque estimated by the LMS neurons based on the three spatial
locations of the contact point along the robot link: away, in the middle and
near the axis of joint. The value of applied forces is approximate equals
during all tests. We can observe that the torque value decreases as we
approach the joint axis.

implementation of admittance control, see Fig. 5. Therefore,
the neural architecture is capable of controlling the robot
behavior using the tactile input with more sensitivity than
the admittance control.

To proof the designed neural controller concept we created
the experimental scenario. This scenario aimed the interac-
tion along the joint axis at all surface of the skin sensor
to verify the relationship between tactile information and
estimated value of the torque and its direction. The analysis
of experimental data (Fig. 10) shows that the LMS interpret
correctly the tactile information from the Kohonen map. The
amplitude of the joint torque changes according to the spatial
the position of the contact point on the tactile sensor surface,
i.e., decreases as it approaches the axis of the articulation.
The observed behavior corresponds to physical phenomena.

V. DISCUSSION & CONCLUSIONS

We have presented an adaptive neural architecture that
learns the admittance control of a robotic arm using tactile
sensors for compliant interactions with human partners. We



took the advantage of an artificial skin to localize the contact
points where force is applied — when a person is interacting
with the robot arm, and we made to learn a neural network
to associate then the spatial location on the tactile surface
with the corresponding torque received from the joints. After
learning stage, the proposed neural controller is capable
of estimating the torque value from the tactile input to
implement the admittance control loop for the robotic arm
without real torques measures. To the best of our knowledge,
this is the first time demonstration of self-calibrating and
controlling a robotic arm in a self-organized way using neural
networks learning the torque model and its tactile body
image. In that sense, it differs from the research done by [24].

The model is applied to a two degrees-of-freedom manip-
ulator but can be easily extended to a humanoid’s full body.
At first, the voltage signals are learned through a Kohonen
SOM that recreates the topology of the tactile sheet [23]. In
second, this information is then used by four LMS neurons
that simulate a torque vector in the four directions at the
contact point. The advantages of using an artificial skin are
to learn to control the robotic arm without using of joint
axis mounted torque sensors, even with the soft touch or
near the joint and to filter smoothly the admittance control
of the small jerks and slits during the motion of the robot
joint. The advantages of using neural networks are also to
self-calibrate the robot arm in an unsupervised way and to
generalize from it: for instance, a SOM can be used for
multitouch and the Perceptrons can combine different torque
vectors with respect to the contact points. By doing so, the
neural networks can learn a multimodal body image useful
for physical and social interactions [25]. In future works,
we are planning to extend our results by adding vision and
by adding more degrees of freedom to control the robot by
touch and visually [26], [27], [28].
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